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Abstract

Parkinson’s disease (PD) is a chronic, neurodegenerative condition characterized by motor
symptoms such as bradykinesia, rigidity, and tremor, alongside multiple nonmotor symptoms.
The appearance of motor symptoms is linked to progressive dopaminergic neuron loss within the
substantia nigra. PD incidence increases sharply with age, suggesting a strong association between
mechanisms driving biological aging and the development and progression of PD. However, the
role of aging in the pathogenesis of PD remains understudied. Numerous models of PD, including
cell models, toxin-induced models, and genetic models in rodents and nonhuman primates
(NHPs), reproduce different aspects of PD, but preclinical studies of PD rarely incorporate age as
a factor. Studies using patient neurons derived from stem cells via reprogramming methods retain
some aging features, but their characterization, particularly of aging markers and reproducibility
of neuron type, is suboptimal. Investigation of age-related changes in PD using animal models
indicates an association, but this is likely in conjunction with other disease drivers. The biggest
barrier to drawing firm conclusions is that each model lacks full characterization and appropriate
time-course assessments. There is a need to systematically investigate whether aging increases
the susceptibility of mouse, rat, and NHP models to develop PD and understand the role of

cell models. We propose that a significant investment in time and resources, together with the
coordination and sharing of resources, knowledge, and data, is required to accelerate progress

in understanding the role of biological aging in PD development and improve the reliability of
models to test interventions.

Introduction

Parkinson’s disease (PD) is a chronic, neurodegenerative condition affecting approximately
10 million people worldwide. While ~5% of PD is thought to be familial, the vast majority
of PD cases have an unknown cause (sporadic PD [sPD])!. The most common cause of
early-onset PD is mutations in the PRKN gene, whereas mutations in LRRK2Z (leucine-rich
repeat kinase 2) are a common cause of late-onset PD, clinically similar to sPD. Many risk
factors have been identified that influence the onset and penetrance of sPD. These include
single nucleotide polymorphisms in LRRKZ, GBA1, and SNCA, as well as other genes,
exposure to pesticides, head trauma, and old age.

PD is characterized by a complex array of both motor and nonmotor symptoms. Motor
symptoms often include a resting tremor, rigidity, akinesia (or bradykinesia), and postural
instability. The onset of these motor symptoms varies between patients and can often be
preceded by nonmotor symptoms, which have historically been understudied?. Nonmotor
symptoms include autonomic dysfunction, constipation, incontinence, sleep abnormalities,
sensory disturbances (loss of olfaction), cognitive impairment, and depression. Each patient
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with PD has a unique disease onset and course, making it difficult to diagnose and

predict progressionl. However, clinical rating scales and several novel prediction tools

are increasing our understanding of PD as a multisystemic and heterogeneous disease?>.
Historically, PD was diagnosed at death upon postmortem examination revealing loss of the
dopaminergic (DA) neurons (often labeled with tyrosine hydroxylase [TH], a rate-limiting
enzyme in dopamine synthesis) in the substantia nigra (SN) and the presence of Lewy body
inclusions. It is thought that the loss of DA neurons underlies the core motor symptoms
observed in patients (resting tremor, akinesia, and bradykinesia). Loss of other neuronal
populations, including, for example, noradrenergic, serotoninergic, and cholinergic neurons,
could underlie some of the nonmotor symptoms, although there is insufficient quantitative
data on the extent of actual cell loss in regions other than the SN in PD. Lewy bodies are
intracellular proteinaceous inclusions containing many proteins, with a-synuclein being a
major component. These inclusion bodies, containing misfolded or aggregated a.-synuclein,
are found not only in the SN but also in other brain regions, and a growing literature
suggests a potential spread of PD pathology via expansion of a-synuclein fibrils, perhaps
even beginning in the gut and progressing to the central nervous system (CNS)®. Braak

and colleagues proposed a staging of PD pathology based on Lewy body inclusions and

the brain regions affected’. According to Braak staging, pathology begins in the olfactory
system and lower brainstem, spreading up to medullary structures. In stages 1 and 2, more
Lewy neurites are visible rather than Lewy bodies. Lewy neurites are thread-like aggregates
containing a-synuclein, rather than the globular structures of Lewy bodies. At stage 3,

the pathology reaches the SN, with loss of DA neurons in the SN and more Lewy body
formation. In stage 4, severe cell loss of predominantly DA neurons is observed in the

SN, and the pathology begins to spread to the neocortex, and at the final stage of the
disease, Lewy bodies are also observed in the cortex”. Although this is only one method

of staging PD, it is a useful paradigm to compare animal models of PD to the clinical and
pathological features seen in humans. The pathology of PD is not limited to these features,
with astrogliosis and other signs of inflammation also being prominent features®.

The loss of SN DA neurons, also revealed by the loss of neuromelanin in this brain region,
appears to be preceded by the loss of DA axon terminals in the caudate and putamen
(striatum). This is accompanied by drastic reductions in the levels of DA itself and changes
in its metabolites (most notably 3,4-dihydroxyphenylacetic acid [DOPAC]) in PD patient
brains. The loss of terminals detected by positron emission tomography imaging using
fluorodopa or dopamine transporter (DAT) or vesicular monoamine transporter 2 (VMAT?2)
ligands is one of the most readily detectable pathological features in PD patients and can be
used to track disease progression longitudinally®.

PD and Aging

Aging is the major risk factor for PD, as shown by the prevalence of PD, which increases
sharply with age. A meta-analysis of 47 studies shows that the incidence rises from 41 per
100,000 in individuals 40—49 y old to 1,903 per 100,000 in those over the age of 8010
Many of the pathological changes that occur in the brain with age resemble those seen

in a pre-Parkinsonian state. It has been estimated that the number of DA neurons in the
SN declines with age in healthy individuals more so than in other regions of the brain,
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suggesting that DA neurons may be more vulnerable to the effects of aging!. About 10% of
older people without clinically defined PD show Lewy body pathology!2. In healthy rhesus
monkeys, there is an age-related decline in TH staining in the ventral SN, which is the area
most affected by PD13, and the decrease in TH staining is associated with an increase in
intracellular a-synuclein in neurons of the SN13.

Mechanistically, mechanisms dysregulated during aging overlap with those driving PD
pathogenesis, including mitochondrial dysfunction, autophagy, inflammation, and cellular
senescence, which are all considered hallmarks of aging#1°. Decreased mitochondrial
complex | protein expression and activity has been shown in tissues from individuals with
PD, including the midbrain, cortex, muscle, and fibroblasts1®. Strikingly, the environmental
toxicants rotenone and paraquat, which damage mitochondria, are sufficient to cause a
PD-like phenotype and neuropathological changes in rodents similar to those observed in
humans afflicted with PD17. Genes associated with familial PD, such as SNCA, PINK,
PRKN, and LRRK2Z, all impact mitochondrial function, directly or indirectly18‘24. Protein
degradation through the ubiquitin proteasome system and autophagy is reduced with age,
and such dysfunction has been implicated in PD25. Impaired proteostasis may occur
downstream of mitochondrial dysfunction as it requires adenosine triphosphate (ATP), and,
in turn, impaired proteostasis can contribute to the accumulation of damaged mitochondria,
which requires autophagy for clearance. In addition, DA metabolism generates a significant
amount of reactive oxygen species (ROS), which damage proteins and mitochondria,

further contributing to brain aging. The accumulation of damaged proteins and impaired
proteostasis could contribute to greater neuronal loss in the SN. ROS also contributes to lipid
peroxidation and oxidative DNA damage in the mitochondrial and nuclear genomes. Indeed,
postmortem analysis of PD brains reveals increased oxidative damage to proteins, lipids, and
DNA26’27.

Genotoxic, proteostatic, and mitochondrial stress can all drive cellular senescence
characterized by a stable cell cycle arrest, loss of cell function, and the production of
proinflammatory and tissue remodeling factors called the senescence-associated secretory
phenotype28. The number of senescent astrocytes increases with age and with PD2°,

Both the aged and PD brains present a state of low chronic inflammation with changes

in astrocytes and microglia, which can affect the adjacent neurons?® and is believed to
contribute to neuronal loss. Removal of senescent cells by the ablation of p16+ cells using
a prodrug system in a mouse model of PD induced by paraquat improves outcomes??,
suggesting a causal relationship between senescence and PD. The causal relationship
between mechanisms of aging and PD pathology has also been reported in Caenorhabditis
elegans. Putting an /rrk2 mutation into a long-lived worm (expressing a mutant insulin
growth factor 1 receptor, daf-2) prevented PD features such as loss of DA neurons and
improved DA-dependent deficits30. Although these observations suggest that aging biology
plays a role in PD, the precise mechanisms and how well the pathways leading to
dysregulation of these mechanisms overlap are currently unclear. The rate of loss of DA
neurons with age is slower than their rate of loss in PD organisms, however, suggesting that
other factors are at play.
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Here, we review the available evidence on the role of aging in the pathogenesis of PD,
focusing primarily on phenotypic tests using /7 vitro and in vivo mammalian systems. We
highlight the barriers to studying aging in PD and propose recommendations for further
work.

Patient-Derived Cell-Based Models of PD

Patient-derived cells are an extremely useful tool to study PD, in particular to model sPD.
Blood cells and fibroblasts can be easily isolated from patients with PD and utilized to study
the underlying cellular mechanisms related to PD. Patient-derived cells retain some of the
aging-related changes of their donors; however, the characterization of many aging changes
is limited. Cells from PD patients have mitochondrial abnormalities as well as alterations in
the autophagy/lysosome pathway compared to cells from healthy individuals; many of these
changes are in the same direction as age-related changes but are more severe. Indeed, in cells
from PD patients with familial PD, such as those caused by PRKN or LRRKZ mutations,
changes are relatively homogeneous in these key organelles/pathways!9:20.31-40,

Cellular reprogramming has enabled researchers to investigate PD-relevant mechanisms in
the cell types most affected by PD. Classical reprogramming into induced pluripotent stem
cells (iPSCs) and subsequent differentiation into a DA-enriched population of neurons has
been undertaken by numerous research groups (reviewed here#142). These reprogrammed
and differentiated DA neurons recapitulate many of the cellular mechanisms associated with
PD, including mitochondrial dysfunction, lysosomal abnormalities, a-synuclein pathology
(particularly increased levels of phospho-a-synuclein), and susceptibility to a-synuclein
preformed fibril (PFF) seeding#2-47. In addition, for the proportion of neurons that
successfully differentiate from iPSCs, markers of apoptosis and neuron viability differ
between PD and healthy control donors*8:49 indicating PD patient-derived neurons are
more susceptible to cell death during differentiation. This preferential neuron cell during
differentiation could be viewed as strength as it recapitulates the neuron death observed

in PD patients; however, those neurons that are lost during differentiation could be in fact
those neurons that need to be studied to understand the neuronal death pathways active

in PD. Hence, further studies investigating that population of vulnerable cells throughout
differentiation would be warranted. Furthermore, DA, DA metabolites, and expression of
genes controlling DA synthesis and sequestration (DOPAC and homovanillic acid) differ
even between PD patients displaying varying severity of disease*®. These changes in DA
metabolites and neuronal complexity are similar to those reported from several /in vivo
rodent models of PD (discussed below). iPSCs can be differentiated into nonneuronal cells
as well, revealing defects in many of the same pathways in glial cells derived from PD
patients, although these are less extensively studied compared to DA neurons®9-°1,

The reprogramming of iPSCs reverses many aging-related changes including DNA
methylation, reverting to a more embryonic phenotypel452:53. Some aging-related features
can be re-attained after several months of differentiation /n vitro or attained by introducing
genes that are known to accelerate aging®#°5. However, it is still unclear if in vitro aging
accurately reflects /in vivoaging.
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Other reprogramming methods seek to maintain the aging features of the donor. Direct
reprogramming from fibroblast to neuron has been reported to maintain several aging
features, including epigenetic methylation status, telomere length, telomerase activity, and
the expression of several age-related genes of the donor®6-58, A limited number of studies
show defective mitochondrial and lysosomal pathways in these directly reprogrammed
neurons*8:59, The reproducibility of this technique is problematic, as the reprogramming
of cell states is not perfectly homogeneous across batches of neurons. To address this,

one can reprogram fibroblasts to intermediate cell types such as neural progenitor cells,
which can then be banked and subsequently differentiated into astrocytes, oligodendrocytes,
or neurons, an approach first utilized in amyotrophic lateral sclerosis research80. The
differentiated cells retain many features of aging, including alterations in nuclear envelope
integrity, telomere length, and the expression of several age-related genes81. Furthermore,
this method yields relatively pure DA neurons, with ~95% expressing TH and DAT and
robust alterations in mitochondrial function, particularly without the need for additional
stressors23:33.62,

Coculture and organoid culture systems are also being investigated to model the complexity
of native tissues. These systems have the potential to better model age-related changes

as extrinsic factors are better accounted for, which require the interplay of multiple cell
types. However, research in this area is somewhat in its infancy, and further work is needed
to define which age-related changes are retained and interact with PD-relevant pathways

in these organoid systems. It remains unclear whether these culture systems are able to
model some of the basic features that likely contribute to SN DA neuron vulnerability (e.g.,
their extensive axonal connectivity)%3:64, Finally, there are aspects of aging that cannot be
fully modeled by patient-derived cells, in particular those that require complex interactions
and the circulatory system, such as immune and inflammatory mechanisms. Therefore,
approaches that employ multiple models (e.g., patient-derived cells and animal models of
PD) will likely lead to a more complete picture of the underlying mechanisms that contribute
to PD pathogenesis.

In Vivo Models of PD

PD researchers utilize a number of experimental models that have been developed over

the years. They come essentially in four flavors: pharmacological (e.g., reserpine), toxic
(e.g., 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine [MPTP] or rotenone), genetic (e.g.,
transgenic rodents), and proteostatic (e.g., exposure to synuclein). We will not describe
pharmacological models, as they are transient and are discussed in more depth elsewhere®s.
We will focus on toxic models subcategorized into neurotoxins (6-hydroxydopamine
[6-OHDA] and MPTP), pesticides (rotenone, paraquat, trichloroethylene [TCE]), and
endotoxins (lipopolysaccharide [LPS]) with more permanent effects. For a more in-depth
description of the models, we refer the reader to ref. 6. Finally, among the proteostatic
models, there has been the development of nontransgenic a.-synuclein models involving the
injection of preformed a.-synuclein fibrils. Each model provides insight into the underlying
causes and mechanism(s) of the disease and offers different approaches to test new strategies
to treat PD. Some investigators prefer classification as etiologic models, which encompass
all gene-based models, versus pathogenic models, which include toxin models and those
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involving genetic mutations. More in-depth reviews of this classification can be found in ref.
67

To model PD in animals, a variety of mouse, rat, and nonhuman primate (NHP) systems
have been developed and reproduced in multiple labs. Mice and rats are relatively
inexpensive and more practical in comparison to NHPs. Even though rats display better
reproducibility in terms of behavioral readouts in comparison to mice, the biggest limitation
to the use of rats is the general lack of tools for molecular analysis and aging (e.qg.,
antibodies). NHPs have some advantages as they display clinical features (e.g., sleep
disturbances, social/cognitive symptoms, and gastrointestinal [GI] disturbances) more
similar to those observed in human disease following exposure to MPTP (reviewed in ref.
68). Moreover, the anatomical organization of the adult NHP striatum is similar to that

of a human, and, unlike rodents, NHP DA neurons contain neuromelanin. The following
section will provide an overview and highlight the advantages and disadvantages of the
main mammalian animal models of PD. It is important to understand the limitations of each
model, and aging has been accounted for in the various models. The following sections and
tables do not include every animal model but focus on the more established and reproducible
animal models used by the PD research community.

Toxin Models

Neurotoxins

Toxins such as 6-OHDA or MPTP are typically used to model the loss of DA neurons and
the denervation of the striatum that is known to occur in PD. However, a major limitation
of these neurotoxins is that they do not mimic the multisystemic nature of PD as they
selectively target DA neurons due to their uptake through the DAT and therefore are not
ideal candidate models to study changes in the Gl track. Overall, depending on the dosing
protocol, these toxins can cause either progressive or rapid loss of nigral DA neurons,
neuroinflammation, oxidative stress, and motor deficits, as summarized in Table 1.

6-OHDA is an analog of DA and norepinephrine (NE) and cannot cross the blood-brain
barrier (BBB). It must be injected into the brain (typically in the SN, medial forebrain
bundle, or striatum) to produce DA neuron loss. The cellular mechanism by which 6-OHDA
causes cell loss is thought to be by increasing free radical production and inhibiting
complexes | and IV of the mitochondrial respiratory chain. Many different injection
protocols have been developed (e.g., injecting 6-OHDA bilaterally or unilaterally) and
produce differing effects on DA neuron loss and behavior. See refs. 69 and 79, for a complete
review on 6-OHDA and the different 6-OHDA protocols.

There are several considerations when using 6-OHDA as a model of PD. First, the
requirement of administration of 6-OHDA directly into the nigrostriatal pathway. Second,
as 6-OHDA is readily taken up by both DA and NE transporters, to achieve selective

DA neuron loss, an NE reuptake inhibitor, such as desipramine, must be administered.
Finally, the time course for 6-OHDA-induced DA cell death can be very rapid, which is not
consistent with the slow, progressive nature of the human disease nor does 6-OHDA cause
the formation of insoluble a-synuclein aggregates.

Aging Biol. Author manuscript; available in PMC 2024 July 08.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Rocha et al.

Page 8

Unlike 6-OHDA, MPTP can be given systemically. Due to its lipophilic nature, MPTP
rapidly crosses the BBB and is taken up by astrocytes, where it is metabolized

by monoamine oxidase-B (MAO-B) to 1-methyl-4-phenyl-2,3-dihydropyridinium
(MPDP+), which spontaneously oxidizes into the highly toxic metabolite, 1-methyl-4-
phenylpyridinium (MPP+)7172 Surprisingly, MPP+ is not toxic to astrocytes but is highly
toxic to DA neurons. MPP+ is released into the parenchyma through the cation transporter
3 and rapidly taken up by DAT and then VMAT2. MPP+ readily crosses the inner
mitochondrial membrane and inhibits mitochondrial complex 1 of the electron transport
chain (ETC). This impairs ATP production and causes the accumulation of ROS, eventually
leading to DA degeneration’3.74, Interestingly, MPP+ is taken up by DA neurons in both the
SN and ventral tegmental area (VTA), but seems to be more toxic to the DA neurons of the
SN compared to the VTA’>~77_ This may be because SN neurons are more vulnerable to
bioenergetic challenges compared to VTA DA neurons®3.

Despite its effectiveness for modeling PD in mice and NHPs, rats are relatively resistant
to MPTP at moderate doses, and it is lethal at higher doses’879. Typically, MPTP is
administered acutely or chronically to C57BL/6 mice, as this is the most sensitive strain

to MPTP. Depending on the dosing paradigm, MPTP can cause sizable SN lesions’9-82,
However, it is important to recognize that depending on the dosing protocol, MPTP can
cause phenotypic suppression of TH, rather than true DA neuron loss82. Therefore, similar
to all animal models for PD, when assessing DA neurodegeneration, it is crucial not only
to quantify TH-positive neurons but also to include a secondary neuronal marker such

as NissI83, Like the 6-OHDA model, MPTP does not cause accumulation of endogenous
a-synuclein accumulation in SN DA neurons, which is a hallmark of the disease8?, nor does
it cause GI dysfunction. Even though mice exposed to MPTP do not display a behavioral
phenotype reminiscent of PD, the MPTP model has been extremely useful for elucidating
mechanisms of cell death in DA neurons.

Environmental toxicants: Pesticides and herbicides

Paraquat is structurally similar to the active metabolite of MPTP, MPP*, and can reliably
provoke a progressive loss of nigrostriatal DA neurons. The maximum neuronal loss induced
by paraquat is considerably less than that induced by MPTP (~30% vs. 50%84-87). It is
unclear, whether paraquat reduces striatal TH-positive fibers or depletion of striatal DA
release®8. However, a major strength of the paraquat model is that the loss of DA neurons

in the SN is both age- and dose-dependent with a greater loss in older animals8®. Paraquat
can provoke the formation of Lewy body-like inclusions®. Paraquat can also trigger both
motoric and nonmotoric disturbances, including reduced locomotor activity88.91.92 angd
diminished performance on a forced swim and open field test®3-95. This is interesting
because forced swim and open field measure affective disturbances. This is a particular
strength of the model, as PD patients are known to suffer from depression®. Systemically
administered paraquat is thought to cross the BBB in mice through a neutral amino acid
transporter and have a half-life of one month%7:%. However, whether paraquat is able to
cross the BBB in NHPs is still unclear®. Like 6-OHDA and MPTP, paraquat can accumulate
in mitochondria, but it mediates toxicity through a different mechanism. Paraquat acts
mainly as a redox cycler, stimulating ROS production by accepting electrons from complex
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| for redox cycling, which, in turn, generates superoxide anions and subsequently other
species of ROSY7. Paraquat is known to cause pulmonary and renal dysfunction; however,
to date, the GI system has not been extensively characterized in this model. Therefore, it is
unclear if paraquat causes Gl deficits.

TCE'is a chlorinated solvent used as a degreaser and chemical feedstock. TCE is pervasive
in the environment and is linked epidemiologically to PD100.101 TCE treatment causes

a slow and progressive Parkinsonian phenotype in mice and rats which is accompanied

by glial inflammation, mitochondrial dysfunction, oxidative stress, and accumulation of
a-synuclein102-104 |n mice, a significant loss of SN DA neurons was reported with 400
mg/kg/day dosing for eight months in micel04. Studying the cellular mechanisms at earlier
timepoints after dosing in this prolonged dosing model may be an important way to
investigate the cellular mechanisms active during the preclinical phase of sporadic late-onset
PD. In five-month-old rats exposed to TCE for six weeks, a dose-dependent loss of SN

DA neurons was reported following 500 and 1,000 mg/kg/day dosing'92. Moreover, daily
dosing for six weeks of a lower dose of TCE (200 mg/kg) was sufficient to achieve SN DA
degeneration in older (12-month-old) rats193, These older rats also display marked oxidative
stress, endolysosomal impairment, and a.-synuclein accumulation within the surviving SN
DA neuronsl93, There are very little data looking at the gut microbiome or GI dysfunction
in rodents exposed to TCE. However, there is a single study where mice exposed to TCE

at a dose equivalent to environmental or occupational exposures for 154 or 259 days in
drinking water resulted in disturbances in the gut microbiome, which were associated with
an increase in proinflammatory cytokines10°,

Rotenoneis a naturally derived compound, mainly used in fishery management to eradicate
fish populations198. Like paraquat, chronic exposure to rotenone is associated with a higher
incidence of sPD, strengthening the rationale for use of rotenone to model the disease in
animals. Similar to MPTP, rotenone is a highly lipophilic compound that easily crosses the
BBB and acts to inhibit mitochondrial complex 1 of the ETC. In addition to promoting
oxidative stress, rotenone can cause other histopathological features resembling PD not
observed with either 6-OHDA or MPTP. It causes dose-dependent systemic toxicity and
mortality. The most reliable route of administration for rotenone to produce features of sSPD
is systemic delivery into the intraperitoneal cavity (2-3 mg/kg/day)107-109, Depending on
the dosing regimen and route of administration, rotenone can cause dorsolateral lesions in
the striatum in 212-month-old rats that are associated with a reduction in DA levels; this loss
is not seen in animals <7 months of age1%. The DA neurons in the SN are highly sensitive
to rotenone in comparison to the DA neurons in the VTA®3, Rotenone causes a 45% loss

of DA neurons in the SN, whereas the VTA seems relatively spared in comparison!11-113,
This enhanced nigral sensitivity and the fact that rotenone causes endogenous a-synuclein
accumulation within surviving DA neurons, increased nigral reactive microglia, and motor
symptoms such as bradykinesia, postural instability, and rigidity in rats198.110.113 fyrther
strengthens the validity of the use of rotenone to model some aspects of sPD. Rotenone can
also induce nonmotor symptoms such as sleep disturbances in rats'14, G disturbances, and
a-synuclein accumulation in the myenteric plexus!1.
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Despite the strengths of the rotenone model, particularly the age dependency, it has
limitations. Lewis rats are the most sensitive to rotenone, while other strains produce
unreliable and highly variable lesions. Until recently, rotenone has been unreliable in mice,
regardless of age. A recent study using young mice dosed them with rotenone for 14

days and then left an additional 14 days yielded nigral DA degeneration accompanied by
neuroinflammation16,

The main features of the described environmental toxin models are summarized in Table 1.

Endotoxins: LPS

Central LPS administration:

LPS is a gram-negative bacterial endotoxin that activates toll-like receptor 4 (TLR-4).
Injecting LPS into the SN results in a strong proinflammatory response and the loss of DA
neurons!17.118 The SN is more sensitive to LPS in comparison to other brain regions, as it is
prone to neuroinflammation. It remains unclear why the SN is more sensitive; it may be due
to the higher number of microglia in the SN compared to other brain regions19. A single
intranigral injection of LPS can induce microglial activation, a loss of astrocytes within 2
days, and a loss of DA neurons!20, High doses of LPS can even result in motor impairment,
a-synuclein, and ROS accumulation in addition to SN DA neurodegeneration21.122,

Peripheral LPS administration:

A single systemic dose of LPS in adult mice can cause progressive SN DA degeneration
and a-synuclein alterations in the gut, despite not crossing the BBB123-126_ |t has been
postulated that increased peripheral production of the proinflammatory cytokine tumor
necrosis factor (TNF-a) following LPS administration crosses the BBB and induces
microglia activation. Chronic intranasal administration of LPS causes behavioral deficits,
microglial activation, SN DA degeneration, and a-synuclein aggregation127128,

A summary of the main features of the LPS endotoxin model are summarized in Table 5.

Genetic Models of PD

a-synuclein (SNCA) transgenic animal models

The SNCA gene was the first gene identified as a genetic cause for familial PD. A53T and
A30P missense mutations, as well as SNCA duplication or triplication, cause early-onset
PD. The function of a-synuclein remains unclear. However, the protein is expressed at very
high levels in neurons and found to be enriched in axon terminals. It has been suggested

to regulate the neurotransmitter releasel29130_ In addition to familial PD, a-synuclein likely
plays a role in sPD given that it is the main component of Lewy bodies and Lewy neurites
and has been associated with the genetic risk of developing PD through genome-wide
association studies. Therefore, many groups have dedicated considerable effort to generating
transgenic mouse or rat models either overexpressing wild-type (WT) or mutant SNCA
(A53T, A30P) to try and understand how a-synuclein impacts DA function and neuron
survival (see Table 2). A plethora of a-synuclein transgenic mouse models have been
developed over the years (see ref. 131, for a comprehensive review). The degree of pathology
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and motor impairments greatly depends on the genomic integration site, the promoter
used to drive human SNCA transcription, and the genetic background. While some of
these models cause accumulation of insoluble a-synuclein inclusion bodies132-136 and
some display deficits in DA vesicle clustering and DA neuron firing!37, only the recently
characterized N103 mouse model results in degeneration of DA neurons in the SN136.
Inclusion bodies also accumulate in brain regions other than the SN134:136_ The Jack of
degeneration of the DA neurons in most of these transgenic models has made it difficult to
determine if these models are successfully modeling specific aspects of early-onset PD as
patients with SNCA mutations or duplications present with.

A novel transgenic mouse model overexpressing the A53T a-synuclein mutation in mice
using the DAT promoter in tetracycline-regulated transgenic mice has also been generated.
These mice develop motor deficits, which are associated with a loss of DA neurons in the
SN. Interestingly, this pathology was associated with a decrease in DA release and impaired
mitophagy’38.

There is a growing hypothesis, initiated by the work of Braak, who demonstrated that
a-synuclein accumulation in PD begins in the enteric nervous system and traffics to the
CNS via the vagus nerve. Braak hypothesized that a-synuclein from the gut reaches

the vagus nerve during the early stages of PD and gradually traffics from the hindbrain

to the forebrain as the disease progresses3°. In support of the Braak hypothesis, aged
Fischer 344 rats display aggregated a-synuclein in the intestinal submucosal plexusi49,
Using an established weekly oral protocol for bacterial exposure#! in these rats resulted in
a-synuclein deposition in the myenteric plexus and submucosa and neuroinflammation and
a-synuclein accumulation within the striatum and hippocampus42. Moreover, using Thy-1
h WT a-synuclein (antisense oligonucleotide) transgenic mice, researchers demonstrated
that gut-brain signaling by gut-microbial molecules that impact neuroinflammation and
a-synuclein aggregation is required for the hallmark motor and GI dysfunction observed in
this mouse model of PD143,

LRRK2—LRRKZ2was identified as a monogenic cause of PD in 2004 and displays

an autosomal-dominant inheritance pattern, but with incomplete and varying penetrance.
In addition, LRRKZis considered a genetic risk gene for sPD. The G2019S mutation

is the most common PD-associated mutation. Genetic mutations associated with PD

cause an increase in LRRK2 kinase activity. Overall, transgenic mouse and rat models
that overexpress or knock in (KI) a PD-related LRRK2 mutation (e.g., R1441C/G or
G2019S) have been largely unsuccessful at replicating the hallmark features of PD

(DA neurodegeneration and a-synuclein inclusion bodies)144.145, However, subtle changes
have been observed in these models, including changes in dopamine metabolites and in
mitochondrial and lysosomal functions46-150, Taken together, these studies suggest these
transgenic mice may be useful to study gene x environment interactions as well as the
functions of LRRK2, which may enable these models to be utilized to study late-onset PD.
A summary of the characteristics of the most used models is shown in Table 2.

GBA1P409V K| mice—Mutations in the GBAI gene, which encodes the lysosomal
hydrolase glucocerebrosidase, are associated with sPD. Mutations in GBAI and LRRKZ are
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considered as the highest genetic risk factors for developing sPD. With over 300 mutations
in GBAI identified, sPD patients with a GBA1 mutation typically have a more aggressive
form of the disease. Therefore, elucidating the role that GBA1 plays in sPD is crucial.
Recently, a transgenic mouse model was developed in collaboration with The Michael J.
Fox Foundation characterizing the GBAI D409V point mutation1®1. These mice have a
dose-dependent reduction in glucocerebrosidase (GCase) activity in the hippocampus and
SN151.152 yUnfortunately, these mice lack a-synuclein accumulation in the nigrostriatal
pathway and do not show any loss of DA neurons in the SN1°1, Mice with a heterozygous
GBA1 D409V mutation were recently reported to have no overt phenotype and have
unaltered spread of a-synuclein fibrils53, However, mice carrying an L444P mutation show
increased susceptibility to MPTP1%4 and A53T a-synuclein mice haploinsufficient for GBA
show an exacerbated phenotypel%®.

MitoPark mouse model—The MitoPark mouse model, initially described in 2007,
consists of a selective deletion in the mitochondrial transcription factor M (TFAM) within
DAT-positive (DAT*) neurons®®. This deletion results in mitochondrial dysfunction that

is limited to DA neurons. Interestingly, despite this limited mitochondrial dysfunction,
MitoPark mice have characteristic features that resemble PD in humans, including a
significant drop in mitochondrial gene expression (within six weeks after birth), motoric
deficits, and nigrostriatal DA degeneration1>6-158_ As the expression of the mutation is
restricted only to DA neurons, the utility of this animal is limited. However, deficits in
non-DA systems involving circadian rhythms%® and GI motility have been reported160, The
most significant limitation of this model is the drastically shortened lifespan of 45 weeks
(11 months). This shorter lifespan, while useful for therapeutic investigations, may not
fully capture mechanisms driving the slow progression of the age-related disease phenotype
in human PD, which raises the concern of failures in subsequent clinical human trials

of therapeutic interventions developed using this model. However, this model may have
utility in investigating specific mechanisms involved in early-onset PD which are yet to be
explored.

VPS35 mouse model—The vacuolar protein sorting 35 (V/P535) gene encodes the
cargo subunit of the retromer complex. Due to its essential function in regulating protein
breakdown and recycling, it has been implicated in numerous neurodegenerative diseases!®l.
VPS35 and the retromer are essential for normal cellular function and viability; full
deletion in mice results in embryonic death by day 10162, Mutations in the V/PS35 gene
cause an autosomal-dominant form of PD (PARK17) with clinical symptoms comparable
to those observed in sPD163.164 n particular, a single heterozygous missense mutation,
Asp620Asn (D620N), is pathogenic with ~1.3% frequency in familial cases and 0.3% in
sPD165.166 \arious /7 vivo models have been generated to study the D620N mutation

on VPS35 function and PD pathology161. The D620N mutation results in either a toxic
gain-of-function or a dominant-negative mechanism, or possibly a combination of both.
The phenotypic assessment of a germline D620N VPS35 KI mouse model reported
neuropathological hallmarks of PD, including age-related motor defects, progressive
degeneration of SN DA neurons, increased DA release, and widespread axonal damage and
tau-positive (hyperphosphorylated) pathology throughout the brain167.168, However, these
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mice fail to develop the a-synuclein neuropathology characteristic of PD. This is surprising,
as a direct relationship between VPS35 dysfunction and a-synuclein accumulation has been
established16°. In addition, the D620N VPS35 KI model also failed to show enhanced
a-synuclein pathology when crossed with human A53T-a.-synuclein transgenic mice or
mice injected with a-synuclein PFFs67.

DJ-1/PAK7 mouse model—DJ-1, a small (20 kDa), highly conserved protein of 189
amino acids, was linked to early-onset, familial types of PD in 2003170171 DJ-1 is well
recognized for its role as an oxidative stress sensor; in addition to PD, DJ-1 is implicated

in other age-related disorders such as cancer and type 2 diabetes!”2-174, Even though

DJ-1 KO mice display age- and task-dependent motoric deficits, including hypoactive
behavior in the open field assay and deficits in adhesive tape removal coupled with striatal
neurotransmission deficits, these mice fail to show SN DA neurodegeneration’>176, There
are conflicting data in the literature regarding the age-dependent accumulation of markers
of oxidative stress in these micel’7.178 Intriguingly, when a subgroup of DJ-1-KO mice
were fully backcrossed onto a C57BL/6 background, they showed a severe early-onset
(eight-week) unilateral loss of SN DA neurons but not VTA DA neurons, which gradually
progressed to bilateral nigrostriatal degeneration at later ages. This age-dependent loss of
SN DA neurons was accompanied by a loss of DA neurons in the locus coeruleus (LC)

as well as modest motor deficits at specified time periods’®. In summary, even though
loss-of-function mutations in DJ-1 cause familial PD, current transgenic rodent models
failed to find integral neuropathological changes reminiscent of PD. It is possible that the
shortened lifespan of mice in comparison to humans can explain the absence of profound SN
DA neurodegeneration; investigation of cellular mechanisms in these mice well before death
may contribute to our knowledge of the mechanisms leading to early-onset PD in humans.

PINK1/Parkin mouse model—The PTEN-induced kinase 1 (PINK1), a serine threonine
kinase, and Parkin, an E3 ubiquitin ligase, work in coordination to target mitochondria

for autophagic degradation via a process known as mitophagy. Since the discovery that
autosomal recessive mutations in the PARKZ (Parkin) and PARK6 (PINK1) genes cause
early-onset PD in humans, multiple groups have generated systemic KO mouse models

of these genes8%-183_ parkin models target different exons of the Parkin gene. The first
transgenic animal model was a systemic Parkin KO (premature stop codon inserted into
exon 4) mouse, which displayed slight motor/behavioral deficits, increased extracellular
DA, abnormal mitochondrial respiration rates, and higher oxidative damage within SN
mitochondrial®4185, They do not, however, display the characteristic loss of DA neurons in
the SN. Similar findings were reported for subsequent systemic Parkin KO models targeting
exons 2, 3, and 7, wherein they caused modest motor impairments without concurrent loss
of SN DA neurons!86:187_ |t should be noted that the Parkin KO mouse model targeting
exon 7 displayed a loss of NE in LC neurons in both young and older animals!€8-189, Even
though knocking out Parkin in rodents does not result in significant DA neuron loss as seen
in PD patients with a recessive Parkin mutation, these transgenic models are still valuable
to study the role mitophagy and mitochondrial dysfunction play in PD, in particular in
relation to early-onset PD caused by Parkin mutations. PINK1 KO rats showed progressive
neurodegeneration with about 50% DA cell loss observed at eight months of age and a two-
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to threefold increase in striatal DA and serotonin content at eight months of age. These

mice also exhibited significant motor deficits starting at four months of age. Interestingly,
the Parkin KO rats displayed a normal phenotype without any neurochemical or pathological
changes.

Mice homozygous for the PINK1 null allele are viable, and, similar to the Parkin models,
they do not exhibit a loss of striatal DA content or DA neurons90:191 However, PINK1
KO mice exhibit diminished DA release and other alterations in striatal DA neuron
physiology192. In addition, loss of PINK1 resulted in reduced mitochondrial function and
Ca?* storage capacity in micel93. In an attempt to better understand and replicate the
disease pathology, systemic PINK1 KO models were genetically crossed with other familiar
PD genetic models. Unfortunately, the triple combination cross consisting of systemic
knockout of DJ-1, PINK1, and PARKIN also did not show DA neurodegeneration or loss
of LC neurons!94, Genetic crossing of the PARKIN KO with a transgenic a.-synuclein
model resulted in mitochondrial abnormalities; however, these mice did not experience DA
neurodegeneration19%, Adeno-associated viral-mediated overexpression of a-synuclein in
the SN of PINK1 KO mice was found to result in enhanced DA neurodegeneration as well
as in significantly higher levels of a-synuclein phosphorylation at serine-129 at four weeks
postinjection in comparison to adeno-associated virus (AAV)-a-synuclein injected micel%.

Regulator of G protein signaling 6 (RGS6)-deficient mice—RGS6 is a member of
the RGS protein family and is required for SN DA neuron survival in adult mice!®’. RGS6
KO mice display an age-dependent loss of DA neurons in the striatum and a.-synuclein
accumulation. This loss of nigrostriatal neurons correlates with motoric deficits19.

A summary of the main features of genetic models of PD is described in Table 2. A
schematic representation of PD-associated genes and their mutational variants used to
generate disease models is shown in Figure 1.

a-Synuclein Proteostatic Models

A summary of the main a-synuclein proteostatic models is shown in Table 3.

Viral-vector-mediated animal models

a-synuclein overexpression can be induced by viral vectors. Depending on the serotype,
promoter, titer, and time of incubation, viral-mediated overexpression of WT or mutant
human a-synuclein results in a progressive loss of DA neurons over the course of 8-24
weeks199-203 There are several advantages to using a viral vector system over creating a
transgenic mouse line. This approach can efficiently deliver genome particles to mature
neurons and avoid any developmental remodeling. It is also possible to selectively target
specific cell types (e.g., glia vs. neurons), depending on the promoter and the vector used.
Finally, this approach can be applied to aged animals. AAV vectors are typically injected
unilaterally, which allow the uninjected hemisphere to be used as an internal control.

As with any animal model, viral-vector-mediated overexpression of a-synuclein has
challenges. Viral-mediated overexpression of a-synuclein does produce reliable DA
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neurodegeneration and a-synuclein inclusion bodies. However, this approach does require a
specialist technique and can be time-consuming. Verification of the injection site for every
animal is necessary. Inserting a fluorescent reporter protein (e.g., green fluorescent protein
[GFP]) into the construct can help verify the injection site, but it can also be toxic to DA
neurons and cause phenotypic suppression of TH2%4, It is possible to avoid the use of a
fluorescent tag by using an empty vector204205 However, this approach does not allow
control for nonspecific toxicity due to protein overload.

PFF animal models

Another approach to study a-synuclein is the administration of exogenous a-synuclein
PFFs typically into the striatum, or SN, which is referred to as seeding (reviewed in ref.
208) The a-synuclein PFF model relies on manual injection(s) of the recombinant form
a-synuclein protein. PFFs are aggregates that have been sonicated to produce short fibrils
—50 nm or smaller will yield most pathology; anything larger will greatly reduce the
pathology. This protocol reliably causes the templating of endogenous WT a-synuclein
into pathological species characterized by phosphorylation at S129 (pS129 a-synuclein),
beta-sheet formation, and aggregation. One of the advantages of this model is that it allows
for flexibility, meaning different forms of a-synuclein PFFs can be introduced (e.g., mouse
vs. human a-synuclein or mutated a-synuclein), targeting any desired brain region(s) or
peripheral organ. This allows the researcher to model distinct aspects of PD. The uses

of the PFF model in PD have been extensively reviewed elsewhere207. Essentially, the
presence of either human or rodent a-synuclein PFFs triggers endogenous a-synuclein
phosphorylation, ubiquitination, and aggregation and results in a prion-like propagation

of a-synuclein inclusions that can result in retrograde nigrostriatal (from the striatum
injection site to the cell bodies in the SN) DA neuronal degeneration, neuronal dysfunction,
and mitochondrial damage typically over a three- to six-month period208:209, More recent
studies have administered PFFs in other areas of the body, including muscle210, gut211,

and olfactory bulb?12213_ These alternative routes of administration resulted in CNS a.-
synuclein pathology, neuroinflammation, and, in some cases, neurodegeneration. The extent
of neuronal dysfunction and loss is dependent on the site of administration of the PFFs and
the species injected?14. This approach is a useful tool to study how a-synuclein contributes
to the pathogenesis of PD and is a good model to test compounds designed to prevent
a-synuclein aggregation. This model has been used to study the progressive maturation of
a-synuclein inclusions within individual neurons over time and the selective degeneration
of these inclusion-bearing neurons?15. The PFF models provide an elegant way of modeling
late-onset PD, or similar to sPD.

A summary of the main features of a-synuclein proteostatic models of PD is described in
Table 3.

Study of Aging in Mammalian Models of PD

Although no existing models of PD display all the cardinal features of PD, and their
characterization is currently inconsistent or incomplete, some models do display a
progression of the disease with age (Tables 4-7). Some of these aging models were
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described in the sections above and have been characterized by several laboratories around
the world. However, other aging models are not utilized by many laboratories, likely

the reason their PD phenotype has not been fully characterized. We have included these
additional animal models (namely Mito-Pstl, a mitochondria-targeted restriction enzyme,
Pstl to damage mtDNA in DN; truncated FLAG-tagged human mutant Parkin [Parkin-
Q311X] in DA neurons; L61 mice overexpressing WT human a-synuclein under the Thy-1
promoter; and inducible [DOX] human MAQO-B expression in astrocytes) in this study, as
they are important for building a picture of the current state of aging research in PD animal
models. Both C57BL/6 mice and rhesus monkeys show signs of PD with natural aging®3-216,
In WT C57BL/6 mice, significant changes occur at 120 weeks of age216, suggesting that
signs may develop slowly at later ages (see Table 4). Differences in phenotypes seem to be
more prominent in models where it is possible to see the slow progression of the disease
and when animals are monitored for longer periods of time. As an example, Kim et al.
(2019) injected PFFs at 3 months of age, and mice were assessed at 1, 3, 7, and 10 months
afterward (Table 7)217. Mice showed a reduction in the number of TH* neurons only at 10
months?17. However, when PFFs were injected at 16 months of age and the number of TH*
cells was assessed 4 months later, no differences in TH+ cell numbers were observed?18,

Very little difference has been observed between young and old animals in some models
when the disease is induced by genetic modification (e.g., L61 mice which overexpress WT
a-synuclein via the Thy-1 promoter; Table 6)21° or by injection of neurotoxic molecules
(e.g., MPTP)220, This is likely because induction is very aggressive, and the disease
develops over a very short period of time. Mice dosed with a low dose of MPTP for three
months and examined one to three months post-MPTP injection, exhibited an age-dependent
loss of the number of TH* cells, which was significant at two and three months postinjection
in young mice. However, older mice were significantly more affected by chronic low-dose
exposure to MPTP, which resulted in a significant loss of DA neurons even at one month
postinjection?20. In the rhesus monkey, a lower dose of MPTP was used in old animals in
comparison to a dose used in young, invalidating any comparison?21.222 put the fact that the
authors decided to use a smaller dose may suggest that older NHPs may be more sensitive to
MPTP. Some studies suggest that a combination of factors including aging may be required.
For example, in the two-hit genetic model, where transgenic mice overexpressing human
A53T a-synuclein under the prion promoter were crossed with Aurr+/— mice (ASYN(d)/
NurrI*'=) and (ASYN(d) homozygote transgenic mice), only the combination of these two
factors together yielded a phenotype with age with different phenotypes manifesting at
different ages (Table 6)223. Similarly, using the accelerated aging model (£rccZ2* model) of
a human progeroid syndrome and a low dose of MPTP caused a loss of TH* DA neurons

in the SN, which was not observed in vehicle-treated transgenic mice224 (Table 5). It is of
interest that no substantial PD phenotype is observed in £rcc2™/2 mice, suggesting that aging
may have a more systemic influence in PD and that the very aggressive aging phenotype

in the ErccI mouse brain is not sufficient to produce PD. Parkin KO mice crossed with

mice harboring a mutation in Po/y encoding the mitochondrial polymerase, which causes
mitochondrial dysfunction, result in a significant loss of SN DA neurons!&. A recent study
conducted in aged mice (over 2 y of age) did show motor deficit and DA neuron loss in
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conjunction with mitochondrial fragmentation, indicating the importance of aging in PD
pathogenesis22°.

The effect of age may be subtle and develop over a long period of time, working
synergistically with other triggers. This is not surprising and reflects what is seen in
individuals with PD, where the disease develops over four to six decades with many
contributing factors including genetic predisposition, exposure to environmental toxins,
immune/inflammatory factors, and aging biology. The fact that there is a correlation between
aging and the clinical manifestation of PD does not mean that aging is causal to the
disease, but it may be a substantial risk factor. In the future, more mechanistic studies that
incorporate aging in the established animal models of PD more may provide insight into
the underlying causes of PD. Indeed, mice injected with PFFs at 8-10 weeks and at 16
months and analyzed 120 days postinjections, clearly showed that older animals are more
severely affected?18, This supports the hypothesis that aging contributes to the severity of
the disease. Models of accelerated aging and longevity can be used to determine whether
PD-like pathology can be accelerated and decelerated and further elucidate the underlying
systemic biology that contributes to PD.

Barriers to the Study of PD and Aging

The study of aging biology in animal models is challenging. An obvious and major
constraint to using aged animal models is the length of time required to age them (average
22-24 months for mice and 36 or more for rats; NHPs vary from 3 to >40 y)226.227

and the specialized knowledge of the welfare of aged animals. Rodents are the preferred
mammalian models as they are smaller, cheaper to maintain, and pose less ethical issues.
Most knowledge available at the interface of aging and PD is from studies in mice, but even
mice require a level of knowledge and infrastructure only available in labs specialized in
aging research. For example, experimental design requires knowledge of attrition rates due
to increased rates of death after 18 months of age, which is different in each laboratory

and for each strain and may result in experiments that are underpowered. Behavioral assays
require modification in aged animals to account for decreased resilience, vision, and hearing
(strain-dependent) and increased variability in response. Laboratory personnel need training
to ensure the use of humane endpoints appropriate for aging physiology. For example, signs
of a rough hair coat are not considered as a sign of ill health in aged mice in the same

way they are in young mice. Animals require weekly health checks after 18 months of age,
demanding greater staff time.

The length of time it takes, the high level of monitoring and care for aging stocks, and
the variability in response lead to the necessity for the use of larger cohorts of animals.
This means that every experiment is a major investment in time and funding, with the
risk of failure having the potential to negatively affect the output of researchers and their
career progression. This discourages investigators from undertaking this type of research.
Models of accelerated aging have been used to reduce the duration of experiments228

but to date they have tended to be genetically modified in a constitutive manner, which
leads to developmental defects as well as to accelerated aging. This is a problem

because mechanisms driving tissue development are often different from those driving
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aging, making it difficult to dissect the contribution of each to various disease-related
phenotypes?28. For example, DNA repair is important at both the early developmental
stages, where accumulation of DNA damage lesions can have important effects on the
formation of a functional nervous system22%, and with aging leading to neurodegeneration.
An understanding of which of these processes is driving which phenotype is important.

To overcome this problem, the European consortia MouseAGE brought together experts
from 26 European countries and the USA to reach consensus on best practices in

mouse aging studies. This consortia recommended the generation of conditionally induced
models of accelerating aging23°, where the gene deletion would be induced at the end of
development (e.g., approximately 4 months in mice). While this may improve the quality

of the mouse models, it would bring new unknowns as to whether the models would

still develop a phenotype in a short period of time and whether the use of inducers such

as tamoxifen could affect processes such as DNA damage repair or produce the desired
phenotype in all tissues in a similar way. In addition, even if these models were available,
each accelerated model would be the result of the dysfunction of one or two mechanisms

of aging (reviewed in ref. 228). This means that the choice of model would need to be

guided by the mechanisms of aging thought to be most important in driving the development
of PD. The models would need to be generated and carefully characterized. As there

are multiple animal models of PD, each modeling-specific mechanisms or stages of the
disease, it is unknown which of these models would be most affected by aging or by a
specific aging process, thus substantially escalating the number of models needed to analyze.
Although such approaches would be highly informative in understanding which mechanisms
of aging are most important in driving PD pathogenesis, they would require considerable
upfront investment, coordination, and standardization by the research community to avoid
duplication and competition. There are other ways to accelerate aging, such as the use

of irradiation or a high-fat diet; however, when choosing to use these other methods,
consideration needs to be given as to whether these mechanisms are associated with PD
pathology. For example, obesity has not been found to be an associated risk for PD231,
perhaps making the use of a high-fat diet less desirable as an aging inducer in the context of
this disease.

There would be even more barriers if one considers rats as models of aging for the study

of PD. There is no availability of accelerated models of aging in this species due to the
difficulties in generating genetically modified models, at least until recently. The availability
of clustered regularly interspaced short palindromic repeats (CRISPR) technology has
helped overcome this problem, but its implementation will require an even larger investment
in both generating and characterizing these models of PD and developing better reagents and
knowledge of rat aging.

The consortium for development and evaluation of late-onset Alzheimer’s disease (MODEL-
AD) may represent a model on how to begin to overcome these barriers. A consortium

of academic and nonprofit partners, funded by the NIH, leads the program, and among

its aim is the generation of animal models for AD that accurately the pathology of late-
onset AD and provide predictive models for the development of therapeutics. The models
are generated following consensus and under transparent and open intellectual property
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conditions. The models are characterized according to the standardized guidelines for
rigorous preclinical testing of animal models, with deep phenotyping performed at 4, 12,
18, and 24 months of age and including transcriptomics, proteomics, and metabolomics;
neuropathology; /n vivo imaging; biomarker analysis; and behavior/cognitive tests. All data
are uploaded to a web portal and openly available to all the researchers232,

Conclusions and Recommendations

Many models have been developed and utilized in the study of PD in cells, rodents,

and human primates. However, there are relatively few studies that incorporate aging as
a contributing factor. More importantly, many studies are observational, and the time of
disease induction, the time of monitoring, and the tests performed to characterize the
animals vary across studies, making it difficult to draw conclusions that are rigorous and
reproducible.

Although there is a clear association between aging and PD, there is still some uncertainty
about how important the role of aging is in driving PD pathogenesis. There is a need

to systematically investigate whether aging increases the susceptibility to PD, using a
combination of mammalian models, pathway analysis, measurement of the function of
known PD proteins with age and standardized methodologies. As the task is complex,
this is better approached through a network similar to that of MODEL-AD to ensure
testing is coordinated, systematic, appropriately prioritized, and the data, resources, and
knowledge gained are shared in a timely manner, including the sharing of negative
results and standardized protocols. Indeed, The Michael J. Fox Foundation has recently
funded a network, PD-AGE, which was launched in January 2023 and addresses the
recommendations that emerged from this work. In particular, PD-AGE will:

1. Ensure that researchers on aging and PD do not work /17 sifos and share
their knowledge on which models of aging to use, best practices in designing
experiments with aged animals, and which models of PD to prioritize.

2. Address the need for mechanistic studies where models of PD are crossed with
accelerated or long-lived models of aging. In this respect, the use of mouse
models of prodromal or presymptomatic disease where the disease develops
slowly and not completely seems to offer an excellent starting point to determine
whether mechanisms of aging may act as drivers for progressive PD. This may
need to be combined with other “hits,” such as infections, inflammation, or other
environmental factors. As PD is a heterogeneous disease and models reproduce
different aspects or stages of the disease, other mouse models and different
strains should not be excluded.

3. Develop consensus on when rats offer an advantage over mice and what reagents
and models need to be developed. Rats have shown characteristics of PD that
are not often seen in mice, but their use has been limited due to the lack
of antibodies and the ability to generate transgenic animals. With the advent
of CRISPR technologies, investment in the development of rat models with
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access to the required reagents should be evaluated and prioritized when they are
superior to mice.

4. Consider the unique value of NHP and the technological development to
prioritize when they offer unique advantages.

5. Consider the value of /n vitro aging of iPSCs or using alternative reprogramming
methodologies, which have been shown to maintain some aging features, and
how their use can be integrated with the use of animal models.

It is hoped that addressing the strengths and weaknesses (some of which we have outlined
in this review) of existing PD models will improve our understanding of the development
and progression of PD and its relationship to aging biology and ensure the generation of
models that are more relevant to human PD for testing new therapeutic interventions for PD.
This is particularly imperative as new approaches to treat aging biology are currently being
tested clinically for safety and efficacy. Food and Drug Administration-approved drugs exist
that target multiple hallmarks of aging. If the relationship between aging biology and PD is
resolved, this would offer completely novel approaches to the treatment of PD.
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Figure 1. Schematic representation of Parkinson’s disease-associated genes and their mutational
variants used to generate disease models (see Table 2).

PINK-1, Parkin, and DJ-1 variants used for knockout generation in (A) mice (B) rats. (C)
Overexpression of human a-synuclein (SNVCA) and variants under control of promoters:
mouse thymus cell antigen 1 (m7hyJ), platelet-derived growth factor (PDGF), and mouse
prion protein (mPrP). (D) Overexpression of human LRRKZ2and variants: G2019S and
R1441C/G. (E) Dopamine transporter (DAT)-cre mice (recombinase expression only in
dopamine neurons) and mice with a loxP-flanked mitochondrial transcription factor A
(7fam) allele were crossed to produce MitoPark mice. (F) The conditional D620N knock-
in (KI) mice were developed by replacing endogenous exon 15 (with a D620N mutant
version) and introducing a loxP-flanked wild-type (WT) minigene with VVPS35 exons 15—
17. Upon Cre-mediated recombination D620N VPS35 is expressed from the endogenous
allele. (G) The glucocerebrosidase (GBAI) D409V KI mutation was introduced in the mice
Gbal gene through the constitutive KI of a Gbal D427V point mutation, as the D427V
mutation corresponds to the D409V mutation in the mature GCase protein. An additional
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feature of this model is the insertion of loxP sequence flanking exons 6-8, which after Cre
recombination allows constitutive knockout of GBAL
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