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Abstract

Medical palpation is a diagnostic technique in which physicians use the sense of touch to manipulate the soft
human tissue. This can be done to enable the diagnosis of possibly life-threatening conditions, such as cancer.
Palpation is still poorly understood because of the complex interaction dynamics between the practitioners’
hands and the soft human body. To understand this complex of soft body interactions, we explore robotic pal-
pation for the purpose of diagnosing the presence of abnormal inclusions, or tumors. Using a Bayesian frame-
work for training and classification, we show that the exploration of soft bodies requires complex, multi-axis,
palpation trajectories. We also find that this probabilistic approach is capable of rapidly searching the large ac-
tion space of the robot. This work progresses ‘‘robotic’’ palpation, and it provides frameworks for under-
standing and exploiting soft body interactions.
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Introduction

The palpation of soft bodies is a complex medical
procedure where physicians palpate the human body

for the diagnosis of abnormalities.1,2 Practitioners use their
hands to explore and feel for abnormalities within the soft
tissue of the patient’s body, exploiting the physical structure
and the sensing capabilities of the human hand.3 This action
is widely used for the initial detection and screening of
abnormalities within the body, aiding the diagnosis of con-
ditions, including cancer,4 abdominal aortic aneurysm,5

appendicitis,6 and others.7–9

The complexity of this important procedure arises from the
complex motions of the practitioner’s hand that are in contact
with the interacting layers of soft tissues of the human body,
which can have many (or infinite) degrees of freedom. In the
past, there have been notable attempts to better understand
palpation by using robotics technologies.10–13 One of the
pioneering works in this area, the WAPRO-4 system, is
capable of performing simple breast palpation to identify

relatively large inclusions.14 The use of probes with variable
mechanical impedance has been found to improve lumps and
tumor detection,15 and the importance of sensory-motor co-
ordination has also been shown across a number of medical
applications.16–18 One of the key enabling technologies to
improve robotic palpation capabilities is tactile sensing,19

which has led to the in-depth study of the use of tactile sen-
sors for tumor localization.20–26 Robotics research has also
attempted the development of technologies for medical tele-
operation27–30 and medical training, such as haptic palpation
training systems,31–34 and virtual reality training systems.7,35,36

Finally, efforts have been made in applying machine learning
for tumor localization and classification.37–41

Within this body of existing work, there has been limited
investigation of the impact of introducing diversity and
complexity into the trajectory of the robot hand/probe
during palpation. Previous work has only examined ro-
botics palpation systems with simple one-axis vertical
displacements,24,25,42,43 or horizontal sliding trajecto-
ries.25,34,44 In contrast, medical practitioners use complex
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examinations techniques, including rotations, twists, and
percussions that are dependent on the specific body part
under investigation.8

In the context of palpation, the quality of the tactile in-
formation, and hence the ability to make accuracy diagnosis,
depends on the quality of these soft interaction as well as
the tactile information arising from them. In this article, we
hypothesize that the tactile information gained through the
interactions between a sensor and the soft human body is
improved by introducing complexity into the robot actions.
The robot actions can enhance the richness of the physical
stimuli arising from the soft interactions between the robot
and the soft body to palpate, assisting classification of in-
clusions and hence diagnosis. As such, the challenge
addressed in this article is the optimization of complex pal-
pation trajectories to enable more accurate classification of
abnormalities in soft bodies.

We use a six Degree of Freedom robot arm with a sen-
sorized end-effector. To efficiently search the high dimen-
sional action space, we utilize Bayesian inference (in the
form of Bayesian Exploration). Bayesian approaches can
leverage the cumulative past experiences to rapidly search
motion trajectory parameters, and they allow for efficient
search of high-dimensional action spaces. This search can
enable the robot to select effective trajectories for accurate
classification of hard inclusions in soft tissues.

In this article, the Materials and Methods section briefly
reports the physical set-up for the experiments, before out-
lining the Bayesian framework developed for this work. In the
Materials and Methods section, we report the results. The
Exploring Action Complexity in Robot Medical Palpation
section shows the complex relationship between robot pal-
pation trajectory and the ability to perform accurate diagnosis.
Bayesian Approaches for Confident Abnormality The De-
tection section focuses on the use of our Bayesian framework
to perform confident diagnosis; however, we show the ability
of our framework to find optimal palpation strategies effi-
ciently. The discussion and conclusion are finally reported in
the Discussion and Conclusion section.

Materials and Methods

The palpation experiments are performed by using a Robotic
Arm with a sensing probe equipped with a capacitive tactile
sensor array (Fig. 1). Although alternative sensor technologies
could be used, the sensory technology chosen has a number of
key advantages for use in palpation. The sensor provides
pressure information from seven distributed ‘‘taxel’’ locations
on the sensor surface, providing key spatial information with a
high sensitivity, which is in line with that required for palpa-
tion.45 The taxels respond with a bell-shaped curve and their
receptive fields overlap,46 allowing the detection of abnormal
inclusions that are as small as 5 mm in diameter.

As this work focuses on the classification of hard inclu-
sions, as opposed to their localization, we focus on point-
based palpation trajectories, which revolve around a
predefined point. This is in contrast to existing work, where
the localization of inclusions was performed by using sliding
trajectories.25,34,44 Each palpation experiment lasts 3 s, and,
relative to the end-effector’s initial position, the trajectory
varies in depth axis (Z), rotation around the x-axis (Rx), and
rotation around the y-axis (Ry). As such, each 3D trajectory
can be described by six constant motion parameters (Arx, Ary,
Az, xrx, xry, and xz) (Supplementary Movie S1 and Supple-
mentary Fig. S3).

The experiments are performed on three phantoms: two flat
training phantoms, and a more human-like abdominal phantom
(Fig. 1). Inspired by medical palpation of the liver, the Ab-
dominal Phantom is a silicone phantom of a human liver em-
bedded in a cross-sectional replica of a human torso. The
replica introduces higher levels of complexity than the flat
training phantoms, including a curved surface, skin, and tissues.
All phantoms include stiff spherical inclusions of diameter 5,
10, or 15 mm, at a depth of 5 or 12 mm from the surface, as
summarized in Figure 1b and c and Table 2. These sizes and
depths mirror conditions in which inclusions are typically de-
tected through palpation. More information about phantoms
development can be found in the Phantom Development sec-
tion in Supplementary Data (Supplementary Fig. S1).

FIG. 1. Robotic medical palpation, including (a) the experimental setup, (b) the training phantoms, and (c) the abdominal
phantom developed.
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Using this setup, we validate the need for complex
motion strategies, and we find those strategies that can im-
prove soft tactile perception for the classification of hard inclu-
sions. The experimental framework we propose to achieve this
has three key phases: training, inference, and evaluation (Fig. 2).

Training phase

During the training phase, the robot generates sensory data
by repeatedly palpating the different inclusions with different
palpation trajectories. Each robot experiment involves a pal-
pation trajectory, or action (Am), being performed on a spe-
cific class of inclusion (Ck) in a phantom. These data are then
represented probabilistically as probability density functions
(PDFs).

Data sampling. Let X be an N · D dimensional vector,
where each unique temporal tactile image for a probed location
is a D-dimensional row in the matrix. A temporal tactile image
is a sequence of tactile images sampled at constant time in-
tervals. Each tactile image corresponds to the normalized raw
capacitance values of each taxel in the tactile sensor. By
limiting the palpation to three seconds, we gain 35 pressure
points over time limiting the dimensionality of the data
(D = 35). The value of N is not constant, but it instead increases
with the number of palpation experiments performed. In each
experiment, the value of N is initially 0 and for each ‘‘palpation
iteration’’ N = N + K where K is the number of discriminative
classes, or types of inclusions in the phantom to palpate (ex-
amples of rows of X can be visualized as heatmaps in Fig. 3a–
d). The final total number of experiments can be computed by
the product of three variables, that is, (number of ac-
tions) · (number of inclusion classes) · (number of samples).
Each of these three variables changes depending on the ex-
perimental conditions, and it is reported in Table 1. We use

principal component analysis (PCA) to project the original
tactile data X onto its first principal component p1, obtaining a
matrix W, where each row wi is a one-dimensional (1D) pro-
jection of the original 35-dimensional tactile sensor data. A
detailed explanation of the dimensionality reduction processes
is provided in the Supplementary Data.

Bayesian PDFs update. Using the sensor data, Bayesian
approaches can be applied, including Bayesian Exploration,
an approach first proposed for tactile discrimination of
textures,47 and other tactile discrimination tasks.48,49 In this
article, we additionally derive a measure of confidence for
each robot palpation trajectory. The mathematical details
behind the representation proposed in this section can be
found in Fishel and Loeb,47 as well as in the Bayesian
Treatment of Sensor Evidence section.

To represent the sensor data probabilistically, we use the
1D tactile evidence computed through PCA to generate a
probability density function (PDF) for each class of inclusion
Ck, and palpation trajectory Am via:

p wijCk, Amð Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2p)2 Sk, mj j

p e�
1
2
(wi � lk, m)T +� 1

k, m
(wi � lk, m) (1)

where (lk,m) and (Sk,m) denote the mean and standard
deviation of the 1D sensor data from a series of palpation
iterations. By representing the tactile sensor data probabi-
listically, the width of the PDF captures the variation of the
sensor data for a given palpation action and inclusion type
(Supplementary Movie S2).

From these training data, we can generate two key metrics
that help assess the quality of a palpation trajectory. The first
is an ‘‘Unbiased Benefit Estimator’’ Bu

m, which provides
a measure of how useful the sensor data from a are for

FIG. 2. Flowchart of experimental procedure. During the palpation training phase, the robot performs palpations Am on
different types of inclusions Ck to form PDFs. After an initial set of palpations to generate PDFs, the robot performs
additional experiments to improve its classification capabilities based on the biased Bm score. In the palpation inference
phase, the PDFs are used to perform inference on new samples. Moreover, an unbiased benefit and a confidence level for
each palpation trajectory Am can be estimated. In the evaluation phase, the performance of the robot can be evaluated if the
ground truth classification of the palpated area is known. PDF, probability density function.
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classification, and can be quantitatively measured by con-
sidering the overlap between the PDFs for the different
classes of inclusions. This is based on the Bhattacharyya
coefficient,50 which for two probability density functions p
and q is defined as:

BCoeff¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p(x)q(x)
p

dx (2)

Based on this coefficient, we can define the unbiased
benefit estimator (Bu

m), for a specific action Am as:

Bu
m¼+K

k

P(Ck)2

+K

s
Cks, mP(Cs)

(3)

where Cks,m is calculated from the Bhattacharyya coefficient,
and contains the mutual confusion between two classes and
Ck and Cs are under action Am. P(Ck) and P(Cs) are the prior
probabilities of inclusions Ck and Cs, respectively. This Bu

m

score can be used to rank palpation trajectories. Using the
properties of Gaussian distributions, a lower degree of
overlap among distributions implies a higher likelihood for
any new sample to fall into an area of sensor space belonging
to either class unambiguously. As such, a higher overlap
should imply a higher prediction accuracy.

One of the unique advantages of computing an unbiased
benefit estimator is that we can also obtain a measure of
confidence of the tactile sensor data for a specific palpation
trajectory Am. This measure of confidence, fm, is defined as:

fm¼ 1� 1

2þ e�Bu
m

(4)

This metric increases monotonically when the discrimi-
natory confusion reduces, and it signifies classification con-
fidence for a specific trajectory.

Exploratory action identification. As the number of pa-
rameters that describe a palpation trajectory increases, there
is an exponential increase in the number of actions to be
searched. If each of the six action parameter can take on ‘‘n’’
possible values, there are up to n6 trajectories to search.
Efficient search i approaches are required, as it is neither
practical nor feasible to perform searches of this scale for
each new phantom or patient. Figure 2 illustrates how
Bayesian Exploration can be implemented to find optimal
palpation actions by iteratively selecting, and exploring, the
most ‘‘promising’’ action.47 This search requires a metric to
guide the selection of actions. For this we can use a ‘‘biased’’
benefit score based on Bu

m, that is:

Bm¼ 1� 1�Bu
m

� � 1
nm (5)

where nm is the number of times action m was performed
iteratively during the palpation experiments. Thus, the biased
benefits are discounted by the number of times the action
has already been performed during action exploration to
discourage excessive exploitation and eventually encourage
the explorative update of belief states under less exploited
actions.

Initially, the robot palpates each class of inclusion under
every action once, to gather initial experimental evidence.
After this, the action is selected by using Bm, each class is
palpated by using this action, and the PDFs are then updated
accordingly.

Bayesian inference phase

In the second phase of the framework, Bayesian inference,
the robot performs the classification of abnormal inclusions,
identifying the class of unseen sensor data obtained through
additional robotic palpations. This classification is made via
Bayesian Inference, using the PDFs generated in the palpa-
tion training phase through several palpation iterations. To
perform inference on a new tactile sample wi

0, we evaluate
the sample at p(w¢ijCk, Am), under every Ck for a chosen
action Am. The Ck of the PDF yielding the highest value will
be inferred as a class for wi

0.

eCk ¼ argmaxfp(w¢ijCk, Am) : k 2 Cg (6)

where Cek is the class estimated for Ck. This inference process
is used throughout the results section to test the abilities of
different palpation trajectories, and it will be referred to as
‘‘Bayesian inference classification.’’

Evaluation phase

In this final phase, we evaluate the performance of the
classification by comparing the ‘‘true’’ class of inclusion Ck

against the class that was inferred. Over several iterations, we
can count the number of correctly classified abnormal
inclusions as True Positives, and the number of correctly
classified inclusion-free areas of the phantom as True
Negatives. For a total of NC classifications, or palpation
inferences, the accuracy can be formally computed as:

Acc¼ TPþTN

NC

(7)

Results

Exploring action complexity in robot medical palpation

The first set of experiments investigates the influence of
the palpation trajectory on soft tactile sensing capabilities and
the ability to distinguish different classes of inclusion.

In these experiments, we examine 64 different palpation
trajectories, and we analyze how they influence the separa-
tion of PDFs. The 64 palpation trajectories are generated
through the combination of six parameters that describe the
trajectory (26 = 64). We conducted these experiments on
Training Phantom 1, performing all the palpation actions on
all the different inclusion types. For each type of inclusion
and palpation trajectory, we perform the palpation 20 times.
This brings the total number of experiments to 64 · 20 · 3,
where 3 is the number of classes of inclusions present in the
phantom. More details can be found in the ‘‘Exploration
Experiments’’ column of Tables 1 and 2.

Figure 3 shows the PDFs for four exemplar palpation
trajectories, ordered with respect to the Bu

m scores. The
PDFs are created via Equation (1), and the unbiased benefit
score Bu

m is computed for each palpation action by using
Equation (3). The different motion parameters result in
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different palpation trajectories with very diverse PDFs. In
Figure 3, an example of reference raw tactile sensor data
of the inclusions is shown in the middle figures, where
the y-axis represents a layout of all taxels (Supplementary
Fig. S2), and the x-axis the experiment time. The corre-
sponding PCA projected points are shown in the x-plot of the
lower figures, together with their corresponding PDFs. The
raw tactile sensor data for each class are influenced by
the palpation strategy itself. Ideally, PDFs for different in-
clusion classes should have minimal overlap for discrimination
purposes. The results show how it is possible to have motion
parameters, and hence trajectories, that give rise to PDFs that
are fully separated across the PCA principal component p1 for
all classes of inclusion (Fig. 3a).

The figure also shows that the degree of these overlaps can
be represented by using the Bu

m scores. The trajectories with
less overlap (Fig. 3a, b) result in higher Bu

m scores, whereas
those with more overlap (Fig. 3c, d) have a far lower score. As
such, the score represents the discriminative performance
of the palpation trajectory and can be used to compute a
ranking for the different trajectories. Bu

m, also indicates the
degrees to which each PDF is separated from the others, in
addition to measuring the amount of overlap. This allows
similarly overlapped PDFs to be ranked; for example, al-
though the PDFs of the 43rd and 63rd ranked actions are
similarly overlapped, the former is ranked higher because of
the lower overlap between the PDFs of the 10 and 5 mm
inclusion classes.

In the next experiment, we compare the separation of the
PDFs for the same trajectories but across different phantoms,
that is, Phantom 1, Phantom 2, and the Abdominal Phantom.
We perform this experiment to assess whether a palpation
trajectory optimized for one phantom can perform well on
other phantoms.

To achieve this, we identified the best trajectories for
Phantom 1, Phantom 2 and the Abdominal Phantom, by find-
ing the trajectory with the highest Bu

m score for each phan-
tom. These three top-ranking trajectories, together with the
resulting PDFs, are compared in Figure 4a. The experimental
data used are detailed in the ‘‘Exploration Experiments’’ of
Tables 1 and 2. The first observation is that the optimum
trajectories are significantly different for the different phan-
toms. The best palpation trajectory for Phantom 1 is a counter
clockwise rotation in an almost horizontal plane, whereas
that for Phantom 2 is a clockwise trajectory with a similar
amplitude. The optimum trajectory for Abdominal Phantom
is significantly different, with a clockwise rotation occurring
with smaller amplitude, and a higher palpation depth. The
second observation that can be made considers the PDF over-
laps. Figure 4a shows that the highest ranked actions do not
show high separation of the PDFs on the other phantoms. The
best trajectory for Phantom 1, for example, does not perform
well in Phantom 2, with the action resulting in high overlaps
of PDFs belonging to different classes of inclusions. The
Abdominal Phantom is a relatively easier task, in comparison to
Phantom 1 and Phantom 2, with all of three palpation strategies
achieving high separation of the PDFs. However, the trajectory
ranking higher for Abdominal Phantom still achieves higher
separation of PDFs in the same phantom, whereas it does not
perform well in Phantom 1 and Phantom 2.

In the next set of experiments, we examine the need for
more complex trajectories for more accurate palpation of soft
bodies. This is achieved by comparing palpation trajectories
that are described by a different number of control parame-
ters. As each axis of motion is controlled by a specific pair
of parameters (i.e., Arx-xrx, Ary-xry, and Azxz to control Rx,
Ry, and Z, respectively); reducing the number of parameters
decreases the complexity of the trajectory.

Table 1. Experimental Breakdown of Robotic Palpations and Palpated Phantoms

Phantom

Class of
inclusions

(mm)

Depth of
inclusions

(mm)
No. of

inclusions
Complexity

demonstration
Exploration
experiments

Validation
experiments

Total
number

Training
Phantom 1

10 12 3 1920 (10 iterations
per trajectory)

3840 (20 iterations
per trajectory)

— 5760
15 12 3

No incl. N/A 4
Training

Phantom 2
5 5 3 — 3840 (20 iterations

per trajectory)
— 3840

8 5 3
Healthy N/A 4

Abdominal test
phantom

15
No incl.

12
N/A

2
2

— 800 (20 iterations
per trajectory)

800

The values in parenthesis represent the number of samples gathered by the robot for any trajectory (Am) and class of inclusion (Ck) pair.
N/A, not applicable.

Table 2. Experimental Breakdown of Robotic Palpation Trajectories and Parameters Over Experiments

Complexity demonstration Exploration experiments Validation experiments

No. of trajectories attempted 64 64 20
Parameter combinations Arx ˛ [0, p

18
]

Ary ˛ [0, - p
18

]
Az ˛ [0, 0.01]
xrx ˛ [0, 1]
xry ˛ [0, 1]
xz ˛ [0, 0.5]

Arx ˛ [- p
18

, p
18

]
Ary ˛ [- p

18
, p

18
]

Az ˛ [0.002, 0.01]
xrx ˛ [1, 3]
xry ˛ [1, 3]
xz ˛ [0.5, 2]

20 Highest score trajectories
from ‘‘exploration
experiments’’
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To systematically vary and reduce the complexity, every
possible combination of the six parameters is set to zero in
turn. The 64 palpation trajectories defined by these parameters
are performed 10 times on all types of inclusions in Training
Phantom 1, and the corresponding tactile data are stored.
These data correspond to tactile information from 2160 pal-
pations; these are depicted in the columns of Tables 1 and 2.

To evaluate the performance of each set of motion pa-
rameters, Bayesian Inference classification is performed on
the computed PDFs. The classification inference is perfor-
med on each palpation trajectory separately, with 60% of the
sampled palpations used for training, and the remaining 40%
used for testing. Figure 4b shows the average performance
of the classifier across all palpation trajectories with different

numbers of active parameters. As illustrated in Figure 4b,
trajectories described by one or two parameters achieve ac-
curacy rates of 50% on average, thus a little above random
selection (33%). With the full employment of the six de-
scriptive parameters, the generated trajectories can achieve
accuracies above 60%. As shown in Figure 4b, when the di-
mensionality of the actions, and hence number of motion
parameters, is increased, there is up to 35% improvement in
the average classification accuracy of the robot. This justifies
and demonstrates the need for complex trajectories when
performing palpation.

From this first set of experiments, we can make several
conclusions. First, the palpation trajectory influences the tac-
tile sensor data significantly, where, slight changes in the

FIG. 4. The figure shows the complexity of robotics palpation. The diagonal plots in (a) show the PDFs of the best
performing palpation trajectories for each phantom, whereas the off-diagonal plots show PDFs of the same trajectories in all
other phantoms. (b) Shows the accuracy of a Bayesian Inference classifier trained on sensor data generated via palpation
trajectories with a varying number of parameters.
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palpation trajectory can significantly affect the discrimina-
tory abilities of the robot. Second, the optimum trajectories
vary from phantom to phantom. There is not one ‘‘optimum’’
motion for all phantoms. Third, introducing more complex
palpation trajectories allows for better action profiles to
emerge, demonstrating that increasingly complex actions
increase the ability to make more accurate classification of
abnormalities in soft bodies.

Bayesian approaches for confident abnormality
detection

The next set of experiments examines the levels of confi-
dence (fm) and the experimental accuracy (Acc) when com-
puting the PDFs based on a different number of training
samples.

In these experiments, the same dataset from the previ-
ous experiments was used, where palpation training was

performed on each class of inclusion, using each action 20
times (see ‘‘Exploration Experiment’’ columns of Tables 1
and 2).

Out of the 20 palpation samples for each class-action pair,
40% of the data (corresponds to 8 samples) is held out for
testing. For every trajectory, then, we consider the remaining
12 samples and compute the PDFs with a varying number of
samples, from 1 to 12. Every time the PDFs are computed, we
also compute the benefit and the confidence as previously
described. The resulting PDFs are also used to compute the
accuracy, as described in Materials and Methods Section.

We show that it is possible to achieve high classification
accuracy if appropriate actions are selected. Figure 5a shows
the highest accuracy of all palpation trajectories, as a function
of the number of training samples used to compute the PDFs.
As the number of training samples increases, the evidence
used to build the PDFs increases, leading to the best classi-
fiers performing more accurate classification. In this set of

FIG. 5. The figure shows the performance
of a Bayesian inference classifier within the
framework developed. (a) Shows the rela-
tionship between the maximum classifier
accuracy and the number of samples gath-
ered for each palpation trajectory-class pair.
(b) Shows the relationship between the
developed confidence level and the number
of samples gathered for each palpation
trajectory-class pair. The vertical bars in the
plot illustrate the errors of the confidence at
that point.
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experiments, the robot is also observed to reach maximum
classification accuracy on the Abdominal Phantom by em-
ploying actions with more than two parameters.

In Figure 5b, the confidence metric is also plotted as a
function of the number of samples used for training. As ex-
pected, we can see that the confidence metric increases with
the number of training samples. The confidence, however,
saturates at different values for each phantom. These values
indicate how ‘‘reliable’’ the classification of the robot is
under a specific trajectory. This measure will first and fore-
most depend on the overlap of the PDFs, which will, in turn
,depend on the similarity of the tactile sensor data for dif-
ferent classes of inclusions. In Figure 5b, the robot achieves
highest confidence for Phantom 1, followed by Phantom 2
and the inclusion-action pair. This initial gathering of evi-
dence allows the Bayesian Exploration process to then start
(Fig. 2).

In this exploration process, all palpation trajectories are
ranked by using the biased Bm score. The action that has the
highest Bm score is then used to palpate each class of inclu-
sion once, and the PDFs are updated with the new tactile
information. This corresponds to one iteration of the Bayes-
ian Exploration framework. The Bm score is then computed
again and used to select the next palpation trajectory to test,
with the steps then iteratively repeated. To evaluate each
iteration of the exploration process, we take the top scoring
action at that time, as defined by the unbiased benefit score,
and use this action perform Bayesian Inference. The infer-
ence is performed on 40% of unseen data from ‘‘Exploration
Experiments,’’ and it provides the robot with the ‘‘best
accuracy’’ for every iteration of the exploration process.
Importantly, the top scoring action is selected by the unbiased
benefit score, as we want to find the top performing ac-
tion that is purely based on the ability to separate the PDFs
in sensor space. As a benchmark, the results from the grid-
search method are also presented. During grid search, con-
trarily to Bayesian Exploration, the action is selected based
on a breadth-first parametric search, with the rest of the
experiments performed in the same manner.

We compare the performance of these methods by con-
sidering the number of ‘‘palpation iterations’’ necessary to
train the robot. As previously described, a ‘‘palpation itera-
tion’’ involves the palpation of all classes of inclusions Ck

under a specific action Am. The action Am is here iteratively
selected through Bayesian Exploration or Grid-Search. As
shown in Figure 6a–c, Bayesian Exploration achieved its
highest performance after around only 60 iterations in both
training phantoms. On the Abdominal Phantom this took *7
iterations. Conversely, a grid-based systematic search per-
formed poorly, finding equally good palpation strategies after

150 palpation iterations on the training phantoms, and 23
iterations on the Abdominal Phantom.

In Figure 6d–f, the intensity of the color shows the final
ranking of the actions. The figure shows how this ranking
is ‘‘unstable’’ for grid search, that is, the ranking keeps
changing throughout the experiments, before reaching the
final rank. Bayesian Exploration, however, induces a stable
ranking much sooner, where the final ranking of trajectories
is found much earlier on in the experiments.

By applying Bayesian Exploration, and leveraging the
ranking provided by the score, the actions that best separate
the PDFs across different classes of inclusions are preferen-
tially explored. By using this exploration technique, the robot
can efficiently search a high-dimensional parameter space.
This complex high-dimensional action space has previously
been demonstrated to be necessary for accurate classification
of abnormal inclusions in soft tissues. From these results, we
can observe that by using Bayesian Exploration, the time
taken to find the optimal strategy is halved in comparison to a
systematic grid search.

Finally, after performing Bayesian Exploration, we can
report the final accuracy of the entire framework across all
palpated phantoms. As previously explained, this is com-
puted as the accuracy achieved on 40% of unseen palpation
samples from each phantom. Table 3 reports the final highest
test accuracy observed after training. Since the hypothesis in
this article hinges on the postulate that appropriate palpation
trajectories can aid in abnormality detection via palpation, we
also report the average accuracy across all attempted pal-
pation trajectories in Table 3. These results show how on
average the palpation trajectories perform quite poorly, and
appropriate optimization procedures are necessary to find the
highest performing palpations. This highlights the important
of Bayesian Exploration in this context.

Notably, the system is capable of achieving more than
80% accuracy when discriminating between 5 mm inclu-
sions and no inclusions. On the Abdominal Phantom, the
robot achieves 100% accuracy when discriminating between
15 mm inclusions and no inclusions. Moreover, the highest
performing motion strategies outperform the average per-
formance of any one action by approximately a factor of two
in almost all scenarios, confirming and emphasizing the need
for appropriate palpation trajectories during abnormality
detection.

Discussion and Conclusion

Medical palpation is an impactful preliminary diagnosis
tool that is used widely by primary care physicians, yet it
is extremely challenging for a robot to perform due to the

Table 3. Highest and Average Classification Accuracies Achieved by the Palpation System

When Training the Bayesian Classifier on 14 Samples of Each Class of Inclusion and Testing

on Six Unseen Samples

Accuracy % highest
(average)

15 mm
vs. NA

10 mm
vs. NA

8 mm
vs. NA

5 mm
vs. NA

15 mm vs.
8 mm vs. NA

10 mm vs.
5 mm vs. NA

Training Phantom 1 0.944 (0.462) 0.778 (0.394) 0.740 (0.412)
Training Phantom 2 0.889 (0.438) 0.833 (0.387) 0.778 (0.423)
Abdominal phantom 1.0 (0.85)

NA, no inclusion.
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complexity of the interactions. The interactions between
the palpation device and the soft human body are nonlinear;
the complexity of the action space and the interactions is
significant; and the solutions are different for every ‘‘pa-
tient.’’ Thus, to gain a more insightful understanding of this
problem, we need to go beyond typical robotic approaches,
including modeling and optimization. In this work, we per-
form large-scale physical experiments to understand whether
and how multi-axis palpation trajectories can influence a
robot’s soft tactile perception to make accurate classification
of abnormal inclusions in soft bodies. The framework pre-
sented in this work (Fig. 2) allows for the fast exploration of a
high-dimensional action space, which arises from the pal-
pation of soft bodies. The framework identifies palpation
strategies that allow for a confident classification of the
presence, or absence, of abnormal inclusions. The identified
palpation strategies have been shown to enable the confident
detection of abnormal inclusions that are as small as 5 mm in
diameter (Table 3).

In this experimental approach to palpation, we have iden-
tified that increasing the complexity of the palpation trajec-
tory can be beneficial for soft tactile perception in the context
of palpation. In addition, we have shown that slight changes
in the trajectory, or the patient, significantly affect the per-
formance. This demonstrates that the optimum palpation
trajectory must be found or identified for each patient through
physical experimentation, and mirrors the method in which
human practitioners find the best palpation motion for each
patient. To make intelligent decisions in this soft, nonlinear,
and highly complex space, we have demonstrated how a
probabilistic Bayesian approach allows for accurate and
efficient search and decision making. However, the param-
eterization of the trajectory is still based on human design and
intuition, and as such, they are limited. In future scenarios,
the parameterization and trajectories would ideally emerge
from the haptic interaction with the soft tissue itself.

Going forward, this knowledge is important in several
ways. In the long term, we can use the methods to develop
‘‘robot doctors’’ who can perform accurate and confident
diagnosis. The framework development provides a starting
point for the experiment procedure for such a robot. How-
ever, to achieve this, it is necessary to find appropriate ways
to perform knowledge transfer across patients or phantoms.
In the short term, we can use this understanding to improve
robot tactile sensing in soft environments/settings. We can
also apply the methods and approaches to other similar prob-
lems, where the Bayesian treatment and large-scale physical
experiments would further our understanding of the problem
at hand.

Finally, it would be interesting to explore the relationship
between the investigated, point-based, palpation trajectories
and sliding trajectories explored for localization.
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