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Abstract Sepsis is a clinical syndrome with no effective

protective or therapeutic treatments. Acacetin, a natural

flavonoid compound, has anti-oxidative and anti-inflam-

matory effects which can potentially work to reduce sepsis.

We investigated the potential protective effect of acacetin

on sepsis-induced acute lung injury (ALI) ALI and dissect

out the underlying mechanisms. Mice were divided into

five groups: a sham group, a sepsis-induced ALI group, and

three sepsis groups pre-treated with 20, 40, and 80 mg/kg

body weight of acacetin. We found that acacetin signifi-

cantly attenuated sepsis-induced ALI, in histological

examinations and lung edema. Additionally, acacetin

treatment decreased protein and inflammatory cytokine

concentration and the number of infiltrated inflammatory

cells in BALF compared with that in the non-treated sepsis

mice. Pulmonary myeloperoxidase (MPO) activity was

lower in the acacetin-pre-treated sepsis groups than in the

sepsis group. The mechanism underlying the protective

effect of acacetin on sepsis is related to the regulation of

certain antioxidation genes, including inducible nitric

oxide synthase (iNOS), cyclooxygenase-2 (COX-2), super-

oxide dismutases (SODs), and heme oxygenase 1 (HO-

1).Taken together, our results indicate that acacetin pre-

treatment inhibits sepsis-induced ALI through its anti-in-

flammatory and antioxidative activity, suggesting that

acacetin may be a potential protective agent for sepsis-

induced ALI.
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Introduction

Acute lung injury (ALI) and its severest form, acute res-

piratory syndrome (ARDS), lead to the development of

multiple organ dysfunction syndrome (MODS)character-

ized by hypoxemia, pulmonary infiltrates, and the absence

of an elevated pulmonary capillary wedge pressure (Mat-

thay et al. 2011, 2012). Sepsis is a potentially fatal whole-

body inflammation (a systemic inflammatory response

syndrome or SIRS) caused by severe infection (Bone et al.

1992; Levy et al. 2003). Sepsis develops when the initial

host response to an infection is amplified and becomes

damaging to the host (Weber and Swirski 2014). Some

structural components of bacteria (pathogen-associated

molecular patterns-PAMPs), are recognized by pattern

recognition receptors (PRRs) expressed in phagocytes and

other cell types (Hargreaves et al. 2005) and are respon-

sible for the initiation of the septic process. The process

can lead to activation of NF-jB and transcription of several

pro-inflammatory genes, including TNF-a, IL-6, and IL-

1b.
Recent evidence suggests that nitric oxide (NO) is an

important endogenous regulatory molecule, implicated in

both pro- and anti-inflammatory processes in the lung

(Sharma et al. 2007; Hamza et al. 2010; Hossain et al.

2012). Additionally, it is well known that administration of

LPS increases the expression and activity of inducible

nitric oxide synthase (iNOS) which, consequently, increa-

ses nitric oxide (NO) generation (Parratt 1997).

Cyclooxygenase (COX), the prostaglandin H synthase

enzyme, is involved in a wide variety of inflammatory

diseases, including lung injury (Fukunaga et al. 2005).
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COX-2 is an inducible enzyme catalyzing the conversion

of arachidonic acid to prostaglandins. Prostaglandin (PG)

E2 is a potent inflammatory mediator. The expression of

COX-2, the inducible isoform of COX, increases markedly

during inflammation (Zhang et al. 2011), mainly in

response to various proinflammatory stimuli, such as tumor

necrosis factor alpha (TNF-a), interleukin (IL) -1b, IL-6,
and LPS (Serou et al. 1999; Huang et al. 2000). In LPS-

induced ALI, endotoxin administration disrupts the alve-

olocapillary barrier because of the overproduction of NO

and PGE2 through the induction of iNOS and COX-2,

respectively (Mann et al. 2005; Grommes et al. 2011).

Nuclear factor-jB (NF-jB) is a key transcription factor

that regulates the expression of iNOS, COX-2, and various

proinflammatory cytokines such as TNF-a and IL-1b (Tak

et al. 2001). NF-jB is a dimer consisting of p65, a tran-

scription-activating component, or p50. In resting cells,

NF-jB exists in an inactive state in the cytoplasm, coupled

with an inhibitory protein called IjB. Upon activation, IjB
undergoes phosphorylation and degradation, and NF-jB is

translocated into the nucleus where it binds to DNA and

activates gene transcription (Kretz-Remy et al. 2001).

Acacetin (5,7-dihydroxy-40-methoxyflavone) is an O-

methylated flavone and is naturally present in plants such

as chrysanthemum (Chatterjee et al. 1981) and safflower

(Roh et al. 2004), and in Calamintha (Marin et al. 2001)

and Linaria species (Smirnova 1974). Acacetin possesses

anti-peroxidative, anti-inflammatory, and anti-plasmodial

activity (Y. H. Liao et al. 1999; Kraft et al. 2003; Pan et al.

2006), as well as anticancer activity (Singh et al. 2005). In

addition, acacetin strongly inhibits the expression of

proinflammatory cytokines, iNOS, and COX-2 in LPS-in-

duced RAW 264.7 cells (Pan et al. 2006).

In this study, we evaluated the protective effect of

acacetin on sepsis-induced ALI in mice. Our results

demonstrated that acacetin treatment could improve

symptoms of sepsis-induced ALI, including a reduction of

histological changes, lung edema, protein concentration in

bronchoalveolar lavage fluid (BALF), pulmonary

myeloperoxidase (MPO) activity, number of infiltrating

inflammatory cells, and proinflammatory cytokine pro-

duction. Our findings suggest that acacetin my attenuate

sepsis-induced ALI through its anti-inflammatory and anti-

oxidative activity.

Materials and methods

Mice

Fifty adult (6 week-old) specific pathogen-free female

C57BL/6 mice were obtained from the Shanghai Labora-

tory Animal Center (SLAC; Shanghai, China). All animals

were housed in a room with temperature at 24 ± 1 �C, a
12 h light–dark cycle, and a relative humidity of about

40–80%. Animals had access to tap water and normal chow

ad libitum. All experimental protocols were performed in

accordance with the Declaration of the National institutes

of Health Guide for Care and Use of Laboratory Animals.

Sepsis-induced ALI model

The animals were randomly divided to five groups (10

mice/group): (1) Sham-operated animals (Sham group)

underwent the same procedure with the exception that the

cecum was neither ligated nor punctured; (2) Cecum-in-

duced sepsis group (CLP group); (3) 20 mg/kg acacetin

pre-treated sepsis group (CLP ? 20 mg/kg group; treat-

ment with 20 mg/kg acacetin followed by treatment with

CLP); (4) 40 mg/kg acacetin pre-treated sepsis group

(CLP ? 40 mg/kg. group; treatment with 40 mg/kg aca-

cetin followed by CLP induction); and (5) 80 mg/kg aca-

cetin pre-treated sepsis group (CLP ? 80 mg/kg group;

treatment with 80 mg/kg acacetin followed by CLP

induction). The animals were treated orally with acacetin at

the respective concentrations (Jung et al. 2014; Kim et al.

2014; Wenjun Zeng et al. 2017) 2 days before sepsis

induction. After2 days of acacetin treatment, mice were

anesthetized using sodium pentobarbital (intraperitoneally,

40 mg/kg). Next, the ventral neck, abdomen, and groin

were shaved and washed with 10% povidoneiodine. Sepsis

was induced by cecal ligation and puncture as previously

described (Rittirsch et al. 2009). Briefly, the lower abdo-

men area was shaved and disinfected, a median 0.5–1.0 cm

incision was made in the lower abdomen. After careful

dissection, the cecum was ligated below the ileocecal

valve, followed by a single’ through and through’ perfo-

ration (21-gauge needle); The caecum was replaced in the

abdomen, and the incision was closed. After surgery, the

animals were returned to their cages and were allowed

access to food and water ad libitum.

Preparation of lung samples

The lung tissue of the mice was collected for histological

analysis of lung edema and measurement of MPO activity.

The lungs were collected on ice, weighed, and homoge-

nized in ice-cold PBS. The resultant homogenates were

centrifuged at 80009g for 10 min at 4 �C. The super-

natants were stored at - 80 �C until analysis.

BALF collection, cell counting, and protein

concentration detection in BALF

BALF was prepared as previously described (Kuo et al.

2011). Briefly, the lungs were flushed three times with
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sterile saline via a tracheal cannula. After centrifugation,

the supernatant was stored at - 20 �C for assessment of

inflammatory cytokines and macrophage inflammatory

protein-2 (MIP-2). The sedimented cells were resuspended

in saline, and total cell count was determined using a

hemocytometer. The percentage of neutrophils was deter-

mined using the Wright–Giemsa staining. The protein

concentration of the BALF was determined using a BCA

protein assay kit (Beyotime, Jiang Su, China).

Pathological examination of the lung tissue

The right lower lung lobes were immersed in 4%

paraformaldehyde and fixed for 48 h. The lung lobes were

subsequently embedded in paraffin, and tissue blocks were

cut into 5 lm sections, mounted on glass slides, and

stained with hematoxylin and eosin (H&E). Blinded mor-

phologic examinations of the lung lobes were performed

using light microcopy. To determine the extent of lung

injury, the following five pathological features were con-

sidered: (1) the presence of exudates, (2) hyperemia/con-

gestion, (3) intra-alveolar hemorrhages/debris, (4) cellular

infiltration, and (5) cellular hyperplasia (Nishina et al.

1997). For each mouse, lung injury severity was examined

independently by three pathologists.

Lung wet-to-dry weight ratio measurement

The wet-to-dry weight ratio of the lung samples collected

from the upper and middle lobes of the right lung in each

mouse was examined to assess lung tissue edema. The lung

samples were obtained after the mice were euthanized, and

weighed immediately after procurement. Subsequently, the

samples were desiccated in an oven at 70 �C until a

stable dry weight was achieved. The wet-to-dry weight

ratio was calculated by dividing the wet weight by the dry

weight.

Measurement of MPO activity

After 24 h of sepsis induction, mice were anesthetized and

the lung tissues were dissected, weighed, and homogenized

in 0.5% HTAB buffer (hexadecyltrimethylammonium

bromide in 50 mM potassium phosphate buffer) to obtain a

10% homogenate. After centrifugation at 10,0009g for

2 min, the resultant supernatant fractions were assayed for

MPO activity using a test kit purchased from Nanjing

Jiancheng Bioengineering Institute (Nanjing, Jiangsu,

China). The supernatant samples were diluted in phosphate

citrate buffer (pH 5.0) and samples absorbance was mea-

sured at 460 nm using a microplate reader. The specific

activity of MPO in the lung was expressed as unit/mg lung

tissue.

Cytokine measurement in BALF

The concentration of the pro-inflammatory cytokines and

chemokines TNF-a, IL-1b, IL-6, and MIP-2 in the BALF

supernatants was measured with a commercially available

enzyme-linked immunosorbent assay (ELISA) kit (R&D

Systems; Minneapolis, MN, USA) per the manufacturer’s

instructions.

Western blot analysis

The lung tissues harvested from mice that underwent dif-

ferent treatments were homogenized in PBS and radioim-

munoprecipitation assay (RIPA) buffer. The homogenates

were centrifuged at 12,0009g for 15 min to obtain the

respective supernatants. Protein samples (50 lg) were

resolved using denaturing 10% sodium dodecyl sulfate–

polyacrylamide gel electrophoresis (SDS-PAGE) using

standard methods, and were after transferred to

polyvinylidene fluoride (PVDF) membranes. The mem-

branes were subsequently incubated with a blocking solu-

tion of 5% non-fat milk for 1.5 h at room temperature. The

blotted proteins were separately probed with the indicated

primary antibodies at 4 �C overnight or at room tempera-

ture for 2 h. The membranes were subsequently incubated

with horseradish peroxidase-conjugated (HRP) secondary

antibody at room temperature for 1 h, and the immuno-

labeled proteins were visualized using enhanced chemilu-

minescence reagents (Bio-Rad Laboratories). The follow-

ing antibodies were used: rabbit anti-mouse iNOS

polyclonal antibody (ab3523, Abcam), rabbit anti-mouse

COX-2 polyclonal antibody (ab15191, Abcam), rabbit anti-

mouse beta-actin antibody (ab189073, Abcam), rabbit anti-

mouse NF-jB p65 polyclonal antibody (ab16502, Abcam),

rabbit anti-mouse IjB alpha polyclonal antibody (ab32518,

Abcam). HRP-conjugated goat anti-rabbit IgG (ab6721,

Abcam) was used as secondary antibody.

Isolation of alveolar macrophages

Alveolar macrophages were isolated from lung BALF as

previously described (Lavnikova et al. 1993). Briefly,

BALF was collected as described above and centrifuged at

4009g at 4 �C for 10 min. The cells were then incubated in

100 mm sterilized polystyrene Petri dishes at 37 �C for

2 h. Cells that had adhered to the bottom of the dish were

harvested and replated for further experiments. Phycoery-

thrin-conjugated anti-CD11b and fluorescein isothio-

cyanate-conjugated anti-F4/80 (both purchased from

eBioscience, San Diego, CA, USA) were used to confirm

the[ 95% purity of isolated macrophages by flow cyto-

metric analysis. Viability was determined to be[ 98% by

trypan blue (Sigma) exclusion.
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Determination of ROS production

Levels of ROS in lung tissues and cells were measured by

the oxidative conversion of 20,70-dichlorofluorescein diac-

etate (DCFH-DA) to the fluorescent compound dichlo-

rofluorescin (DCF). In brief, lung homogenates or alveolar

macrophages were incubated with PBS containing 15 lM
20,70-DCFH-DA (Nanjing Jiancheng Bioengineering Insti-

tute) for 30 min at 37 �C to label intracellular ROS. The

cells were then washed with PBS, and cellular fluorescence

was determined using a microplate reader (Promega,

Madison, WI, USA) at 490 and 520 nm.

Cell culture and treatments

RAW264.7 murine macrophage-like cells were maintained

at sub-confluence under a 95% air/5% CO2 humidified

atmosphere at 37 �C. Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 10% fetal bovine serum

(FBS), penicillin (100 units/mL), and streptomycin (100 or

100 lL/mL) was used as cell culture medium. The cells

were pretreated with different concentrations of acacetin

(10, 50, or 100 lg/mL) for 4 h before LPS (1 lg/mL)

stimulation. The 3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyltetrazolium bromide (MTT) assay (Promega;

Madison, WI, USA) was used to assess cell viability.

NF-jB p65 DNA-binding activity assay

The NF-jB p65 DNA-binding activity was measured using

the TransAMTM NFjB p65 Chemi Transcription Factor

Assay Kit (Active Motif; Carlsbad, CA, USA).

Statistical analyses

Statistical analyses were performed using SPSS software,

version 17.0 (SPSS, Inc.; Chicago, IL, USA). All data were

presented as the mean ± SD. One-way analysis of variance

(ANOVA) followed by a Student’s t test were used for

statistical tests. P\ 0.05 was considered statistically

significant.

Results

Acacetin attenuates sepsis-induced pulmonary

inflammation in ALI mice

To assess the effect of acacetin on sepsis-induced acute

lung injury (ALI) in mice, we first measured pathological

changes in sepsis mice by using H&E staining. Histological

evaluation of the lungs by light microscopy revealed that

sepsis caused severe ALI as characterized by edema

formation, inflammatory cell infiltration, interalveolar

septal thickening, and patchy intra-alveolar and interstitial

hemorrhages (Fig. 1b) when compared with the non-trea-

ted sham group mice (Fig. 1a). Acacetin treatment allevi-

ated the pathological changes in the lung tissues (Fig. 1c–

e). Our findings were consistent with the data of lung injury

scores (Fig. 1f). Taken together, these results indicate that

acacetin could attenuate the degree of pathologic pul-

monary inflammation in sepsis–induced ALI.

Acacetin treatment alleviates sepsis-induced lung

edema and protein leakage in lung tissue of ALI

mice

To further evaluate the protective effect of acacetin on

sepsis-induced acute lung injury we measured lung edema,

an indicator of sepsis-induced ALI due to changes in bar-

rier permeability (Fig. 2a), and the protein concentration in

BALF, an indicator of the state of the pulmonary perme-

ability barrier (Fig. 2b). The protein concentration in

BALF (Fig. 2b) and lung wet-to-dry ratio (Fig. 2a) were

significantly increased in the sepsis-induced ALI mice

when compared to the non-treated control group mice.

However, pre-treatment with acacetin dramatically reduced

the sepsis-induced lung edema and protein concentration in

BALF in a dose-dependent manner when compared to the

mice in sepsis group (Fig. 2a, b).

The effect of acacetin pre-treatment on pulmonary

MPO activity and inflammatory cell infiltration

in sepsis-induced ALI mice

Tissue damage in ALI is related to pulmonary MPO

activity, and neutrophil extravasation is one of the major

histological markers of inflammatory and immunological

responses in injured lung tissue (Abraham 2003; Zhou et al.

2012). Furthermore, pulmonary MPO activity is also a

reliable marker of pulmonary neutrophil infiltration

(McCabe et al. 2001). Therefore, we determined the MPO

activity in the lung tissue homogenates and the number of

infiltrated neutrophils in the BALF of mice in the different

treatment groups at 24 h after sepsis induction. As shown

in Fig. 3, sepsis induction significantly increased the pul-

monary MPO activity in the sepsis-induced ALI group

when compared to the non- sepsis-induced, non-treated

sham group mice. Furthermore, pulmonary MPO activity

was dramatically lower in the acacetin-treated mice than in

the sepsis group mice (Fig. 3a). These results were further

supported by the data of neutrophil infiltrates in BALF

(Fig. 3b).
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Fig. 2 Acacetin effect on the lung wet-to-dry weight ratio and protein concentration in the BALF of LPS-induced sepsis mice. Mice received an

oral pre-treatment of acacetin (20, 40, or 80 mg/kg) 2 days before the induction of sepsis via CLP surgery. The lung wet-to-dry weight ratio

(a) and the protein concentration in the bronchoalveolar lavage fluid (BALF) (b) were determined at 24 h after sepsis induction. The values

represent the mean ± SD (n = 10/group). *P\ 0.05, compared to the non-treated control group; #P\ 0.05, compared to the sepsis-induced ALI

group

Fig. 1 Acacetin attenuates sepsis-induced ALI in vivo. Twenty-four hours after sepsis induction in the presence or absence of acacetin pre-

treatment, sepsis mice were exsanguinated and their right lower lungs were fixed. Subsequently, the lung tissue sections were stained with

hematoxylin and eosin (H&E). Histologic studies of representative lung sections in the control group (a), sepsis-induced ALI group (b), 20 mg/

kg acacetin-pre-treated sepsis group (c), 40 mg/kg acacetin-pre-treated sepsis group (d), and 80 mg/kg acacetin-pre-treated sepsis group (e).
f Representative lung injury scores of the acacetin-pre-treated mice are shown. The image (2009magnification) is representative for each

different treatment group. The values represent the mean ± SD (n = 10/group). *P\ 0.05, compared to the non-treated control group;
# P\ 0.05, compared to the sepsis-induced ALI group
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The effect of acacetin on the inflammatory cytokine

concentration in the BALF of sepsis mice

LPS is a major stimulator for inducing production of sev-

eral inflammatory and chemotactic cytokines involved in

the inflammatory processes in sepsis, including TNF-a, IL-
1b, IL-6, and MIP-2 (Goodman et al. 2003; Bhatia et al.

2004; Cribbs et al. 2010). To analyze the effect of acacetin

on sepsis-induced inflammatory cytokine production, we

determined the concentrations of TNF-a, IL-1b, IL-6, and
MIP-2 in the BALF of mice in the different treatment

groups using an ELISA assay. As shown in Fig. 4, sepsis

induction significantly increased the concentration of TNF-

a (Fig. 4a), IL-1b (Fig. 4b), IL-6 (Fig. 4c), and MIP-2

(Fig. 4d) in the BALF of sepsis-induced mice when com-

pared to the sham group mice. Acacetin pre-treatment

inhibited the elevation of these pro-inflammatory cytoki-

nes, as observed in the acacetin-treated sepsis mice. These

results suggest that acacetin could inhibit sepsis-induced

inflammatory responses in ALI mice.

The effect of acacetin on sepsis-induced iNOS

and COX-2 expression in lung tissue of sepsis mice

Previous studies have reported that iNOS and COX-2 play

a critical role in acute lung injury and suppression of iNOS

and COX-2 expression protects against sepsis (Speyer et al.

2003; Fukunaga et al. 2005; Peng et al. 2005; Jinzhou et al.

2008; Kung et al. 2011). To investigate the possible

mechanism underlying the protective effect of acacetin in

sepsis mice in vivo, we measured the effect of acacetin on

iNOS and COX-2 expression in the different treatment

groups. The expression of iNOS and COX-2 in the lung

tissues was markedly increased after sepsis induction, and

was significantly inhibited by acacetin pre-treatment

(Fig. 5a, b).

iNOS and COX-2 mediate inflammatory processes

through NO and prostaglandin release, respectively, after

sepsis induction (Wilgus et al. 2000; FitzGerald 2003;

Fukunaga et al. 2005). As shown in Fig. 5c, d, treatment

with acacetin in a dose-dependent reduced the level of NO

and PGE2 in the lung tissues of sepsis-induced ALI mice.

These results were consistent with the data of iNOS and

COX-2 expression in the acacetin-treated sepsis mice.

The effect of acacetin on the expression

of antioxidative enzymes and HO-1 in sepsis mice

Sepsis causes oxidative damage to lung tissues though

uncontrolled pathophysiological reactions. Previous studies

have reported that antioxidative enzymes (AOEs), such as

superoxide dismutase (SOD), catalase, and glutathione

peroxidase (GPx), could protect tissue against oxidative

injury (Bhaskaran et al. 2013). In our study we determined

the expression of certain AOEs and the production of ROS

in sepsis mice in the different treatment groups. Sepsis

induction treatment led to reduced AOE expression of

catalase, MnSOD, CuZnSOD, and GPx-1 (Fig. 6a) and

higher production of ROS (Fig. 6b) in lung tissues of sepsis

mice when compared to the non-treated sham group.

However, treatment with acacetin significantly restored the

expression of these AOEs and reduced production of ROS

in lung tissues (Fig. 6a, b).

Fig. 3 Acacetin effect on sepsis-induced pulmonary MPO activity and neutrophil infiltration. a The myeloperoxidase (MPO) activity in the lung

homogenates from sepsis mice and in the different treatment groups. b The number of infiltrated neutrophils in the bronchoalveolar lavage fluid

(BALF) from mice treated with acacetin at the indicated concentrations. The values represent the mean ± SD (n = 10/group). *P\ 0.05,

compared to the non-treated control group; #P\ 0.05, compared to the sepsis-induced ALI group
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HO-1 is another antioxidative protein that can amelio-

rate sepsis-induced ALI (Gong et al. 2008). Here, sepsis

induction inhibited the expression of HO-1 in the lung

tissues of sepsis mice when compared to the non-treated

control group mice (Fig. 6c). Acacetin not only inhibited

sepsis-induced decrease of HO-1 expression, but also

increased the HO-1 expression in a concentration-

dependent manner (Fig. 6c). Next, to confirm the anti-ox-

idative protective activity of acacetin on sepsis-induced

ALI, we measured ROS production in alveolar macro-

phages under different conditions. As shown in Fig. 6d,

LPS stimulation significantly increased ROS production in

alveolar macrophages, however, acacetin treatment dra-

matically decreased LPS-induced ROS production in

Fig. 4 Acacetin effect on the

concentration of inflammatory

cytokines in the

bronchoalveolar lavage fluid.

Twenty-four hours after sepsis

induction by CLP, the lungs of

the sepsis mice were flushed

with saline and the

bronchoalveolar lavage fluid

(BALF) was collected. The

concentration of the

inflammatory cytokines tumor

necrosis factor alpha (TNF-a,)
(a), interleukin- (IL) 1b (b), IL-
6 (c), and macrophage

inflammatory protein-2 (MIP-

2), (d) was determined using an

ELISA assay. The values

represent the mean ± SD

(n = 10/group). *P\ 0.05,

compared to the non-treated

control group; #P\ 0.05,

compared to the sepsis-induced

ALI group

Fig. 5 Acacetin effect on iNOS and COX-2 expression. Twenty-four hours after sepsis induction by CLP, sepsis mice in the different treatment

groups were exsanguinated and their lung tissues were removed. The protein level of inducible nitric oxide synthase (iNOS) and cyclooxygenase-

2 (COX-2) in the lung homogenates was determined using Western blotting (Individual sample in each group was used in WB data and the

combined group was used in bar graphs). a The protein level of iNOS in the lung tissues from mice in the different treatment groups. b The

protein level of COX-2 in the lung tissues from mice in the different treatment groups. c The level of nitrite in the lung homogenates. d The level

of prostaglandin E2 (PGE2) in the lung homogenates. The values represent the mean ± SD (n = 10/group). *P\ 0.05, compared to the non-

treated control group; #P\ 0.05, compared to the sepsis-induced ALI group
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alveolar macrophages. Taken together, these results indi-

cate that the antioxidative activity of acacetin could reduce

sepsis-induced oxidative damage to lung tissue by

increasing the expression of AOEs and HO-1.

The effect of acacetin on NF-jB activation in lungs

of sepsis mice of different treatments

Although inflammation elicited through the activation of

innate immune pathways is critical for effective host

responses to infection, uncontrolled inflammation can

contribute to tissue injury (Wallach et al. 2014). The NF-

jB pathway, which regulates transcription of a variety of

proinflammatory mediators, such as TNF-a, iNOS, and

COX-2 (Surh et al. 2001), is involved in eliciting pul-

monary inflammation. We measured the activation of NF-

jB in lung tissues of sepsis mice in the different treatment

groups. Sepsis induction increased the level of NF-jB p65,

which plays an important role in activation of various pro-

inflammatory genes (Fig. 7). Acacetin treatment inhibited

the expression of NF-jB p65 in lung tissues of sepsis mice

when compared to the non-treated sepsis group (Fig. 7a).

We also determined if treatment with acacetin inhibited

sepsis-induced NF-jB activation by inhibiting IjB-a
phosphorylation or degradation (Fig. 7b). Acacetin treat-

ment significantly inhibited IjB-a phosphorylation when

compared to the non-treated sepsis group mice. These

results suggest that the anti-inflammatory activity of

acacetin might also be related to the NF-jB pathway

inhibition in our in vivo model of ALI.

The effect of acacetin on the NF-jB p65 DNA-

binding activity

The NF-jB signaling pathway is essential for the regula-

tion of sepsis-induced inflammation and injury (Z. Liao

et al. 2012). To further assess the effect of acacetin on NF-

jB activation in vitro, we used RAW264.7 cells to inves-

tigate the effect of acacetin on the NF-jB p65 DNA-

binding activity.Cell viability was evaluated using the

MTT assay (Fig. 8a). Acacetin was found to be non-toxic

at concentrations up to 100 lg (Fig. 8a). Acacetin treat-

ment significantly inhibited the LPS-induced DNA-binding

activity of NF-jBp65. These data suggest that acacetin

might suppress LPS-induced inflammatory damage to lung

tissues by inhibiting the DNA-binding activity of NF-jB
p65.

Acacetin treatment improved the survival rate

of sepsis mice

Survival rate is a key indicator of the protective effect of

acacetin on sepsis-induced ALI in mice. To further

examine the protective effects of acacetin, we examined

the survival rate in different treated septic mice according

to a previous report (Cheng et al. 2007). As shown in

Fig. 9, we observed that acacetin treatment significantly

Fig. 6 Acacetin effect on the expression of antioxidative enzymes in the lung tissues. a The mRNA level of the indicated antioxidative enzymes

(AOEs) in sepsis mice in the different treatment groups. b The production of ROS in lung tissues from different treated sepsis mice. c The protein
level of heme oxygenase 1 (HO-1) in the lung tissues from sepsis mice in the different treatment groups. d The production of ROS in alveolar

macrophages with the indicated treatment. (Individual sample in each group was used in WB data and the combined group was used in bar

graphs). The values represent the mean ± SD (n = 10/group). *P\ 0.05, compared to the non-treated control group; #P\ 0.05, compared to the

sepsis-induced ALI group

1206 L.-C. Sun et al.

123



improved the survival rate of sepsis-induced ALI mice

when compared to untreated mice with sepsis (Fig. 9).

Discussion

Our study showed that acacetin treatment significantly

inhibited sepsis-induced ALI, and reduced iNOS and COX-

2 expression. Furthermore, our results indicated that the

protective effect of acacetin against sepsis-induced ALI

was primarily mediated by its antioxidative and anti-in-

flammatory activity, which could enhance the expression of

certain key AOEs and inactivate the NF-jB signaling

pathway in our in vivo model.

The breakdown of the alveolar–capillary barrier causes

obstruction of the pulmonary gas exchange in ALI. Neu-

trophil activation, which increases sepsis-induced alveolar–

capillary barrier permeability and results in the generation

of reactive oxygen species (ROS), is one of the mecha-

nisms underlying the barrier’s breakdown. In addition, it

has been proposed that sepsis can induce pulmonary ROS

production, and that ROS could increase local inflamma-

tion and thereby contribute to pulmonary tissue damage

(Geerts et al. 2001). Although a moderate amount of ROS

is required for the innate immune system to kill pathogens,

excessive amounts of ROS can cause harmful effects,

including pulmonary tissue damage, apoptosis, and necro-

sis (Grommes et al. 2011). Therefore, the injection of SOD,

a specific superoxide radical scavenger, could protect mice

Fig. 7 Acacetin effect on the

activation of the NF-jB
pathway. a The expression of

NF-jB p65 in the lung tissues of

sepsis mice in the different

treatment groups. b The

phosphorylation of IjB-a in the

lung tissues of sepsis mice in the

different treatment groups.

Individual sample in each group

was used in WB data and the

combined group was used in bar

graphs. The values represent the

mean ± SD (n = 10/group).
*P\ 0.05, compared to the non-

treated control group;
#P\ 0.05, compared to the

sepsis-induced ALI group

Fig. 8 Acacetin effect on the DNA-binding activity of NF-jB in vitro. a The effect of acacetin on cell viability in lipopolysaccharide- (LPS)

induced RAW264.7 cells. b The effect of acacetin on the DNA-binding activity of NF-jB in LPS-induced RAW264.7 cells. The values represent

the mean ± SD. *P\ 0.05, compared to the non-treated control group cells; #P\ 0.05, compared to only LPS-stimulated group cells
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from virus infection- or sepsis-induced ALI (Maeda et al.

1991). Additionally,microvascular endothelial injury could

lead to higher capillary permeability. The increased capil-

lary permeability enhances the entrance of protein-rich

fluid into the peribrochovascular intersititium, leading to

lung edema (Johnson et al. 2010; Antoine Roch et al.

2011). We demonstrated that acacetin treatment signifi-

cantly alleviated sepsis and the concomitant pathological

changes in the sepsis-induced ALI mouse model (Fig. 1),

the wet-to-dry weight ratio (Fig. 2a), protein concentration

in the BALF (Fig. 2b), MPO activity (Fig. 3a), inflamma-

tory cell infiltration (Fig. 3b), and pro-inflammatory cyto-

kine production (Fig. 4) in the lungs of ALI mice. These

results strongly indicate that acacetin might have a poten-

tial protective effect in sepsis-induced ALI.

Previous studies have reported that excessive and

uncontrolled oxidative stress also plays an important role in

sepsis-induced ALI (Shah et al. 2011). Partly because of its

antioxidative activity, acacetin might attenuate the severity

of sepsis-induced ALI given that acacetin decreased the

expression of iNOS (Fig. 5a) and COX-2 (Fig. 5b). Fur-

thermore it increased the expression of HO-1 (Fig. 6b) and

that of the AOEs catalase, MnSOD, CuZnSOD, and GPx-1

(Fig. 6a). The expression of these genes might decrease the

oxidative stress-induced pulmonary damage.

Inhibition of pulmonary inflammation may be critical

for treating sepsis-induced pulmonary injury. Pulmonary

inflammatory responses and edema are positively corre-

lated with pulmonary function, including airway pressure

and the oxygenation index. Additionally, TNF-a, IL-1b,

IL-6, and MIP-2 are potent pro-inflammatory cytokines

that play a role in the initiation and amplification of

inflammatory responses during ALI (Cannizzaro et al.

2011). As shown in the present study, inhibiting the

overproduction of these pro-inflammatory cytokines

decreases pulmonary injury in the sepsis-induced ALI

mouse model. Moreover, NF-jB is an important tran-

scription factor that mediates the secretion of pro-inflam-

matory cytokines, such as TNF-a and IL-6, by

inflammatory cells. Intranuclear blockage of NF-jB has

been shown to suppress the expression of iNOS (Hatano

et al. 2001) and COX-2 (Ke et al. 2007). Therefore, several

current anti-inflammatory therapies target NF-jB activity.

In our study, we demonstrated that acacetin treatment

markedly blocked LPS-stimulated NF-jB activation

in vivo and in vitro (Figs. 7 and 8).

In summary, we provide evidence that acacetin may

have a protective effect on sepsis-induced ALI by reducing

oxidative stress and inflammatory responses in the lung

tissue. The protective effect of acacetin may be due to o

NF-jB pathway inhibition and the increase of antioxidant-

related gene expression. Although the exact mechanism

underlying the protective role of acacetin against sepsis-

induced ALI needs further investigation, our results sug-

gest that acacetin may be a potent protective agent for

pulmonary injury.
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