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Abstract Given the distinctive characteristics of both

epilepsy and antiepileptic drugs (AEDs), therapeutic drug

monitoring (TDM) can make a significant contribution to

the field of epilepsy. The measurement and interpretation

of serum drug concentrations can be of benefit in the

treatment of uncontrollable seizures and in cases of clinical

toxicity; it can aid in the individualization of therapy and in

adjusting for variable or nonlinear pharmacokinetics; and

can be useful in special populations such as pregnancy.

This review examines the potential for TDM of newer

AEDs such as eslicarbazepine acetate, felbamate, gaba-

pentin, lacosamide, lamotrigine, levetiracetam, peram-

panel, pregabalin, rufinamide, retigabine, stiripentol,

tiagabine, topiramate, vigabatrin, and zonisamide. We

describe the relationships between serum drug concentra-

tion, clinical effect, and adverse drug reactions for each

AED as well as the different analytical methods used for

serum drug quantification. We discuss retrospective studies

and prospective data on the serum drug concentration–ef-

ficacy of these drugs and present the pharmacokinetic

parameters, oral bioavailability, reference concentration

range, and active metabolites of newer AEDs. Limited data

are available for recent AEDs, and we discuss the con-

nection between drug concentrations in terms of clinical

efficacy and nonresponse. Although we do not propose

routine TDM, serum drug measurement can play a

beneficial role in patient management and treatment indi-

vidualization. Standardized studies designed to assess, in

particular, concentration–efficacy–toxicity relationships for

recent AEDs are urgently required.

Key Points

Seizures occur sporadically, so antiepileptic drug

therapy is generally experiential and prophylactic.

Therapeutic drug monitoring can help establish an

individual’s optimal serum/plasma concentration

range and benchmark the serum concentrations at

which seizures are restrained or at which

antiepileptic drug-specific adverse effects occur.

Therapeutic drug monitoring enables more decisive

and effective optimization of therapy and disease

management.

1 Introduction

The fundamental objective of therapeutic drug monitoring

(TDM) for antiepileptic drugs (AEDs) is the prevention of

seizures and the minimization of negative effects on gen-

eral well-being, including cognition, mood, and endocrine

function. The International League Against Epilepsy

(ILAE) determines seizure type on the basis of clinical

outcomes and electroencephalograms. Around 34 AEDs

have been prescribed to manage seizures over the last

century. Many enzyme-inducing AEDs are cytochrome

P450 (CYP) mixed function oxidase, glucuronyl trans-

ferase, or epoxy hydrolysis enzyme inducers. First-
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generation ‘old’ AEDs such as carbamazepine, phenobar-

bital, and phenytoin are enzyme inducers. Table 1 lists the

pharmacokinetic parameters of the newer or ‘second-gen-

eration’ AEDs (e.g., lamotrigine, gabapentin), the newest

or ‘third-generation’ AEDs (e.g., retigabine, perampanel),

and the newest orphan drugs (e.g., rufinamide, stiripentol).

1.1 Factors Influencing the Selection

of Antiepileptic Drugs

The selection of AEDs for a particular seizure type depends

on drug-specific (e.g., adverse effects, toxicity, drug

interactions), patient-specific (e.g., sex, age, use of con-

traception, genetics), and country-specific (e.g., availabil-

ity, cost) variables [1].

1.2 Therapeutic Drug Monitoring or Target

Concentration Interpretation

The aim of TDM is to contribute a ‘reference concentration

range’ that laboratories can cite and clinicians can use as a

benchmark. The ‘therapeutic concentration range’ of an

individual patient is the range that achieves the best pos-

sible response and should be selected on the basis of

symptoms and associated risks. The flaw of this strategy is

that, in a few patients, optimal benefit will only be attained

above minimum toxic concentrations, with associated risks

of adverse reactions. Serum drug concentrations (SDC)

achieved over months or years can provide invaluable

information regarding the clinical scenario for each patient

to enable interpretation of a change in response [2, 3].

Serum samples collected within a few hours of a sudden

seizure can provide information that may lead to clinical

reasons or a definite cause of the seizure [4]. SDC mea-

surement can distinguish between highly variable concen-

trations as a result of poor compliance and low

concentrations because of erratic absorption, rapid meta-

bolism, or drug interactions. The ability to discriminate

between insufficient seizure control as a result of inade-

quate dosing or drug overload is invaluable [4].

Polypharmacy can also lead to complex intoxication

despite concentrations being within the therapeutic window

[5]. SDC is particularly relevant in pediatric and psychi-

atric patients in whom clinical assessment can be difficult.

It is also useful for dosage adjustment in complex epilepsy

that may need multiple drug therapy. The reference con-

centration range may not always be ‘therapeutic’, ‘effec-

tive’, or ‘target’, so the reporting method should be factual,

with a statement such as ‘the SDC lies between/

above/below the reference range’. Clinical judgment

should not be based solely on SDC, because adverse drug

reactions can occur even at low concentrations.

2 Newest Orphan Antiepileptic Drugs

2.1 Rufinamide

Rufinamide is a well-tolerated and effective treatment for

drug-resistant epilepsies and is also used as a second-line

adjuvant for routine neurologic practice [6]. A recently

published clinical report [7] also indicated that rufinamide

was successful in the treatment of super-refractory tonic-

status epilepticus. Rufinamide was granted orphan drug

status by the European Medicines Agency (EMA) and the

US FDA in 2004 for the treatment of Lennox–Gastaut

syndrome (LGS). Mean serum drug concentration was

found to be 10 ± 6.5 mg/l in children aged \12 years,

10.6 ± 7.0 mg/l in adolescents aged 12–17.9 years, and

15.9 ± 8.5 mg/l in adults aged C18 years [8]. Approxi-

mately 85 % of the metabolites are eliminated via the

kidneys, with an average half-life of 8 h. Metabolism is

induced by enzyme inducers such as carbamazepine and

rifampin [8]. Impaired renal function does not affect

clearance, so patients undergoing hemodialysis may

require larger doses. Rufinamide exhibits dose-dependent

gastrointestinal (GI) absorption with good bioavailability

(&85 %) and high peak plasma drug concentration (Cmax)

especially when administered with food [9]. Therefore,

patients should be adequately counselled to ensure they

understand the need to follow the strict dosage regimen

with respect to meals. Serum rufinamide concentration was

high (&22 %) when co-administered with valproic acid

(VPA). Reductions in seizure frequency have been found to

be dose dependent. Mean concentration was 10 ± 6.5 mg/l

in children aged\12 years, 10.6 ± 7.0 mg/l in those aged

12–17.9 years, and 15.9 ± 8.5 mg/l in patients

aged C18 years [10]. Patients receiving a dose of 40 mg/

kg were found to have a serum concentration range of

0–45 lg/ml, indicating considerable pharmacokinetic

variability. Therefore, TDM may be beneficial in clinical

practice, albeit no reference range is available. Adverse

reactions such as dizziness, fatigue, nausea, vomiting,

diplopia, and somnolence have also been found to increase

with concentration [8]. Enzyme-inducing AEDs such as

oxcarbazepine, and particularly methsuximide, have been

demonstrated to decrease the serum concentration of rufi-

namide [11]. TDM for rufinamide correlates well with

seizure control and therefore can be helpful in treatment

individualization [12]. Monitoring is useful for patients

receiving enzyme inducers or those who are concurrently

undergoing hemodialysis. Information regarding the phar-

macokinetics of rufinamide in pregnancy and patients with

hepatic impairment is inadequate. Drug interactions data

are comparable to those for (PER) perampanel. A current

report suggests a reference range of 126–168 lmol/l
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(30–40 mg/l) in LGS, which presumably would be lower

for other seizure types [7]. High-performance liquid chro-

matography (HPLC) [13] and liquid chromatography–mass

spectrometry (LC–MS) [14] can be used to determine

plasma/serum concentrations.

2.2 Stiripentol

Stiripentol (STP) has been granted orphan drug status by

EMEA for PGTCS in 2001 and approved additionally for

the treatment of severe myoclonic epilepsy in infancy

(SMEI) or Dravet’s syndrome [15, 16]. Stiripentol has

been reported to elevate brain c-aminobutyric acid

(GABA) levels and to interfere with uptake and metabo-

lism [17]. It is bound strongly to plasma proteins

(&99 %) with extensive hepatic metabolism and low

bioavailability. Major metabolites are excreted renally.

The half-life of stiripentol increases with dose because of

its dose-dependent pharmacokinetics. Stiripentol exhibits

a significant reduction in clearance with dose escalation

[18]. The reference serum concentration for stiripentol is

not distinct, but a range of 4–22 mg/l may be associated

with control of absence seizures in children, and a range

of 8–12 mg/l may be associated with control of Dravet

syndrome [19]. The pharmacokinetics of stiripentol are

complex as a result of non-linearity, strong protein

binding, and considerable metabolism [12]. Stiripentol

inhibits many CYPs (CYP3A4, 1A2, 2C19) and interacts

with many drugs, including AEDs. Stiripentol signifi-

cantly decreases phenobarbital and phenytoin concentra-

tions, whereas clobazam moderately increased stiripentol

serum concentrations [20]. No data are available regard-

ing the pharmacokinetics of stiripentol in pregnancy, or in

patients with hepatic and renal impairment. TDM seems

to be beneficial when using stiripentol because of the

broad fluctuation in its concentration–dose ratio, age-de-

pendent pharmacokinetics, non-linear relationship,

extensive clearance, and drug–drug interactions [21].

Quantification of plasma/serum stiripentol via HPLC has

been reported [22].

3 Newest Antiepileptic Drugs

3.1 Perampanel

Perampanel is prescribed for refractory partial onset sei-

zures, tonic–clonic seizures in patients aged[12 years, and

PGTCS [23]. Perampanel received regulatory approval from

the FDA and the EMA in 2012. The minimum effective

dose is 4 mg once daily, and larger doses provide a greater

therapeutic effect with a comparable increase in adverse

events [24]. Perampanel is not an enzyme inducer and acts

as a selective non-competitive antagonist of ionotropic

glutamate receptors [25]. Oral absorption of the drug is

delayed up to 2 h with food. The high protein binding

(96 %) and volume of distribution (77 l/kg) may lead to

displacement interactions with other AEDs. The drug has a

long half-life of 70–110 h, and steady state may be achieved

after 14 days. Its primary route of hepatic metabolism is via

enzyme CYP3A4. The bulk of the dose is excreted in the

feces and the rest in the urine, with\2 % excreted

unchanged in the urine. Although the drug is well tolerated,

the prevalence of adverse events rises with increasing

dosages. Serious psychiatric and behavioral reactions such

as dizziness, fatigue, irritability, obesity, vertigo, ataxia, gait

disturbance, anxiety, blurred vision, dysarthria, asthenia, and

hypersomnia have been reported [26]. A recent investigation

demonstrated a linear dose–concentration relationship with

serum perampanel concentrations, independent of age and

sex [27]. Carbamazepine and oxcarbazepine can signifi-

cantly and dose-dependently reduce perampanel concentra-

tions, presumably through CYP3A4-induced metabolism.

Perampanel dosage should be monitored carefully dur-

ing pregnancy and after childbirth, with adjustments made

on a clinical basis. Anticonvulsant effects are possibly

antagonized by antipsychotics and antimalarials such as

mefloquine. Antifungals such as ketoconazole can elevate

plasma concentrations, and anxiolytics and hypnotics such

as midazolam can reduce them. Concomitant administra-

tion with orlistat, an obesity drug, may lead to an increased

risk of convulsions [28]. No adequate well-controlled

studies have investigated the pharmacokinetics of peram-

panel in pregnancy, possible drug interactions, or TDM,

and a reference range has not yet been established. HPLC

with fluorescence detection and HPLC–MS has been used

to assay serum perampanel [29].

3.2 Retigabine

Retigabine (also known as ezogabine) is used as an

adjunctive treatment for partial epilepsies in adults and

was approved by both the EMA and the FDA in 2011

[12, 30]. The mechanism of action of retigabine is due to

the activation of voltage-gated potassium channels in the

brain [31]. A placebo-controlled clinical trial has sug-

gested that seizure frequency may be significantly reduced

at higher doses [32]. The most frequently used dose in an

open-label add-on study was 600 mg per day [33]. Ezo-

gabine/retigabine was demonstrated to be effective as

adjunctive therapy to specified monotherapies such as

carbamazepine/oxcarbazepine, lamotrigine, levetiracetam,

and VPA using a flexible dosing regimen in adults with

partial-onset seizures. Retigabine increases lamotrigine

(LTG) metabolism, whereas carbamazepine and phenytoin

enhance the clearance of retigabine [12]. The drug and
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metabolites are excreted almost completely by the kidneys

[12]. Determination of retigabine and its acetyl metabolite

via solid-phase extraction LC–MS has been reported [34].

A recent post-authorization safety study recognized the

importance of TDM for adverse episodes of retinal pig-

mentation and alteration of vision in addition to established

risks of urinary retention, central nervous system effects,

and QTc prolongation [35]. An observational study sug-

gested that retigabine is useful in patients with treatment-

refractory seizures as a drug of reserve [36]. Data are

limited regarding the pharmacokinetics of retigabine in

pregnancy, possible drug interactions, and TDM. Identifi-

cation and quantification of retigabine via HPLC has been

described [37].

3.3 Eslicarbazepine Acetate

Eslicarbazepine acetate (ESL) is a prodrug that is struc-

turally related to oxcarbazepine; it was approved by the

FDA as a monotherapy and adjunct treatment for partial

onset seizures in 2009 [38]. It was recently proposed that

oxcarbazepine be switched to ESL with a dose ratio of

1–1.5:1 and that carbamazepine be switched to ESL with

a dose ratio of 1–1.3:1 [39, 40]. ESL is extensively

metabolized to S-licarbazepine (95 %), which, similar to

oxcarbazepine, inhibits voltage-gated sodium channels

[41]. A linear relationship exists between dose and serum

concentration. It also induces CYPs and increases clear-

ance (12–16 %) of carbamazepine, lamotrigine, and

topiramate. A stable dose–response relationship was

recognized between ESL serum concentrations and

reductions in seizure frequency that were not altered by

other AEDs. ESL has been reported as having minimum

drug–drug interactions [42]. The pharmacokinetics of

ESL are not influenced by enzyme-inducing AEDs or

VPA, and ESL does not change the metabolism of lam-

otrigine [43]. ESL metabolites are primarily eliminated

renally, and dose adjustment is particularly necessary in

patients with a clearance rate of\ 60 ml/min.

Hemodialysis efficiently removes ESL and its metabo-

lites from serum [44]. Moderate hepatic impairment has

limited clinical effects [10]. This was endorsed in a sin-

gle-dose study of ESL 800 mg once daily over a period of

1 week, which demonstrated no change in pharmacoki-

netic parameters [45]. Concomitant administration of

drugs that prolong the PR interval should be avoided.

ESL adversely interacts with oral contraceptives. There is

a possible risk of developing Stevens–Johnson syndrome

in the presence of human leukocyte antigen (HLA)-B

1502 allele [46]. No clinically relevant data are available

with respect to pregnancy, and no data support the use-

fulness of TDM in ESL although it is expected to be

similar to oxcarbazepine. An enantioselective HPLC–UV

detector [47] and LC [48] have been used to analyze ESL

and its metabolites.

3.4 Vigabatrin

Vigabatrin has been indicated as adjunct therapy for adults

and children aged[10 years with refractory complex

partial seizures and to control infantile spasms. Vigabatrin

was granted initial approval from the FDA in 2009 and

received orphan drug status from the EMA in 2000.

Vigabatrin is currently available in more than 50 countries.

Its mechanism of action is based on the irreversible inhi-

bition of GABA-transaminase (GABA-T), thus elevating

the concentration of GABA in the brain [49]. Vigabatrin S

(?) isomer is pharmacologically active and associated with

irreversible visual field defects in 44 % of patients with

epilepsy, which has resulted in prescription limitations

[49, 50]. Clearance in children is greater than in adults, and

therefore higher doses are required to attain comparable

serum concentrations [51]. As the drug is eliminated ren-

ally, toxicity might occur in patients with renal impair-

ment; therefore dosage adjustment is required [49].

Pharmacokinetic interactions are minimal since vigabatrin

is neither metabolized nor protein bound. Due to irre-

versible inhibition of GABA-T, there is no rationale for

TDM of vigabatrin, although it may be helpful in assessing

compliance [52]. Serum GABA and GABA-T concentra-

tions are not an indicator/marker for clinical response

because the blood–brain barrier is relatively impermeable

to GABA, and serum concentrations do not necessarily

reflect cerebral spinal fluid concentrations [53]. Informa-

tion about the pharmacokinetics of vigabatrin in pregnancy

is inadequate. The use of nuclear magnetic resonance

(NMR) spectroscopy to analyze brain GABA concentra-

tions with vigabatrin treatment has been described [54].

Compliance can be verified by checking the anticipated

trough serum vigabatrin target range (6–278 mol/l) at a

dose level of 1000–3000 mg/day [55]. Serum vigabatrin

has been quantified with HPLC, LC–MS [56], and gas

chromatography (GC)-MS [51, 57]. Simultaneous HPLC

analysis of vigabatrin, gabapentin, pregabalin, and topira-

mate has been reported as useful for monitoring polyther-

apy regimens including these drugs [58, 59].

3.5 Lacosamide

Lacosamide has been approved as an adjunctive treatment

for partial-onset seizures and focal epilepsies in adult

patients [60]. It was approved by both the FDA and the

EMA in 2008. It enhances the inactivation of voltage-gated

sodium channels, leading to the stabilization of hyper-ex-

citable neuronal membranes [61]. Lacosamide has been

proposed for the treatment of neuropathic pain of various

Therapeutic Drug Monitoring of Antiepileptic Drugs 307



etiologies in patients who do not respond to standard

treatments [62]. Lacosamide has a high level of oral

bioavailability (&100 %) and a short time to Cmax (tmax), is

unaffected by food, and has linear pharmacokinetics, which

are all advantages in the clinical use of lacosamide [61].

The presence of high free drug concentrations of lacosa-

mide led to the hypothesis that the drug should be effec-

tively eliminated by hemodialysis, although published data

to support this are limited [63]. It is primarily metabolized

via the hepatic route by demethylation to an inactive

O-desmethyl metabolite by CYP2C19 (30 %) [64].

Approximately 40 % of lacosamide is eliminated unchan-

ged via renal excretion mechanisms. Population pharma-

cokinetic data from phase II clinical studies of lacosamide

have shown that lamotrigine, levetiracetam, topiramate,

oxcarbazepine, and VPA have no significant effects on the

pharmacokinetics of lacosamide [65]. Enzyme inducers

such as carbamazepine and phenytoin can significantly

reduce plasma lacosamide concentrations and thereby

enhance clearance [66, 67]. Although data are limited,

overall, lacosamide does not affect the pharmacokinetics of

many AEDs [60]. Frequent adverse effects include

diplopia, nausea, vomiting, dizziness, abnormal coordina-

tion, and blurred vision [42]. Daytime fluctuations can be

lowered by increasing the frequency of administration from

twice daily to three times daily [68]. Lacosamide serum

levels are elevated in patients with hepatic or renal

impairment. Dose-dependent escalation of serum lacosa-

mide concentrations have been reported to be independent

of age and higher in women than in men [69]. No clinically

relevant information is available regarding serum lacosa-

mide concentrations in pregnancy. A rapid sensitive HPLC

and GC–MS method for the measurement of lacosamide

and desmethyl lacosamide has been reported [70, 71].

4 Newer Antiepileptic Drugs

4.1 Pregabalin

Pregabalin is a short-acting (elimination half-life [t�]

5–7 h) analogue of gabapentin used as an adjunct treatment

for focal epilepsies, neuropathic pain, fibromyalgia, and

anxiety disorder in adult patients [72, 73]. Initial approval

was granted by the FDA and EMA in 2004. Although

pregabalin is patent protected in the USA until 2018, a

generic version is currently available in the UK and

Canada. Pregabalin has been investigated for use in cancer-

induced bone pain [74] and as a premedication to provide

postoperative analgesia [75, 76]. Pregabalin can be an

effective treatment for peripheral neuropathic pain pro-

vided adverse reactions are carefully monitored and dosa-

ges are correctly determined [77]. It demonstrates good

bioavailability (&98 %), minimal drug interactions, and

low protein binding [78]. The poor binding of pregabalin

means it can be effectively cleared by hemodialysis tech-

niques [79]. A major portion of the drug is excreted

unchanged in the urine, with a clearance equal to the

glomerular filtration rate. Thus, the dosage regimen should

be adjusted in geriatric patients as well as those with renal

impairment [80]. TDM of pregabalin is restricted to dosage

adjustment and to assess compliance. Although no specific

reference concentration range has been established, a

comparative value of 3–8 mg/l has been suggested [81].

Pregabalin trough concentrations are subject to high inter-

subject variability [82]. Significant adverse drug reactions

are sedation, obesity, cerebellar symptoms, and peripheral

edema. Enzyme-inducing AEDs can moderately lower

pregabalin concentrations [80]. An increased risk of major

birth defects after first-trimester exposure to pregabalin has

been recently documented [83]. An initial clinical study

has demonstrated the use of pregabalin as an adjuvant to

labor pain relief associated with late termination of preg-

nancy [84]. Plasma drug concentrations can be determined

via HPLC [85], LC–MS/MS [85, 86], GC–MS [87], or a

fluorometric method [88].

4.2 Zonisamide

Zonisamide is used as an adjunct treatment for partial

seizure epilepsy and off label for bipolar disorder [89],

chronic pain, migraine [90], and myoclonic dystonia [91].

It was initially approved by the FDA in 2000, and the EMA

granted a marketing authorization valid throughout the EU

in 2005. It exhibits low capacity strong binding to red cell

components and carbonic anhydrase enzymes. The dual

mechanism of action is due to weak inhibition of enzymes

and modulation of GABAergic and glutamatergic neuro-

transmission via alteration of voltage sensitive sodium and

calcium channels [92]. Zonisamide exhibits linear phar-

macokinetics with metabolism via phase I and phase II

biotransformation pathways to produce inactive metabo-

lites [93]. The t� decreased from 60 h to 30 h in patients

concomitantly receiving enzyme inducers. However,

enzyme inhibitors such as cimetidine, erythromycin, keto-

conazole, and VPA can extend the half-life of zonisamide

[93]. Inter-individual variability in patients who are also

receiving CYP enzyme inducers or inhibitors should be

monitored. Zonisamide is cleared efficiently from serum

via hemodialysis [94]. In general, children need larger

doses than adults, calculated on the basis of weight [95]. A

serum/plasma target range of 10–40 mg/l has been sug-

gested for seizure management [96]. Many analytical

methods to assay zonisamide in biological fluids have been

reported, including HPLC [97], LC–MS [98], and solid-

phase extraction techniques [99].
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4.3 Levetiracetam

Levetiracetam is an enantioselective (S) isomer used for

focal epilepsies in adult patients as monotherapy and as

adjunctive treatment in children. It is also used for the

management of juvenile myoclonic and generalized tonic–

clonic seizures in patients aged C12 years [100]. Leve-

tiracetam obtained initial approval from the FDA in 1999.

It may be effective for prophylaxis of early traumatic brain

injury [101]. Its t� is increased in patients with renal

impairment; therefore dosage adjustments will be neces-

sary. The clearance value of the drug is greater in children

than in adults [102]. Correlation between efficacy and

serum levels of levetiracetam has been demonstrated in

children with refractory epilepsy [103]. Levetiracetam has

all the optimal characteristics of an AED and follows linear

pharmacokinetics [104]. It undergoes minimal metabolism,

meaning drug interactions with enzyme inducers or inhi-

bitors are unlikely. SDC monitoring is not yet established

for levetiracetam by virtue of its wide therapeutic index

and minimal side effects. For a daily dosage of 1–3 g, a

target reference range of 12–46 mg/l is suggested for

monitoring for compliance, drug overdose, and dose

adjustment. A reduction in SDC of %60 % has been

reported in pregnancy [105]. A 12-year comparative study

of AED use in pregnancy indicated that levetiracetam was

more effective and better tolerated than older AEDs and

lamotrigine [106]. Levetiracetam can be measured in bio-

logical fluids using either HPLC [107], GC [108], or GC/

MS [71].

4.4 Tiagabine

Tiagabine is used as add-on treatment for focal epilepsies

not responding to other AEDs [109] and was approved by

the FDA in 1997. Tiagabine follows linear pharmacoki-

netics with extensive oxidative hepatic metabolism [110].

The half-life of tiagabine decreases from 7 h to 3 h in

patients receiving concomitant enzyme inducers [111].

Higher clearance was observed in children than in adults

[109]. Metabolism is gradual in patients with hepatic

impairment; consequently, the half-life in these patients

is &14 h [112]. Therefore, dose individualization may be

necessary in hepatic dysfunction but not in renal dysfunc-

tion [112]. A placebo-controlled clinical trial demonstrated

that the frequency of complex partial seizures was con-

centration dependent [113]. Accordingly, a broad reference

range of 20–200 ng/ml (53–532 nmol/l) has been proposed

[114]. It has been demonstrated that tiagabine may induce

generalized non-convulsive status epilepticus (NCSE) in

patients with focal lesional epilepsy in addition to those

with generalized syndromes [115]. Data regarding the

pharmacokinetics of tiagabine during pregnancy are lim-

ited. TDM may be helpful in cases of noncompliance and

toxicity, provided assay techniques are sensitive and robust

[116]. Strong protein binding and high inter-subject vari-

ability due to hepatic metabolism makes TDM necessary.

Ideally, the serum sample for TDM should be taken before

the morning dose because the half-life of the drug is short.

Tiagabine in serum can be quantified with HPLC [117],

LC/MS [118], and GC/MS [118, 119].

4.5 Topiramate

Topiramate is licensed for the treatment of epilepsies in

adults and children, for adjunct treatment in polytherapy,

LGS, and migraine prophylaxis [120, 121]. The FDA ini-

tially approved topiramate in 1996 and endorsed it for

migration prophylaxis in 2003. The mechanism of action

includes sodium channel blockade, GABAergic, anti-glu-

tamergic, and carbonic anhydrase inhibition. Increased

clearance of the drug was found in children aged\10 -

years and in the presence of enzyme inducers [95, 122].

The half-life of topiramate is 25 h, which reduces to 12 h

in patients receiving concomitant enzyme-inducing AEDs

[123]. Topiramate clearance is decreased by lithium, pro-

pranolol, amitriptyline, and sumatriptan, thereby elevating

serum topiramate concentrations [61]. Food can delay oral

absorption of the drug (&2 h), but serum topiramate con-

centrations are unaffected [124]. Average drug concentra-

tions did not differ significantly between responders, non-

responders, and patients with adverse reactions [125], but

did decrease during pregnancy [126]. A higher topiramate

concentration of[10 mg/l [127] and according to another

study an average serum concentration of 7 mg/l has been

reported to result in marked improvements in seizure fre-

quency [128]. A topiramate concentration of 2.4–8 mg/l

was reported with dose ranges between 125 and 400 mg in

combination with other AEDs [20]. Serum concentrations

between 5 and 20 mg/l have also been reported with

therapeutic doses [129]. The available literature indicates

routine TDM is only necessary in patients with hepatic and

renal impairment; it may also be used to differentiate

between non-convulsive epilepsy and drug intoxication

[130]. Salivary drug concentrations can be considered an

alternative TDM method in patients receiving chronic

therapy [131]. Fluorescence polarization immunoassay

(FPIA) is commercially available to estimate serum con-

centrations [132]. Many analytical methods are available

for estimating serum topiramate concentrations, including

GC [133], HPLC [114], LC/MS [134], and immunoassay

[135]. Simultaneous HPLC–MS/MS analysis of topira-

mate, zonisamide, lamotrigine, carbamazepine, and leve-

tiracetam in serum has been discussed [136].
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4.6 Lamotrigine

Lamotrigine is effective as monotherapy or adjunctive

therapy in partial, generalized tonic–clonic, and absence

seizures [137], and in LGS [138]. It has also been inves-

tigated for off-label use in treatment-resistant depressive

disorders [139]. Lamotrigine received initial FDA approval

in 1994 and approval for bipolar disorder in 2003. Estra-

diol-containing oral contraceptives and pregnancy can

drastically decrease serum lamotrigine concentrations

[140]; however, this effect was not observed in women also

receiving VPA [141]. Transient declines in lamotrigine

serum concentrations has also been observed after epilepsy

surgery; thus, TDM will be helpful in the prevention of

early postoperative seizures [142]. TDM appears beneficial

both for the finalization of individual reference ranges and

for the optimization of individual dosage regimens [143].

TDM and dose adjustments may be necessary in patients

undergoing hemodialysis or in those with severe liver

impairment [144, 145]. Lamotrigine should be introduced

with slow dose titrations because of the possibility of

severe dermatological reactions, including Stevens–John-

son syndrome and toxic epidermal necrolysis. Enzyme-

inducing AEDs can halve the t� of lamotrigine (8–20 h),

resulting in decreased lamotrigine concentrations. The half-

life of lamotrigine increased to 60 h when combined with

VPA [146]. In polytherapy regimens with VPA, its inhi-

bitory effect counteracts the inducing effect of enzyme-

inducing AEDs [147]. Co-medication with methsuximide

lowers lamotrigine concentration by 70 % [148]. Lamot-

rigine serum concentrations have been shown to increase

by 90 % from pre-pregnancy baseline to third-trimester

[149]; however, this was not observed in patients receiving

concomitant VPA [148]. Therefore, TDM is important in

the prevention of seizure episodes during pregnancy, and

dose adjustments are based on trough serum concentrations

at least once a month [148]. Trans-placental transfer of

lamotrigine in maternal blood, amniotic fluid, and cord

blood has been measured and correlated [150]. Lamotrigine

clearance has been reported to be higher in children and the

elderly [95]. TDM is valuable for dosage adjustments in

pregnancy, and to check inter-individual variability and

drug interactions. In general, reference concentrations of

2.5–15 mg/l have been suggested in patients receiving

therapeutic doses [2, 3]. The prevalence of toxicity

increases significantly with concentrations[15 mg/l [143].

TDM of lamotrigine may be further complicated by phar-

macodynamic interactions as demonstrated for co-medi-

cation with carbamazepine [95]. Assay of lamotrigine

based on HPLC [151, 152], turbidimetric immunoassay

[153], GC–MS [154], and GC and densitometric methods

[155] have been reported.

4.7 Felbamate

Felbamate is used as add-on therapy in LGS in patients

aged[4 years [156]. It was approved by the FDA in 1993.

The half-life decreases from &19 to &14 h in patients

receiving concomitant enzyme inducers [157]. Felbamate

serum concentrations vary widely between patients and are

affected by age; they are higher in patients with renal

impairment, and the longer half-life depends on the degree

of renal function [158]. The clearance value is quite high in

children (20–65 %) compared with adults [95].

Atropaldehyde, an intermediate metabolite, is responsible

for serious progressive organ toxicity [156]. The drug is

contraindicated in patients with liver impairment [3]. Data

on the pharmacokinetics of felbamate during pregnancy are

insufficient. Life-threatening adverse reactions such as

liver toxicity and aplastic anemia strongly restrict the use

of this drug. Serum concentrations of felbamate can be

decreased by enzyme-inducing AEDs [159] and increased

by enzyme inhibitors such as VPA [159]. Clinical inves-

tigators have divided felbamate concentrations into lower

(9–36 mg/l), intermediate (37–54 mg/l), and higher

(54–134 mg/l) ranges [160], and a therapeutic reference

range of 210–462 lmol/l has been proposed [159] in

patients with epilepsy. The drug is less well-tolerated in

elderly populations. The serum concentration of felbamate

can be determined via HPLC–MS [161, 162], HPLC–UV

[163], LC–MS [164], and GC with flame ionization

detection [162] methods.

4.8 Gabapentin

Gabapentin is approved as an adjunctive in the manage-

ment of focal epilepsies in patients aged[6 years and as

monotherapy in patients aged[12 years. It is also used for

the management of peripheral neuropathy in adults [165].

Gabapentin was granted initial FDA approval in 1993.

Gabapentin is rapidly absorbed (tmax 2–3 h) from the GI

tract by capacity-limited L-amino acid transport systems

[166]. It has an indirect effect on voltage-gated calcium

channels and increases brain GABA concentrations [167].

This was demonstrated by linearity of concentration with

doses up to 1800 mg/day and non-linearity at higher doses

[168]. The half-life of gabapentin (5–9 h) increases with

renal impairment [169]. Dose adjustment is mandatory in

patient with creatinine clearance\60 ml/min and in the

elderly because of reduced renal function. The concentra-

tion/dose ratio progresses with age, and inter-subject

variability is common at any dose [170]. Capacity-limited

GI transport means gabapentin can be administered safely

and effectively either twice or three times daily as steady

state fluctuations are minor. Data are limited regarding the
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pharmacokinetics of gabapentin during pregnancy and in

terms of drug–drug interactions. Antacids reduce gaba-

pentin absorption from the GI tract, and H-2 receptor

blockers decrease the renal clearance of gabapentin [171].

The main adverse reactions are sedation, dizziness, head-

ache, nausea, and obesity. Therapeutic concentrations of

gabapentin in treatment-refractory patients with partial

seizures range from 2 to 20 mg/l [55]. HPLC [58], LC/MS-

coupled GC [172], and GC-electron ionization-MS [173]

methods have been used to quantify serum gabapentin.

5 Conclusion

TDM is a valuable tool in the optimization of individual

dosage regimens to maximize clinical efficacy while min-

imizing adverse drug reactions. Although reference con-

centration ranges indicate the range in which most patients

display therapeutic response, many patients may require

target concentrations outside the reference range. When

interpreting SDC, situations or factors that may modify the

relationship between serum AED and clinical effect should

be considered, such as type and severity of epilepsy,

pathological and physiological states, drug interactions,

and the variability of pharmacogenetics. It is worthwhile

remembering that clinical decisions should not be made on

the basis of drug concentrations alone. In short, dosage

regimens must be individualized based on patient history,

clinical signs and symptoms, pharmacogenetics, and

interpretation of clinical laboratory data.
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