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Abstract

Parkinson’s disease (PD) is a chronic, neurodegenerative condition characterized by motor 

symptoms such as bradykinesia, rigidity, and tremor, alongside multiple nonmotor symptoms. 

The appearance of motor symptoms is linked to progressive dopaminergic neuron loss within the 

substantia nigra. PD incidence increases sharply with age, suggesting a strong association between 

mechanisms driving biological aging and the development and progression of PD. However, the 

role of aging in the pathogenesis of PD remains understudied. Numerous models of PD, including 

cell models, toxin-induced models, and genetic models in rodents and nonhuman primates 

(NHPs), reproduce different aspects of PD, but preclinical studies of PD rarely incorporate age as 

a factor. Studies using patient neurons derived from stem cells via reprogramming methods retain 

some aging features, but their characterization, particularly of aging markers and reproducibility 

of neuron type, is suboptimal. Investigation of age-related changes in PD using animal models 

indicates an association, but this is likely in conjunction with other disease drivers. The biggest 

barrier to drawing firm conclusions is that each model lacks full characterization and appropriate 

time-course assessments. There is a need to systematically investigate whether aging increases 

the susceptibility of mouse, rat, and NHP models to develop PD and understand the role of 

cell models. We propose that a significant investment in time and resources, together with the 

coordination and sharing of resources, knowledge, and data, is required to accelerate progress 

in understanding the role of biological aging in PD development and improve the reliability of 

models to test interventions.

Introduction

Parkinson’s disease (PD) is a chronic, neurodegenerative condition affecting approximately 

10 million people worldwide. While ~5% of PD is thought to be familial, the vast majority 

of PD cases have an unknown cause (sporadic PD [sPD])1. The most common cause of 

early-onset PD is mutations in the PRKN gene, whereas mutations in LRRK2 (leucine-rich 

repeat kinase 2) are a common cause of late-onset PD, clinically similar to sPD. Many risk 

factors have been identified that influence the onset and penetrance of sPD. These include 

single nucleotide polymorphisms in LRRK2, GBA1, and SNCA, as well as other genes, 

exposure to pesticides, head trauma, and old age.

PD is characterized by a complex array of both motor and nonmotor symptoms. Motor 

symptoms often include a resting tremor, rigidity, akinesia (or bradykinesia), and postural 

instability. The onset of these motor symptoms varies between patients and can often be 

preceded by nonmotor symptoms, which have historically been understudied1. Nonmotor 

symptoms include autonomic dysfunction, constipation, incontinence, sleep abnormalities, 

sensory disturbances (loss of olfaction), cognitive impairment, and depression. Each patient 
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with PD has a unique disease onset and course, making it difficult to diagnose and 

predict progression1. However, clinical rating scales and several novel prediction tools 

are increasing our understanding of PD as a multisystemic and heterogeneous disease2–5. 

Historically, PD was diagnosed at death upon postmortem examination revealing loss of the 

dopaminergic (DA) neurons (often labeled with tyrosine hydroxylase [TH], a rate-limiting 

enzyme in dopamine synthesis) in the substantia nigra (SN) and the presence of Lewy body 

inclusions. It is thought that the loss of DA neurons underlies the core motor symptoms 

observed in patients (resting tremor, akinesia, and bradykinesia). Loss of other neuronal 

populations, including, for example, noradrenergic, serotoninergic, and cholinergic neurons, 

could underlie some of the nonmotor symptoms, although there is insufficient quantitative 

data on the extent of actual cell loss in regions other than the SN in PD. Lewy bodies are 

intracellular proteinaceous inclusions containing many proteins, with α-synuclein being a 

major component. These inclusion bodies, containing misfolded or aggregated α-synuclein, 

are found not only in the SN but also in other brain regions, and a growing literature 

suggests a potential spread of PD pathology via expansion of α-synuclein fibrils, perhaps 

even beginning in the gut and progressing to the central nervous system (CNS)6. Braak 

and colleagues proposed a staging of PD pathology based on Lewy body inclusions and 

the brain regions affected7. According to Braak staging, pathology begins in the olfactory 

system and lower brainstem, spreading up to medullary structures. In stages 1 and 2, more 

Lewy neurites are visible rather than Lewy bodies. Lewy neurites are thread-like aggregates 

containing α-synuclein, rather than the globular structures of Lewy bodies. At stage 3, 

the pathology reaches the SN, with loss of DA neurons in the SN and more Lewy body 

formation. In stage 4, severe cell loss of predominantly DA neurons is observed in the 

SN, and the pathology begins to spread to the neocortex, and at the final stage of the 

disease, Lewy bodies are also observed in the cortex7. Although this is only one method 

of staging PD, it is a useful paradigm to compare animal models of PD to the clinical and 

pathological features seen in humans. The pathology of PD is not limited to these features, 

with astrogliosis and other signs of inflammation also being prominent features8.

The loss of SN DA neurons, also revealed by the loss of neuromelanin in this brain region, 

appears to be preceded by the loss of DA axon terminals in the caudate and putamen 

(striatum). This is accompanied by drastic reductions in the levels of DA itself and changes 

in its metabolites (most notably 3,4-dihydroxyphenylacetic acid [DOPAC]) in PD patient 

brains. The loss of terminals detected by positron emission tomography imaging using 

fluorodopa or dopamine transporter (DAT) or vesicular monoamine transporter 2 (VMAT2) 

ligands is one of the most readily detectable pathological features in PD patients and can be 

used to track disease progression longitudinally9.

PD and Aging

Aging is the major risk factor for PD, as shown by the prevalence of PD, which increases 

sharply with age. A meta-analysis of 47 studies shows that the incidence rises from 41 per 

100,000 in individuals 40–49 y old to 1,903 per 100,000 in those over the age of 8010. 

Many of the pathological changes that occur in the brain with age resemble those seen 

in a pre-Parkinsonian state. It has been estimated that the number of DA neurons in the 

SN declines with age in healthy individuals more so than in other regions of the brain, 
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suggesting that DA neurons may be more vulnerable to the effects of aging11. About 10% of 

older people without clinically defined PD show Lewy body pathology12. In healthy rhesus 

monkeys, there is an age-related decline in TH staining in the ventral SN, which is the area 

most affected by PD13, and the decrease in TH staining is associated with an increase in 

intracellular α-synuclein in neurons of the SN13.

Mechanistically, mechanisms dysregulated during aging overlap with those driving PD 

pathogenesis, including mitochondrial dysfunction, autophagy, inflammation, and cellular 

senescence, which are all considered hallmarks of aging14,15. Decreased mitochondrial 

complex I protein expression and activity has been shown in tissues from individuals with 

PD, including the midbrain, cortex, muscle, and fibroblasts16. Strikingly, the environmental 

toxicants rotenone and paraquat, which damage mitochondria, are sufficient to cause a 

PD-like phenotype and neuropathological changes in rodents similar to those observed in 

humans afflicted with PD17. Genes associated with familial PD, such as SNCA, PINK1, 
PRKN, and LRRK2, all impact mitochondrial function, directly or indirectly18–24. Protein 

degradation through the ubiquitin proteasome system and autophagy is reduced with age, 

and such dysfunction has been implicated in PD25. Impaired proteostasis may occur 

downstream of mitochondrial dysfunction as it requires adenosine triphosphate (ATP), and, 

in turn, impaired proteostasis can contribute to the accumulation of damaged mitochondria, 

which requires autophagy for clearance. In addition, DA metabolism generates a significant 

amount of reactive oxygen species (ROS), which damage proteins and mitochondria, 

further contributing to brain aging. The accumulation of damaged proteins and impaired 

proteostasis could contribute to greater neuronal loss in the SN. ROS also contributes to lipid 

peroxidation and oxidative DNA damage in the mitochondrial and nuclear genomes. Indeed, 

postmortem analysis of PD brains reveals increased oxidative damage to proteins, lipids, and 

DNA26,27.

Genotoxic, proteostatic, and mitochondrial stress can all drive cellular senescence 

characterized by a stable cell cycle arrest, loss of cell function, and the production of 

proinflammatory and tissue remodeling factors called the senescence-associated secretory 

phenotype28. The number of senescent astrocytes increases with age and with PD29.

Both the aged and PD brains present a state of low chronic inflammation with changes 

in astrocytes and microglia, which can affect the adjacent neurons29 and is believed to 

contribute to neuronal loss. Removal of senescent cells by the ablation of p16+ cells using 

a prodrug system in a mouse model of PD induced by paraquat improves outcomes29, 

suggesting a causal relationship between senescence and PD. The causal relationship 

between mechanisms of aging and PD pathology has also been reported in Caenorhabditis 
elegans. Putting an lrrk2 mutation into a long-lived worm (expressing a mutant insulin 

growth factor 1 receptor, daf-2) prevented PD features such as loss of DA neurons and 

improved DA-dependent deficits30. Although these observations suggest that aging biology 

plays a role in PD, the precise mechanisms and how well the pathways leading to 

dysregulation of these mechanisms overlap are currently unclear. The rate of loss of DA 

neurons with age is slower than their rate of loss in PD organisms, however, suggesting that 

other factors are at play.
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Here, we review the available evidence on the role of aging in the pathogenesis of PD, 

focusing primarily on phenotypic tests using in vitro and in vivo mammalian systems. We 

highlight the barriers to studying aging in PD and propose recommendations for further 

work.

Patient-Derived Cell-Based Models of PD

Patient-derived cells are an extremely useful tool to study PD, in particular to model sPD. 

Blood cells and fibroblasts can be easily isolated from patients with PD and utilized to study 

the underlying cellular mechanisms related to PD. Patient-derived cells retain some of the 

aging-related changes of their donors; however, the characterization of many aging changes 

is limited. Cells from PD patients have mitochondrial abnormalities as well as alterations in 

the autophagy/lysosome pathway compared to cells from healthy individuals; many of these 

changes are in the same direction as age-related changes but are more severe. Indeed, in cells 

from PD patients with familial PD, such as those caused by PRKN or LRRK2 mutations, 

changes are relatively homogeneous in these key organelles/pathways19,20,31–40.

Cellular reprogramming has enabled researchers to investigate PD-relevant mechanisms in 

the cell types most affected by PD. Classical reprogramming into induced pluripotent stem 

cells (iPSCs) and subsequent differentiation into a DA-enriched population of neurons has 

been undertaken by numerous research groups (reviewed here41,42). These reprogrammed 

and differentiated DA neurons recapitulate many of the cellular mechanisms associated with 

PD, including mitochondrial dysfunction, lysosomal abnormalities, α-synuclein pathology 

(particularly increased levels of phospho-α-synuclein), and susceptibility to α-synuclein 

preformed fibril (PFF) seeding42–47. In addition, for the proportion of neurons that 

successfully differentiate from iPSCs, markers of apoptosis and neuron viability differ 

between PD and healthy control donors48,49, indicating PD patient-derived neurons are 

more susceptible to cell death during differentiation. This preferential neuron cell during 

differentiation could be viewed as strength as it recapitulates the neuron death observed 

in PD patients; however, those neurons that are lost during differentiation could be in fact 

those neurons that need to be studied to understand the neuronal death pathways active 

in PD. Hence, further studies investigating that population of vulnerable cells throughout 

differentiation would be warranted. Furthermore, DA, DA metabolites, and expression of 

genes controlling DA synthesis and sequestration (DOPAC and homovanillic acid) differ 

even between PD patients displaying varying severity of disease49. These changes in DA 

metabolites and neuronal complexity are similar to those reported from several in vivo 
rodent models of PD (discussed below). iPSCs can be differentiated into nonneuronal cells 

as well, revealing defects in many of the same pathways in glial cells derived from PD 

patients, although these are less extensively studied compared to DA neurons50,51.

The reprogramming of iPSCs reverses many aging-related changes including DNA 

methylation, reverting to a more embryonic phenotype14,52,53. Some aging-related features 

can be re-attained after several months of differentiation in vitro or attained by introducing 

genes that are known to accelerate aging54,55. However, it is still unclear if in vitro aging 

accurately reflects in vivo aging.
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Other reprogramming methods seek to maintain the aging features of the donor. Direct 

reprogramming from fibroblast to neuron has been reported to maintain several aging 

features, including epigenetic methylation status, telomere length, telomerase activity, and 

the expression of several age-related genes of the donor56–58. A limited number of studies 

show defective mitochondrial and lysosomal pathways in these directly reprogrammed 

neurons48,59. The reproducibility of this technique is problematic, as the reprogramming 

of cell states is not perfectly homogeneous across batches of neurons. To address this, 

one can reprogram fibroblasts to intermediate cell types such as neural progenitor cells, 

which can then be banked and subsequently differentiated into astrocytes, oligodendrocytes, 

or neurons, an approach first utilized in amyotrophic lateral sclerosis research60. The 

differentiated cells retain many features of aging, including alterations in nuclear envelope 

integrity, telomere length, and the expression of several age-related genes61. Furthermore, 

this method yields relatively pure DA neurons, with ~95% expressing TH and DAT and 

robust alterations in mitochondrial function, particularly without the need for additional 

stressors23,33,62.

Coculture and organoid culture systems are also being investigated to model the complexity 

of native tissues. These systems have the potential to better model age-related changes 

as extrinsic factors are better accounted for, which require the interplay of multiple cell 

types. However, research in this area is somewhat in its infancy, and further work is needed 

to define which age-related changes are retained and interact with PD-relevant pathways 

in these organoid systems. It remains unclear whether these culture systems are able to 

model some of the basic features that likely contribute to SN DA neuron vulnerability (e.g., 

their extensive axonal connectivity)63,64. Finally, there are aspects of aging that cannot be 

fully modeled by patient-derived cells, in particular those that require complex interactions 

and the circulatory system, such as immune and inflammatory mechanisms. Therefore, 

approaches that employ multiple models (e.g., patient-derived cells and animal models of 

PD) will likely lead to a more complete picture of the underlying mechanisms that contribute 

to PD pathogenesis.

In Vivo Models of PD

PD researchers utilize a number of experimental models that have been developed over 

the years. They come essentially in four flavors: pharmacological (e.g., reserpine), toxic 

(e.g., 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine [MPTP] or rotenone), genetic (e.g., 

transgenic rodents), and proteostatic (e.g., exposure to synuclein). We will not describe 

pharmacological models, as they are transient and are discussed in more depth elsewhere65. 

We will focus on toxic models subcategorized into neurotoxins (6-hydroxydopamine 

[6-OHDA] and MPTP), pesticides (rotenone, paraquat, trichloroethylene [TCE]), and 

endotoxins (lipopolysaccharide [LPS]) with more permanent effects. For a more in-depth 

description of the models, we refer the reader to ref. 66. Finally, among the proteostatic 

models, there has been the development of nontransgenic α-synuclein models involving the 

injection of preformed α-synuclein fibrils. Each model provides insight into the underlying 

causes and mechanism(s) of the disease and offers different approaches to test new strategies 

to treat PD. Some investigators prefer classification as etiologic models, which encompass 

all gene-based models, versus pathogenic models, which include toxin models and those 
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involving genetic mutations. More in-depth reviews of this classification can be found in ref. 
67.

To model PD in animals, a variety of mouse, rat, and nonhuman primate (NHP) systems 

have been developed and reproduced in multiple labs. Mice and rats are relatively 

inexpensive and more practical in comparison to NHPs. Even though rats display better 

reproducibility in terms of behavioral readouts in comparison to mice, the biggest limitation 

to the use of rats is the general lack of tools for molecular analysis and aging (e.g., 

antibodies). NHPs have some advantages as they display clinical features (e.g., sleep 

disturbances, social/cognitive symptoms, and gastrointestinal [GI] disturbances) more 

similar to those observed in human disease following exposure to MPTP (reviewed in ref. 
68). Moreover, the anatomical organization of the adult NHP striatum is similar to that 

of a human, and, unlike rodents, NHP DA neurons contain neuromelanin. The following 

section will provide an overview and highlight the advantages and disadvantages of the 

main mammalian animal models of PD. It is important to understand the limitations of each 

model, and aging has been accounted for in the various models. The following sections and 

tables do not include every animal model but focus on the more established and reproducible 

animal models used by the PD research community.

Toxin Models

Neurotoxins

Toxins such as 6-OHDA or MPTP are typically used to model the loss of DA neurons and 

the denervation of the striatum that is known to occur in PD. However, a major limitation 

of these neurotoxins is that they do not mimic the multisystemic nature of PD as they 

selectively target DA neurons due to their uptake through the DAT and therefore are not 

ideal candidate models to study changes in the GI track. Overall, depending on the dosing 

protocol, these toxins can cause either progressive or rapid loss of nigral DA neurons, 

neuroinflammation, oxidative stress, and motor deficits, as summarized in Table 1.

6-OHDA is an analog of DA and norepinephrine (NE) and cannot cross the blood–brain 

barrier (BBB). It must be injected into the brain (typically in the SN, medial forebrain 

bundle, or striatum) to produce DA neuron loss. The cellular mechanism by which 6-OHDA 

causes cell loss is thought to be by increasing free radical production and inhibiting 

complexes I and IV of the mitochondrial respiratory chain. Many different injection 

protocols have been developed (e.g., injecting 6-OHDA bilaterally or unilaterally) and 

produce differing effects on DA neuron loss and behavior. See refs. 69 and 70, for a complete 

review on 6-OHDA and the different 6-OHDA protocols.

There are several considerations when using 6-OHDA as a model of PD. First, the 

requirement of administration of 6-OHDA directly into the nigrostriatal pathway. Second, 

as 6-OHDA is readily taken up by both DA and NE transporters, to achieve selective 

DA neuron loss, an NE reuptake inhibitor, such as desipramine, must be administered. 

Finally, the time course for 6-OHDA-induced DA cell death can be very rapid, which is not 

consistent with the slow, progressive nature of the human disease nor does 6-OHDA cause 

the formation of insoluble α-synuclein aggregates.
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Unlike 6-OHDA, MPTP can be given systemically. Due to its lipophilic nature, MPTP 

rapidly crosses the BBB and is taken up by astrocytes, where it is metabolized 

by monoamine oxidase-B (MAO-B) to 1-methyl-4-phenyl-2,3-dihydropyridinium 

(MPDP+), which spontaneously oxidizes into the highly toxic metabolite, 1-methyl-4-

phenylpyridinium (MPP+)71,72. Surprisingly, MPP+ is not toxic to astrocytes but is highly 

toxic to DA neurons. MPP+ is released into the parenchyma through the cation transporter 

3 and rapidly taken up by DAT and then VMAT2. MPP+ readily crosses the inner 

mitochondrial membrane and inhibits mitochondrial complex 1 of the electron transport 

chain (ETC). This impairs ATP production and causes the accumulation of ROS, eventually 

leading to DA degeneration73,74. Interestingly, MPP+ is taken up by DA neurons in both the 

SN and ventral tegmental area (VTA), but seems to be more toxic to the DA neurons of the 

SN compared to the VTA75–77. This may be because SN neurons are more vulnerable to 

bioenergetic challenges compared to VTA DA neurons63.

Despite its effectiveness for modeling PD in mice and NHPs, rats are relatively resistant 

to MPTP at moderate doses, and it is lethal at higher doses78,79. Typically, MPTP is 

administered acutely or chronically to C57BL/6 mice, as this is the most sensitive strain 

to MPTP. Depending on the dosing paradigm, MPTP can cause sizable SN lesions79–82. 

However, it is important to recognize that depending on the dosing protocol, MPTP can 

cause phenotypic suppression of TH, rather than true DA neuron loss83. Therefore, similar 

to all animal models for PD, when assessing DA neurodegeneration, it is crucial not only 

to quantify TH-positive neurons but also to include a secondary neuronal marker such 

as Nissl83. Like the 6-OHDA model, MPTP does not cause accumulation of endogenous 

α-synuclein accumulation in SN DA neurons, which is a hallmark of the disease80, nor does 

it cause GI dysfunction. Even though mice exposed to MPTP do not display a behavioral 

phenotype reminiscent of PD, the MPTP model has been extremely useful for elucidating 

mechanisms of cell death in DA neurons.

Environmental toxicants: Pesticides and herbicides

Paraquat is structurally similar to the active metabolite of MPTP, MPP+, and can reliably 

provoke a progressive loss of nigrostriatal DA neurons. The maximum neuronal loss induced 

by paraquat is considerably less than that induced by MPTP (~30% vs. 50%84–87). It is 

unclear, whether paraquat reduces striatal TH-positive fibers or depletion of striatal DA 

release88. However, a major strength of the paraquat model is that the loss of DA neurons 

in the SN is both age- and dose-dependent with a greater loss in older animals89. Paraquat 

can provoke the formation of Lewy body-like inclusions90. Paraquat can also trigger both 

motoric and nonmotoric disturbances, including reduced locomotor activity88,91,92 and 

diminished performance on a forced swim and open field test93–95. This is interesting 

because forced swim and open field measure affective disturbances. This is a particular 

strength of the model, as PD patients are known to suffer from depression96. Systemically 

administered paraquat is thought to cross the BBB in mice through a neutral amino acid 

transporter and have a half-life of one month97,98. However, whether paraquat is able to 

cross the BBB in NHPs is still unclear99. Like 6-OHDA and MPTP, paraquat can accumulate 

in mitochondria, but it mediates toxicity through a different mechanism. Paraquat acts 

mainly as a redox cycler, stimulating ROS production by accepting electrons from complex 
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I for redox cycling, which, in turn, generates superoxide anions and subsequently other 

species of ROS97. Paraquat is known to cause pulmonary and renal dysfunction; however, 

to date, the GI system has not been extensively characterized in this model. Therefore, it is 

unclear if paraquat causes GI deficits.

TCE is a chlorinated solvent used as a degreaser and chemical feedstock. TCE is pervasive 

in the environment and is linked epidemiologically to PD100,101. TCE treatment causes 

a slow and progressive Parkinsonian phenotype in mice and rats which is accompanied 

by glial inflammation, mitochondrial dysfunction, oxidative stress, and accumulation of 

α-synuclein102–104. In mice, a significant loss of SN DA neurons was reported with 400 

mg/kg/day dosing for eight months in mice104. Studying the cellular mechanisms at earlier 

timepoints after dosing in this prolonged dosing model may be an important way to 

investigate the cellular mechanisms active during the preclinical phase of sporadic late-onset 

PD. In five-month-old rats exposed to TCE for six weeks, a dose-dependent loss of SN 

DA neurons was reported following 500 and 1,000 mg/kg/day dosing102. Moreover, daily 

dosing for six weeks of a lower dose of TCE (200 mg/kg) was sufficient to achieve SN DA 

degeneration in older (12-month-old) rats103. These older rats also display marked oxidative 

stress, endolysosomal impairment, and α-synuclein accumulation within the surviving SN 

DA neurons103. There are very little data looking at the gut microbiome or GI dysfunction 

in rodents exposed to TCE. However, there is a single study where mice exposed to TCE 

at a dose equivalent to environmental or occupational exposures for 154 or 259 days in 

drinking water resulted in disturbances in the gut microbiome, which were associated with 

an increase in proinflammatory cytokines105.

Rotenone is a naturally derived compound, mainly used in fishery management to eradicate 

fish populations106. Like paraquat, chronic exposure to rotenone is associated with a higher 

incidence of sPD, strengthening the rationale for use of rotenone to model the disease in 

animals. Similar to MPTP, rotenone is a highly lipophilic compound that easily crosses the 

BBB and acts to inhibit mitochondrial complex 1 of the ETC. In addition to promoting 

oxidative stress, rotenone can cause other histopathological features resembling PD not 

observed with either 6-OHDA or MPTP. It causes dose-dependent systemic toxicity and 

mortality. The most reliable route of administration for rotenone to produce features of sPD 

is systemic delivery into the intraperitoneal cavity (2–3 mg/kg/day)107–109. Depending on 

the dosing regimen and route of administration, rotenone can cause dorsolateral lesions in 

the striatum in ≥12-month-old rats that are associated with a reduction in DA levels; this loss 

is not seen in animals ≤7 months of age110. The DA neurons in the SN are highly sensitive 

to rotenone in comparison to the DA neurons in the VTA63. Rotenone causes a 45% loss 

of DA neurons in the SN, whereas the VTA seems relatively spared in comparison111–113. 

This enhanced nigral sensitivity and the fact that rotenone causes endogenous α-synuclein 

accumulation within surviving DA neurons, increased nigral reactive microglia, and motor 

symptoms such as bradykinesia, postural instability, and rigidity in rats108,110,113 further 

strengthens the validity of the use of rotenone to model some aspects of sPD. Rotenone can 

also induce nonmotor symptoms such as sleep disturbances in rats114, GI disturbances, and 

α-synuclein accumulation in the myenteric plexus115.
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Despite the strengths of the rotenone model, particularly the age dependency, it has 

limitations. Lewis rats are the most sensitive to rotenone, while other strains produce 

unreliable and highly variable lesions. Until recently, rotenone has been unreliable in mice, 

regardless of age. A recent study using young mice dosed them with rotenone for 14 

days and then left an additional 14 days yielded nigral DA degeneration accompanied by 

neuroinflammation116.

The main features of the described environmental toxin models are summarized in Table 1.

Endotoxins: LPS

Central LPS administration:

LPS is a gram-negative bacterial endotoxin that activates toll-like receptor 4 (TLR-4). 

Injecting LPS into the SN results in a strong proinflammatory response and the loss of DA 

neurons117,118. The SN is more sensitive to LPS in comparison to other brain regions, as it is 

prone to neuroinflammation. It remains unclear why the SN is more sensitive; it may be due 

to the higher number of microglia in the SN compared to other brain regions119. A single 

intranigral injection of LPS can induce microglial activation, a loss of astrocytes within 2 

days, and a loss of DA neurons120. High doses of LPS can even result in motor impairment, 

α-synuclein, and ROS accumulation in addition to SN DA neurodegeneration121,122.

Peripheral LPS administration:

A single systemic dose of LPS in adult mice can cause progressive SN DA degeneration 

and α-synuclein alterations in the gut, despite not crossing the BBB123–126. It has been 

postulated that increased peripheral production of the proinflammatory cytokine tumor 

necrosis factor (TNF-α) following LPS administration crosses the BBB and induces 

microglia activation. Chronic intranasal administration of LPS causes behavioral deficits, 

microglial activation, SN DA degeneration, and α-synuclein aggregation127,128.

A summary of the main features of the LPS endotoxin model are summarized in Table 5.

Genetic Models of PD

α-synuclein (SNCA) transgenic animal models

The SNCA gene was the first gene identified as a genetic cause for familial PD. A53T and 

A30P missense mutations, as well as SNCA duplication or triplication, cause early-onset 

PD. The function of α-synuclein remains unclear. However, the protein is expressed at very 

high levels in neurons and found to be enriched in axon terminals. It has been suggested 

to regulate the neurotransmitter release129,130. In addition to familial PD, α-synuclein likely 

plays a role in sPD given that it is the main component of Lewy bodies and Lewy neurites 

and has been associated with the genetic risk of developing PD through genome-wide 

association studies. Therefore, many groups have dedicated considerable effort to generating 

transgenic mouse or rat models either overexpressing wild-type (WT) or mutant SNCA 
(A53T, A30P) to try and understand how α-synuclein impacts DA function and neuron 

survival (see Table 2). A plethora of α-synuclein transgenic mouse models have been 

developed over the years (see ref. 131, for a comprehensive review). The degree of pathology 
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and motor impairments greatly depends on the genomic integration site, the promoter 

used to drive human SNCA transcription, and the genetic background. While some of 

these models cause accumulation of insoluble α-synuclein inclusion bodies132–136, and 

some display deficits in DA vesicle clustering and DA neuron firing137, only the recently 

characterized N103 mouse model results in degeneration of DA neurons in the SN136. 

Inclusion bodies also accumulate in brain regions other than the SN134,136. The lack of 

degeneration of the DA neurons in most of these transgenic models has made it difficult to 

determine if these models are successfully modeling specific aspects of early-onset PD as 

patients with SNCA mutations or duplications present with.

A novel transgenic mouse model overexpressing the A53T α-synuclein mutation in mice 

using the DAT promoter in tetracycline-regulated transgenic mice has also been generated. 

These mice develop motor deficits, which are associated with a loss of DA neurons in the 

SN. Interestingly, this pathology was associated with a decrease in DA release and impaired 

mitophagy138.

There is a growing hypothesis, initiated by the work of Braak, who demonstrated that 

α-synuclein accumulation in PD begins in the enteric nervous system and traffics to the 

CNS via the vagus nerve. Braak hypothesized that α-synuclein from the gut reaches 

the vagus nerve during the early stages of PD and gradually traffics from the hindbrain 

to the forebrain as the disease progresses139. In support of the Braak hypothesis, aged 

Fischer 344 rats display aggregated α-synuclein in the intestinal submucosal plexus140. 

Using an established weekly oral protocol for bacterial exposure141 in these rats resulted in 

α-synuclein deposition in the myenteric plexus and submucosa and neuroinflammation and 

α-synuclein accumulation within the striatum and hippocampus142. Moreover, using Thy-1 

h WT α-synuclein (antisense oligonucleotide) transgenic mice, researchers demonstrated 

that gut-brain signaling by gut-microbial molecules that impact neuroinflammation and 

α-synuclein aggregation is required for the hallmark motor and GI dysfunction observed in 

this mouse model of PD143.

LRRK2—LRRK2 was identified as a monogenic cause of PD in 2004 and displays 

an autosomal-dominant inheritance pattern, but with incomplete and varying penetrance. 

In addition, LRRK2 is considered a genetic risk gene for sPD. The G2019S mutation 

is the most common PD-associated mutation. Genetic mutations associated with PD 

cause an increase in LRRK2 kinase activity. Overall, transgenic mouse and rat models 

that overexpress or knock in (KI) a PD-related LRRK2 mutation (e.g., R1441C/G or 

G2019S) have been largely unsuccessful at replicating the hallmark features of PD 

(DA neurodegeneration and α-synuclein inclusion bodies)144,145. However, subtle changes 

have been observed in these models, including changes in dopamine metabolites and in 

mitochondrial and lysosomal functions146–150. Taken together, these studies suggest these 

transgenic mice may be useful to study gene × environment interactions as well as the 

functions of LRRK2, which may enable these models to be utilized to study late-onset PD. 

A summary of the characteristics of the most used models is shown in Table 2.

GBA1D409V KI mice—Mutations in the GBA1 gene, which encodes the lysosomal 

hydrolase glucocerebrosidase, are associated with sPD. Mutations in GBA1 and LRRK2 are 
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considered as the highest genetic risk factors for developing sPD. With over 300 mutations 

in GBA1 identified, sPD patients with a GBA1 mutation typically have a more aggressive 

form of the disease. Therefore, elucidating the role that GBA1 plays in sPD is crucial. 

Recently, a transgenic mouse model was developed in collaboration with The Michael J. 

Fox Foundation characterizing the GBA1 D409V point mutation151. These mice have a 

dose-dependent reduction in glucocerebrosidase (GCase) activity in the hippocampus and 

SN151,152. Unfortunately, these mice lack α-synuclein accumulation in the nigrostriatal 

pathway and do not show any loss of DA neurons in the SN151. Mice with a heterozygous 

GBA1 D409V mutation were recently reported to have no overt phenotype and have 

unaltered spread of α-synuclein fibrils153. However, mice carrying an L444P mutation show 

increased susceptibility to MPTP154, and A53T α-synuclein mice haploinsufficient for GBA 

show an exacerbated phenotype155.

MitoPark mouse model—The MitoPark mouse model, initially described in 2007, 

consists of a selective deletion in the mitochondrial transcription factor M (TFAM) within 

DAT-positive (DAT+) neurons156. This deletion results in mitochondrial dysfunction that 

is limited to DA neurons. Interestingly, despite this limited mitochondrial dysfunction, 

MitoPark mice have characteristic features that resemble PD in humans, including a 

significant drop in mitochondrial gene expression (within six weeks after birth), motoric 

deficits, and nigrostriatal DA degeneration156–158. As the expression of the mutation is 

restricted only to DA neurons, the utility of this animal is limited. However, deficits in 

non-DA systems involving circadian rhythms159 and GI motility have been reported160. The 

most significant limitation of this model is the drastically shortened lifespan of 45 weeks 

(11 months). This shorter lifespan, while useful for therapeutic investigations, may not 

fully capture mechanisms driving the slow progression of the age-related disease phenotype 

in human PD, which raises the concern of failures in subsequent clinical human trials 

of therapeutic interventions developed using this model. However, this model may have 

utility in investigating specific mechanisms involved in early-onset PD which are yet to be 

explored.

VPS35 mouse model—The vacuolar protein sorting 35 (VPS35) gene encodes the 

cargo subunit of the retromer complex. Due to its essential function in regulating protein 

breakdown and recycling, it has been implicated in numerous neurodegenerative diseases161. 

VPS35 and the retromer are essential for normal cellular function and viability; full 

deletion in mice results in embryonic death by day 10162. Mutations in the VPS35 gene 

cause an autosomal-dominant form of PD (PARK17) with clinical symptoms comparable 

to those observed in sPD163,164. In particular, a single heterozygous missense mutation, 

Asp620Asn (D620N), is pathogenic with ~1.3% frequency in familial cases and 0.3% in 

sPD165,166. Various in vivo models have been generated to study the D620N mutation 

on VPS35 function and PD pathology161. The D620N mutation results in either a toxic 

gain-of-function or a dominant-negative mechanism, or possibly a combination of both. 

The phenotypic assessment of a germline D620N VPS35 KI mouse model reported 

neuropathological hallmarks of PD, including age-related motor defects, progressive 

degeneration of SN DA neurons, increased DA release, and widespread axonal damage and 

tau-positive (hyperphosphorylated) pathology throughout the brain167,168. However, these 
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mice fail to develop the α-synuclein neuropathology characteristic of PD. This is surprising, 

as a direct relationship between VPS35 dysfunction and α-synuclein accumulation has been 

established169. In addition, the D620N VPS35 KI model also failed to show enhanced 

α-synuclein pathology when crossed with human A53T-α-synuclein transgenic mice or 

mice injected with α-synuclein PFFs167.

DJ-1/PAK7 mouse model—DJ-1, a small (20 kDa), highly conserved protein of 189 

amino acids, was linked to early-onset, familial types of PD in 2003170,171. DJ-1 is well 

recognized for its role as an oxidative stress sensor; in addition to PD, DJ-1 is implicated 

in other age-related disorders such as cancer and type 2 diabetes172–174. Even though 

DJ-1 KO mice display age- and task-dependent motoric deficits, including hypoactive 

behavior in the open field assay and deficits in adhesive tape removal coupled with striatal 

neurotransmission deficits, these mice fail to show SN DA neurodegeneration175,176. There 

are conflicting data in the literature regarding the age-dependent accumulation of markers 

of oxidative stress in these mice177,178. Intriguingly, when a subgroup of DJ-1-KO mice 

were fully backcrossed onto a C57BL/6 background, they showed a severe early-onset 

(eight-week) unilateral loss of SN DA neurons but not VTA DA neurons, which gradually 

progressed to bilateral nigrostriatal degeneration at later ages. This age-dependent loss of 

SN DA neurons was accompanied by a loss of DA neurons in the locus coeruleus (LC) 

as well as modest motor deficits at specified time periods179. In summary, even though 

loss-of-function mutations in DJ-1 cause familial PD, current transgenic rodent models 

failed to find integral neuropathological changes reminiscent of PD. It is possible that the 

shortened lifespan of mice in comparison to humans can explain the absence of profound SN 

DA neurodegeneration; investigation of cellular mechanisms in these mice well before death 

may contribute to our knowledge of the mechanisms leading to early-onset PD in humans.

PINK1/Parkin mouse model—The PTEN-induced kinase 1 (PINK1), a serine threonine 

kinase, and Parkin, an E3 ubiquitin ligase, work in coordination to target mitochondria 

for autophagic degradation via a process known as mitophagy. Since the discovery that 

autosomal recessive mutations in the PARK2 (Parkin) and PARK6 (PINK1) genes cause 

early-onset PD in humans, multiple groups have generated systemic KO mouse models 

of these genes180–183. Parkin models target different exons of the Parkin gene. The first 

transgenic animal model was a systemic Parkin KO (premature stop codon inserted into 

exon 4) mouse, which displayed slight motor/behavioral deficits, increased extracellular 

DA, abnormal mitochondrial respiration rates, and higher oxidative damage within SN 

mitochondria184,185. They do not, however, display the characteristic loss of DA neurons in 

the SN. Similar findings were reported for subsequent systemic Parkin KO models targeting 

exons 2, 3, and 7, wherein they caused modest motor impairments without concurrent loss 

of SN DA neurons186,187. It should be noted that the Parkin KO mouse model targeting 

exon 7 displayed a loss of NE in LC neurons in both young and older animals188,189. Even 

though knocking out Parkin in rodents does not result in significant DA neuron loss as seen 

in PD patients with a recessive Parkin mutation, these transgenic models are still valuable 

to study the role mitophagy and mitochondrial dysfunction play in PD, in particular in 

relation to early-onset PD caused by Parkin mutations. PINK1 KO rats showed progressive 

neurodegeneration with about 50% DA cell loss observed at eight months of age and a two- 
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to threefold increase in striatal DA and serotonin content at eight months of age. These 

mice also exhibited significant motor deficits starting at four months of age. Interestingly, 

the Parkin KO rats displayed a normal phenotype without any neurochemical or pathological 

changes.

Mice homozygous for the PINK1 null allele are viable, and, similar to the Parkin models, 

they do not exhibit a loss of striatal DA content or DA neurons190,191. However, PINK1 

KO mice exhibit diminished DA release and other alterations in striatal DA neuron 

physiology192. In addition, loss of PINK1 resulted in reduced mitochondrial function and 

Ca2+ storage capacity in mice193. In an attempt to better understand and replicate the 

disease pathology, systemic PINK1 KO models were genetically crossed with other familiar 

PD genetic models. Unfortunately, the triple combination cross consisting of systemic 

knockout of DJ-1, PINK1, and PARKIN also did not show DA neurodegeneration or loss 

of LC neurons194. Genetic crossing of the PARKIN KO with a transgenic α-synuclein 

model resulted in mitochondrial abnormalities; however, these mice did not experience DA 

neurodegeneration195. Adeno-associated viral-mediated overexpression of α-synuclein in 

the SN of PINK1 KO mice was found to result in enhanced DA neurodegeneration as well 

as in significantly higher levels of α-synuclein phosphorylation at serine-129 at four weeks 

postinjection in comparison to adeno-associated virus (AAV)-α-synuclein injected mice196.

Regulator of G protein signaling 6 (RGS6)-deficient mice—RGS6 is a member of 

the RGS protein family and is required for SN DA neuron survival in adult mice197. RGS6 

KO mice display an age-dependent loss of DA neurons in the striatum and α-synuclein 

accumulation. This loss of nigrostriatal neurons correlates with motoric deficits198.

A summary of the main features of genetic models of PD is described in Table 2. A 

schematic representation of PD-associated genes and their mutational variants used to 

generate disease models is shown in Figure 1.

α-Synuclein Proteostatic Models

A summary of the main α-synuclein proteostatic models is shown in Table 3.

Viral-vector-mediated animal models

α-synuclein overexpression can be induced by viral vectors. Depending on the serotype, 

promoter, titer, and time of incubation, viral-mediated overexpression of WT or mutant 

human α-synuclein results in a progressive loss of DA neurons over the course of 8–24 

weeks199–203. There are several advantages to using a viral vector system over creating a 

transgenic mouse line. This approach can efficiently deliver genome particles to mature 

neurons and avoid any developmental remodeling. It is also possible to selectively target 

specific cell types (e.g., glia vs. neurons), depending on the promoter and the vector used. 

Finally, this approach can be applied to aged animals. AAV vectors are typically injected 

unilaterally, which allow the uninjected hemisphere to be used as an internal control.

As with any animal model, viral-vector-mediated overexpression of α-synuclein has 

challenges. Viral-mediated overexpression of α-synuclein does produce reliable DA 
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neurodegeneration and α-synuclein inclusion bodies. However, this approach does require a 

specialist technique and can be time-consuming. Verification of the injection site for every 

animal is necessary. Inserting a fluorescent reporter protein (e.g., green fluorescent protein 

[GFP]) into the construct can help verify the injection site, but it can also be toxic to DA 

neurons and cause phenotypic suppression of TH204. It is possible to avoid the use of a 

fluorescent tag by using an empty vector204,205. However, this approach does not allow 

control for nonspecific toxicity due to protein overload.

PFF animal models

Another approach to study α-synuclein is the administration of exogenous α-synuclein 

PFFs typically into the striatum, or SN, which is referred to as seeding (reviewed in ref. 
206). The α-synuclein PFF model relies on manual injection(s) of the recombinant form 

α-synuclein protein. PFFs are aggregates that have been sonicated to produce short fibrils

—50 nm or smaller will yield most pathology; anything larger will greatly reduce the 

pathology. This protocol reliably causes the templating of endogenous WT α-synuclein 

into pathological species characterized by phosphorylation at S129 (pS129 α-synuclein), 

beta-sheet formation, and aggregation. One of the advantages of this model is that it allows 

for flexibility, meaning different forms of α-synuclein PFFs can be introduced (e.g., mouse 

vs. human α-synuclein or mutated α-synuclein), targeting any desired brain region(s) or 

peripheral organ. This allows the researcher to model distinct aspects of PD. The uses 

of the PFF model in PD have been extensively reviewed elsewhere207. Essentially, the 

presence of either human or rodent α-synuclein PFFs triggers endogenous α-synuclein 

phosphorylation, ubiquitination, and aggregation and results in a prion-like propagation 

of α-synuclein inclusions that can result in retrograde nigrostriatal (from the striatum 

injection site to the cell bodies in the SN) DA neuronal degeneration, neuronal dysfunction, 

and mitochondrial damage typically over a three- to six-month period208,209. More recent 

studies have administered PFFs in other areas of the body, including muscle210, gut211, 

and olfactory bulb212,213. These alternative routes of administration resulted in CNS α-

synuclein pathology, neuroinflammation, and, in some cases, neurodegeneration. The extent 

of neuronal dysfunction and loss is dependent on the site of administration of the PFFs and 

the species injected214. This approach is a useful tool to study how α-synuclein contributes 

to the pathogenesis of PD and is a good model to test compounds designed to prevent 

α-synuclein aggregation. This model has been used to study the progressive maturation of 

α-synuclein inclusions within individual neurons over time and the selective degeneration 

of these inclusion-bearing neurons215. The PFF models provide an elegant way of modeling 

late-onset PD, or similar to sPD.

A summary of the main features of α-synuclein proteostatic models of PD is described in 

Table 3.

Study of Aging in Mammalian Models of PD

Although no existing models of PD display all the cardinal features of PD, and their 

characterization is currently inconsistent or incomplete, some models do display a 

progression of the disease with age (Tables 4–7). Some of these aging models were 
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described in the sections above and have been characterized by several laboratories around 

the world. However, other aging models are not utilized by many laboratories, likely 

the reason their PD phenotype has not been fully characterized. We have included these 

additional animal models (namely Mito-PstI, a mitochondria-targeted restriction enzyme, 

PstI to damage mtDNA in DN; truncated FLAG-tagged human mutant Parkin [Parkin-

Q311X] in DA neurons; L61 mice overexpressing WT human α-synuclein under the Thy-1 

promoter; and inducible [DOX] human MAO-B expression in astrocytes) in this study, as 

they are important for building a picture of the current state of aging research in PD animal 

models. Both C57BL/6 mice and rhesus monkeys show signs of PD with natural aging13,216. 

In WT C57BL/6 mice, significant changes occur at 120 weeks of age216, suggesting that 

signs may develop slowly at later ages (see Table 4). Differences in phenotypes seem to be 

more prominent in models where it is possible to see the slow progression of the disease 

and when animals are monitored for longer periods of time. As an example, Kim et al. 

(2019) injected PFFs at 3 months of age, and mice were assessed at 1, 3, 7, and 10 months 

afterward (Table 7)217. Mice showed a reduction in the number of TH+ neurons only at 10 

months217. However, when PFFs were injected at 16 months of age and the number of TH+ 

cells was assessed 4 months later, no differences in TH+ cell numbers were observed218.

Very little difference has been observed between young and old animals in some models 

when the disease is induced by genetic modification (e.g., L61 mice which overexpress WT 

α-synuclein via the Thy-1 promoter; Table 6)219 or by injection of neurotoxic molecules 

(e.g., MPTP)220. This is likely because induction is very aggressive, and the disease 

develops over a very short period of time. Mice dosed with a low dose of MPTP for three 

months and examined one to three months post-MPTP injection, exhibited an age-dependent 

loss of the number of TH+ cells, which was significant at two and three months postinjection 

in young mice. However, older mice were significantly more affected by chronic low-dose 

exposure to MPTP, which resulted in a significant loss of DA neurons even at one month 

postinjection220. In the rhesus monkey, a lower dose of MPTP was used in old animals in 

comparison to a dose used in young, invalidating any comparison221,222 but the fact that the 

authors decided to use a smaller dose may suggest that older NHPs may be more sensitive to 

MPTP. Some studies suggest that a combination of factors including aging may be required. 

For example, in the two-hit genetic model, where transgenic mice overexpressing human 

A53T α-synuclein under the prion promoter were crossed with Nurr +/− mice (ASYN(d)/

Nurr1+/−) and (ASYN(d) homozygote transgenic mice), only the combination of these two 

factors together yielded a phenotype with age with different phenotypes manifesting at 

different ages (Table 6)223. Similarly, using the accelerated aging model (Ercc1Δ/+ model) of 

a human progeroid syndrome and a low dose of MPTP caused a loss of TH+ DA neurons 

in the SN, which was not observed in vehicle-treated transgenic mice224 (Table 5). It is of 

interest that no substantial PD phenotype is observed in Ercc1−/Δ mice, suggesting that aging 

may have a more systemic influence in PD and that the very aggressive aging phenotype 

in the Ercc1 mouse brain is not sufficient to produce PD. Parkin KO mice crossed with 

mice harboring a mutation in Polγ encoding the mitochondrial polymerase, which causes 

mitochondrial dysfunction, result in a significant loss of SN DA neurons189. A recent study 

conducted in aged mice (over 2 y of age) did show motor deficit and DA neuron loss in 
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conjunction with mitochondrial fragmentation, indicating the importance of aging in PD 

pathogenesis225.

The effect of age may be subtle and develop over a long period of time, working 

synergistically with other triggers. This is not surprising and reflects what is seen in 

individuals with PD, where the disease develops over four to six decades with many 

contributing factors including genetic predisposition, exposure to environmental toxins, 

immune/inflammatory factors, and aging biology. The fact that there is a correlation between 

aging and the clinical manifestation of PD does not mean that aging is causal to the 

disease, but it may be a substantial risk factor. In the future, more mechanistic studies that 

incorporate aging in the established animal models of PD more may provide insight into 

the underlying causes of PD. Indeed, mice injected with PFFs at 8–10 weeks and at 16 

months and analyzed 120 days postinjections, clearly showed that older animals are more 

severely affected218. This supports the hypothesis that aging contributes to the severity of 

the disease. Models of accelerated aging and longevity can be used to determine whether 

PD-like pathology can be accelerated and decelerated and further elucidate the underlying 

systemic biology that contributes to PD.

Barriers to the Study of PD and Aging

The study of aging biology in animal models is challenging. An obvious and major 

constraint to using aged animal models is the length of time required to age them (average 

22–24 months for mice and 36 or more for rats; NHPs vary from 3 to >40 y)226,227 

and the specialized knowledge of the welfare of aged animals. Rodents are the preferred 

mammalian models as they are smaller, cheaper to maintain, and pose less ethical issues. 

Most knowledge available at the interface of aging and PD is from studies in mice, but even 

mice require a level of knowledge and infrastructure only available in labs specialized in 

aging research. For example, experimental design requires knowledge of attrition rates due 

to increased rates of death after 18 months of age, which is different in each laboratory 

and for each strain and may result in experiments that are underpowered. Behavioral assays 

require modification in aged animals to account for decreased resilience, vision, and hearing 

(strain-dependent) and increased variability in response. Laboratory personnel need training 

to ensure the use of humane endpoints appropriate for aging physiology. For example, signs 

of a rough hair coat are not considered as a sign of ill health in aged mice in the same 

way they are in young mice. Animals require weekly health checks after 18 months of age, 

demanding greater staff time.

The length of time it takes, the high level of monitoring and care for aging stocks, and 

the variability in response lead to the necessity for the use of larger cohorts of animals. 

This means that every experiment is a major investment in time and funding, with the 

risk of failure having the potential to negatively affect the output of researchers and their 

career progression. This discourages investigators from undertaking this type of research. 

Models of accelerated aging have been used to reduce the duration of experiments228 

but to date they have tended to be genetically modified in a constitutive manner, which 

leads to developmental defects as well as to accelerated aging. This is a problem 

because mechanisms driving tissue development are often different from those driving 
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aging, making it difficult to dissect the contribution of each to various disease-related 

phenotypes228. For example, DNA repair is important at both the early developmental 

stages, where accumulation of DNA damage lesions can have important effects on the 

formation of a functional nervous system229, and with aging leading to neurodegeneration. 

An understanding of which of these processes is driving which phenotype is important.

To overcome this problem, the European consortia MouseAGE brought together experts 

from 26 European countries and the USA to reach consensus on best practices in 

mouse aging studies. This consortia recommended the generation of conditionally induced 

models of accelerating aging230, where the gene deletion would be induced at the end of 

development (e.g., approximately 4 months in mice). While this may improve the quality 

of the mouse models, it would bring new unknowns as to whether the models would 

still develop a phenotype in a short period of time and whether the use of inducers such 

as tamoxifen could affect processes such as DNA damage repair or produce the desired 

phenotype in all tissues in a similar way. In addition, even if these models were available, 

each accelerated model would be the result of the dysfunction of one or two mechanisms 

of aging (reviewed in ref. 228). This means that the choice of model would need to be 

guided by the mechanisms of aging thought to be most important in driving the development 

of PD. The models would need to be generated and carefully characterized. As there 

are multiple animal models of PD, each modeling-specific mechanisms or stages of the 

disease, it is unknown which of these models would be most affected by aging or by a 

specific aging process, thus substantially escalating the number of models needed to analyze. 

Although such approaches would be highly informative in understanding which mechanisms 

of aging are most important in driving PD pathogenesis, they would require considerable 

upfront investment, coordination, and standardization by the research community to avoid 

duplication and competition. There are other ways to accelerate aging, such as the use 

of irradiation or a high-fat diet; however, when choosing to use these other methods, 

consideration needs to be given as to whether these mechanisms are associated with PD 

pathology. For example, obesity has not been found to be an associated risk for PD231, 

perhaps making the use of a high-fat diet less desirable as an aging inducer in the context of 

this disease.

There would be even more barriers if one considers rats as models of aging for the study 

of PD. There is no availability of accelerated models of aging in this species due to the 

difficulties in generating genetically modified models, at least until recently. The availability 

of clustered regularly interspaced short palindromic repeats (CRISPR) technology has 

helped overcome this problem, but its implementation will require an even larger investment 

in both generating and characterizing these models of PD and developing better reagents and 

knowledge of rat aging.

The consortium for development and evaluation of late-onset Alzheimer’s disease (MODEL-

AD) may represent a model on how to begin to overcome these barriers. A consortium 

of academic and nonprofit partners, funded by the NIH, leads the program, and among 

its aim is the generation of animal models for AD that accurately the pathology of late-

onset AD and provide predictive models for the development of therapeutics. The models 

are generated following consensus and under transparent and open intellectual property 
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conditions. The models are characterized according to the standardized guidelines for 

rigorous preclinical testing of animal models, with deep phenotyping performed at 4, 12, 

18, and 24 months of age and including transcriptomics, proteomics, and metabolomics; 

neuropathology; in vivo imaging; biomarker analysis; and behavior/cognitive tests. All data 

are uploaded to a web portal and openly available to all the researchers232.

Conclusions and Recommendations

Many models have been developed and utilized in the study of PD in cells, rodents, 

and human primates. However, there are relatively few studies that incorporate aging as 

a contributing factor. More importantly, many studies are observational, and the time of 

disease induction, the time of monitoring, and the tests performed to characterize the 

animals vary across studies, making it difficult to draw conclusions that are rigorous and 

reproducible.

Although there is a clear association between aging and PD, there is still some uncertainty 

about how important the role of aging is in driving PD pathogenesis. There is a need 

to systematically investigate whether aging increases the susceptibility to PD, using a 

combination of mammalian models, pathway analysis, measurement of the function of 

known PD proteins with age and standardized methodologies. As the task is complex, 

this is better approached through a network similar to that of MODEL-AD to ensure 

testing is coordinated, systematic, appropriately prioritized, and the data, resources, and 

knowledge gained are shared in a timely manner, including the sharing of negative 

results and standardized protocols. Indeed, The Michael J. Fox Foundation has recently 

funded a network, PD-AGE, which was launched in January 2023 and addresses the 

recommendations that emerged from this work. In particular, PD-AGE will:

1. Ensure that researchers on aging and PD do not work in silos and share 

their knowledge on which models of aging to use, best practices in designing 

experiments with aged animals, and which models of PD to prioritize.

2. Address the need for mechanistic studies where models of PD are crossed with 

accelerated or long-lived models of aging. In this respect, the use of mouse 

models of prodromal or presymptomatic disease where the disease develops 

slowly and not completely seems to offer an excellent starting point to determine 

whether mechanisms of aging may act as drivers for progressive PD. This may 

need to be combined with other “hits,” such as infections, inflammation, or other 

environmental factors. As PD is a heterogeneous disease and models reproduce 

different aspects or stages of the disease, other mouse models and different 

strains should not be excluded.

3. Develop consensus on when rats offer an advantage over mice and what reagents 

and models need to be developed. Rats have shown characteristics of PD that 

are not often seen in mice, but their use has been limited due to the lack 

of antibodies and the ability to generate transgenic animals. With the advent 

of CRISPR technologies, investment in the development of rat models with 
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access to the required reagents should be evaluated and prioritized when they are 

superior to mice.

4. Consider the unique value of NHP and the technological development to 

prioritize when they offer unique advantages.

5. Consider the value of in vitro aging of iPSCs or using alternative reprogramming 

methodologies, which have been shown to maintain some aging features, and 

how their use can be integrated with the use of animal models.

It is hoped that addressing the strengths and weaknesses (some of which we have outlined 

in this review) of existing PD models will improve our understanding of the development 

and progression of PD and its relationship to aging biology and ensure the generation of 

models that are more relevant to human PD for testing new therapeutic interventions for PD. 

This is particularly imperative as new approaches to treat aging biology are currently being 

tested clinically for safety and efficacy. Food and Drug Administration-approved drugs exist 

that target multiple hallmarks of aging. If the relationship between aging biology and PD is 

resolved, this would offer completely novel approaches to the treatment of PD.
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Figure 1. Schematic representation of Parkinson’s disease-associated genes and their mutational 
variants used to generate disease models (see Table 2).
PINK-1, Parkin, and DJ-1 variants used for knockout generation in (A) mice (B) rats. (C) 

Overexpression of human α-synuclein (SNCA) and variants under control of promoters: 

mouse thymus cell antigen 1 (mThy1), platelet-derived growth factor (PDGF), and mouse 

prion protein (mPrP). (D) Overexpression of human LRRK2 and variants: G2019S and 

R1441C/G. (E) Dopamine transporter (DAT)-cre mice (recombinase expression only in 

dopamine neurons) and mice with a loxP-flanked mitochondrial transcription factor A 

(Tfam) allele were crossed to produce MitoPark mice. (F) The conditional D620N knock-

in (KI) mice were developed by replacing endogenous exon 15 (with a D620N mutant 

version) and introducing a loxP-flanked wild-type (WT) minigene with VPS35 exons 15–

17. Upon Cre-mediated recombination D620N VPS35 is expressed from the endogenous 

allele. (G) The glucocerebrosidase (GBA1) D409V KI mutation was introduced in the mice 

Gba1 gene through the constitutive KI of a Gba1 D427V point mutation, as the D427V 

mutation corresponds to the D409V mutation in the mature GCase protein. An additional 
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feature of this model is the insertion of loxP sequence flanking exons 6–8, which after Cre 

recombination allows constitutive knockout of GBA1.
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