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The prevalence of childhood obesity is increasing to such an extent that

it has become a major global public health problem in the 21st century.

Obesity alters children’s brain structure and activity and impairs their cognitive

abilities. On the basis of these findings, it is necessary for educational and

healthcare institutions to combat childhood obesity through preventive and

therapeutic strategies. In general, exercise and physical activity are considered

common but effective methods for improving physical, psychological, and

brain health across the life span. Therefore, this review article mainly focuses

on existing neuroimaging studies that have used magnetic resonance imaging

(MRI), and functional magnetic resonance imaging (fMRI)to assess children’s

brain anatomy and neural activity. We intended to explore the roles of physical

activity and exercise in modulating the associations among childhood obesity,

cognitive abilities, and the structure and activity of the brain.

KEYWORDS
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Introduction

According to the World Health Organization (WHO), an estimated 41 million
children under the age of 5 years were overweight or obese in 2016 (NCD Risk Factor
Collaboration (NCD-RisC), 2017). The prevalence of childhood obesity continues to
increase in both developed and developing countries. In the United States, nearly one-
fifth of children are obese, and in many countries, the rate of obesity has risen even
higher in children than in adults (GBD 2015 Obesity Collaborators et al., 2017).

Obesity, the excessive accumulation of body fat or adiposity, is considered a
complex and multifactorial health problem (Ng et al., 2014) that may lead to several
comorbidities, including insulin resistance, hypertension, and type 2 diabetes (Ortega
et al., 2016a). Obesity has induced a series of negative changes in brain structure and
function that have been discovered using neuroimaging techniques; moreover, these
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obesity-induced alterations in the brain are correlated with
poorer cognitive function (Sui and Pasco, 2020; Tanaka et al.,
2020). Obesity is found to persist from childhood to adulthood
(Simmonds et al., 2015); moreover, childhood obesity is closely
associated with higher risk for cardiovascular disease, metabolic
disease and cancer in adulthood (Llewellyn et al., 2016;
Weihrauch-Blüher et al., 2019; Weihe et al., 2020; Horesh
et al., 2021). A study using a rodent model observed that
early exposure to obesity and insulin resistance may have long-
term deleterious consequences in the brain, contributing to
cognitive dysfunction during aging (Wang et al., 2015). The
pathogenesis of obesity is defined as an imbalance between
food intake and energy expenditure (Gómez-Apo et al., 2021).
The interaction between the gut and the brain is essential
for energy homeostasis. Some strains of bacteria and their
metabolites target the brain directly and regulate central appetite
and food reward signaling (Torres-Fuentes et al., 2017; van Son
et al., 2021). Healthy body weight is coordinated by the strictly
regulated balance between intestinal, extraintestinal and central
homeostatic and hedonic mechanisms (Berthoud et al., 2017;
Frank et al., 2021).

Given the high prevalence and negative consequences
of childhood obesity, developing comprehensive therapeutic
strategies for obese children is imperative (Brown et al., 2019).
During childhood, the brain undergoes developmental changes
in the gray and white matter structures, which may be followed
by changes in cognition. In early childhood, which is defined
as the period between term birth and 2 years old, the gray
matter volume increases rapidly compared with the white
matter volume (Gilmore et al., 2018). As the brain develops
throughout childhood and adolescence, a pattern of gray matter
contraction and white matter expansion appears (Bray et al.,
2015). In this sensitive period of maturation, several health-
related behaviors, such as physical activity (PA) and exercise
have been found to be related to brain development and
cognitive abilities (Gomes da Silva and Arida, 2015; Segalowitz,
2016; Bidzan-Bluma and Lipowska, 2018). PA, is defined as
any movement produced by a human’s skeletal muscles that
increases energy expenditure above the resting value. Exercise
is a planned, structured, systematic and purposeful subcategory
of PA (Dasso, 2019), and is considered a common but effective
method for people to improve physical and mental health
across the life span (Ruegsegger and Booth, 2018; Schuch and
Vancampfort, 2021). Previous research has elucidated the effects
of PA and exercise on brain and cognition in healthy normal-
weight children (Kramer and Erickson, 2007; Hillman et al.,
2008), but few studies have focused on overweight and obese
children.

Magnetic resonance imaging (MRI) is a noninvasive
technique that is used to obtain images of the structures of many
organs, including the brain, and it provides comprehensive,
multiparametric information on brain anatomy (Yousaf et al.,
2018). Functional magnetic resonance imaging (fMRI), which

is a widely applied method of neuroimaging in cognitive
neuroscience, is of course based on MRI (Logothetis, 2008).
fMRI shows task-induced changes in the deoxyhemoglobin
concentration and thus can detect neural activity while
participants perform cognitive tasks (Glover, 2011). In this
review, we focused on neuroimaging studies using MRI
to assess children’s brain structure and fMRI to assess
children’s neural activity. We summarized the key findings
of the neuroimaging studies in this literature review (see
Table 1).

The literature search was performed in PubMed, Google
Scholar, and Web of Science with the key terms “childhood
obesity,” “exercise,” “physical activity,” “brain structure,” “brain
activation,” and/or “cognitive function.” Several abbreviations
are used in this article; therefore, we have included an
abbreviation list (see Table 2).

In this review, we first demonstrate obesity-related
alterations in the brain and cognitive abilities during childhood.
Next, we discuss the association of PA with brain structure
and cognitive functioning in overweight and obese children.
Following this, we examine the effects of exercise on cognition,
brain structure and activation. Finally, current knowledge is
summarized and possible future directions are discussed.

Obesity-related alterations in the
brain and cognitive abilities during
childhood

In recent years, there have been growing concerns about
childhood obesity, which can impact children’s health and even
their quality of life. Obesity is associated with brain structure
changes (i.e., gray matter volume, white matter integrity,
and cortical thickness), as well as cognitive abnormalities
in children. Ou et al. (2015) assessed the gray and white
matter structures of 12 obese children and 12 healthy normal-
weight children aged 8–10 years using T1-weighted three-
dimensional MRI and diffusion tensor imaging (DTI) methods.
The Centers for Disease Control and Prevention (CDC)
defines the following classification based on age- and sex-
adjusted body mass index (BMI) percentiles for children:
underweight <5th percentile; healthy weight: 5th to <85th
percentile; overweight: 85th to <95th percentile; and obese:
95th percentile or higher (Centers for Disease Control and
Prevention, 2016). In a comparison between obese and normal-
weight children, researchers found that obese participants had
significant regional gray matter volume reductions in the right
middle temporal gyrus, left superior parietal lobule, left pre-
and postcentral gyri, left cerebellum, and bilateral thalamus.
The results also showed that compared with their normal-
weight peers, obese children showed increased regional white
matter volume in a widespread array of brain regions, mainly
consisting of the bilateral orbitofrontal, inferior/medial/superior
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TABLE 1 Summary and key findings of the neuroimaging studies in this literature review.

References Aim Sample Experimental design Main results

Ou et al., 2015 Examine the differences in gray and white
matter structure between obese and
normal-weight children

12 obese and 12
normal-weight children
(8–10 years old)

Group comparison of regional gray and white matter
between two groups.

Obese children showed decreased gray matter volume in
the MTG, SPL, PrCG, PCG, cerebellum, and thalamus.
They also showed increased FA in white matter tracts in the
left cerebral hemisphere.

Ronan et al.,
2020

Examine whether differences in cortical
thickness mediate the relationship
between childhood obesity and executive
function

3,923 healthy children
(9–11 years old)

Mediation analysis: regional cortical thickness as a
mediator, executive function as the dependent variable,
and BMI as the independent variable.

Cortical thickness was a significant mediator of the
relationship between BMI and executive function.

Gracia-Marco
et al., 2020

Examine the associations of LMI with
regional gray and white matter volume in
overweight and obese children

100 overweight or obese
children
(10.0 ± 1.1 years old)

Multiple regression models were used to assess the
relationships of LMI with gray and white matter
volume.

LMI was positively related to the gray matter volume in the
superior frontal and -orbital gyri and in the cerebellum.
LMI was also positively associated with white matter
volumes in frontal, parietal, and subcortical regions, as well
as the cerebellum.

Migueles et al.,
2020

Examine the associations between
objectively measured PA, SED, and
hippocampal gray matter volume in
pediatric obesity

93 overweight or obese
children (10.0 ± 1 years
old)

Participants wore wrist-mounted accelerometers for 7
consecutive days, and PA and SED time were calculated
from the accelerometer data.

MVPA time was positively associated with gray matter
volume in the right HPC in children with obesity type I,
while SED was negatively related to gray matter volume in
the right HPC in overweight children.

Rodriguez-
Ayllon et al.,
2020a

Examine the associations of objectively
measured and self-reported PA and SB
with the white matter microstructure in
overweight or obese children

103 overweight or obese
children
(10.02 ± 1.15 years old)

Objectively measured and self-reported PA and SB
were assessed using accelerometers and the Youth
Activity Profile-Spain questionnaire, respectively.

Objectively measured LPA, MVPA, and total PA were
positively related to global FA. Self-reported total PA was
positively related to global FA, while watching television, a
self-reported SB, was negatively correlated with global FA.

Zavala-Crichton
et al., 2020

Examine the associations of different
self-reported SBs with gray matter volume
in overweight or obese children

99 overweight or obese
children (10.0 ± 1 years
old)

SB was measured using the Youth Activity Profile
Spain questionnaire.

Watching television was negatively linked with gray matter
volume in frontal, parietal, and occipital regions, while
playing more video games was associated with reductions
in gray matter volume in temporal regions.

Mora-Gonzalez
et al., 2019a

Examine the associations of PA and SED
with executive function in overweight and
obese children

96 overweight or obese
children (10.0 ± 1 years
old)

PA and SED were assessed using accelerometers. In
addition, executive function was assessed through the
Delis–Kaplan Executive Function System.

No significant association was observed between physical
activity or; sedentary time and any domain of executive
function in overweight and obese children.

Mora-Gonzalez
et al., 2019b

Examine the association of PA with
working memory and neuroelectric
activity in overweight or obese children

79 overweight or obese
children
(10.0 ± 1.1 years old)

PA was assessed using accelerometers. Working
memory was assessed using the delayed
nonmatching-to-sample task. Neuroelectric activity
was assessed using electroencephalogram.

Vigorous physical activity was correlated with a higher
response accuracy of the working memory task and with a
larger P3 amplitude in overweight and obese children.

Mora-Gonzalez
et al., 2020

Examine the association of PA with
inhibitory control and neuroelectric
activity in overweight or obese children

84 overweight or obese
children (8–11 years old)

PA was assessed using accelerometers. Inhibitory
control was evaluated using a flanker task. P3
amplitude and latency were recoded using
electroencephalogram.

Physical activity (moderate, vigorous, and moderate
to-vigorous) was associated with inhibitory control and the
underlying brain activity in overweight and obese children.
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TABLE 1 (Countinued)

References Aim Sample Experimental design Main results

Tomporowski
et al., 2008

Examine the effects of a bout of moderate
aerobic exercise on overweight children’s
executive functioning

69 overweight children
(9.2 ± 1.2 years old)

Exercise group: a 23 min treadmill walk. Control
group: remained sedentary and watched an
age-appropriate video for 23 min. Cognitive task
group: a visual switching task.

An acute bout of exercise had no impact on task switching
performance in the exercise group.

Raine et al., 2020 Examine the effects of acute PA on
inhibitory control task performance

116 normal weight
children
(9.88 ± 0.06 years old)

Exercise group: a 20 min treadmill walk. Resting
control group: reading for 20 min. Cognitive task: a
flanker task that required inhibitory control.

Children showed improved inhibitory control after an
acute moderate aerobic exercise in the exercise group.
These beneficial outcomes were attenuated in children with
a higher BMI.

Davis et al., 2007 Examine the effects of aerobic exercise on
overweight children’s cognitive
functioning

94 overweight children
(9.2 ± 0.84 years old)

Intervention schedule: 5 days per week for 15 weeks.
Groups: low-dose (20 min/day) exercise group,
high-dose (40 min/day) exercise group, and
nonexercise control group. Cognitive performance
measurement tool: Cognitive Assessment System.

The control group had a decreased posttest score relative to
the high-dose exercise group; these group differences
appeared only on the planning scale.

Davis et al., 2011 Examine whether aerobic exercise
improves executive function and alters
brain activation in overweight children

171 overweight children
(9.3 ± 1.0 years old)

The exercise intervention program was the same as
Davis et al. (2007). fMRI cognitive task: an antisaccade
task. Academic achievement: the Woodcock–Johnson
Tests of Achievement III.

Increased bilateral PFC activity and decreased bilateral PPC
activity were found in the exercise group. There was no
significant difference in mathematics achievement between
the exercise group and the control group.

Krafft et al.,
2014a

Examine the effect of an exercise
intervention on brain activation during
two cognitive control tasks in overweight
children

43 overweight children
(8–11 years old)

The intervention lasted 40 min per day for 8 months.
The exercise group took part in aerobic activities. The
attention control group participated in sedentary
activities. The fMRI cognitive tasks comprised
antisaccade and flanker tasks.

No group-by-time interactions were observed in adiposity
in the participants. The exercise group showed increased
activation overtime in brain regions contributing to flanker
tasks, including the ACC and SFG, and decreased
activation overtime in regions contributing to antisaccade
tasks, including the PrCG and PPC.

Schaeffer et al.,
2014

Examine whether exercise alters white
matter integrity in overweight children

18 overweight children
(8–11 years old)

The exercise intervention program was the same as in
the study by Krafft et al. (2014a).

From baseline to posttest, the exercise group showed
significantly decreased body fat compared with the control
group. In the posttest, the exercise group had significantly
higher FA values in bilateral UF and lower RD values in left
UF than the sedentary control group, normalized to
baseline.

Krafft et al.,
2014b

Examine the association between
participants’ attendance at an intervention
program and frontoparietal white matter
integrity in overweight children

18 overweight children
(8–11 years old)

The exercise intervention program was the same as in
the study by Krafft et al. (2014a).

In the exercise group, higher attendance was correlated
with increased white matter integrity, that is, increased FA
and decreased RD, in the bilateral SLF compared with the
control group.

Krafft et al.,
2014c

Examine the effect of an exercise
intervention on resting-state synchrony in
overweight children

22 overweight children
(8–11 years old)

The exercise intervention program was the same as in
the study by Krafft et al. (2014a).

The exercise group showed decreased synchrony overtime
in the default mode network, cognitive control network and
motor network, whereas synchrony was increased between
the motor network and the frontal lobe.

MTG, middle temporal gyrus; SPL, superior parietal lobule; PrCG, precentral gyrus; PCG, postcentral gyrus; HPC, hippocampus; PFC, prefrontal cortex; PPC, posterior parietal cortex; ACC, anterior cingulate cortex; SFG, superior frontal gyrus; UF,
uncinate fasciculus; SLF, superior longitudinal fasciculus; FA, fractional anisotropy; RD, radial diffusivity; BMI, body mass index; LMI, lean mass index; PA, physical activity; LPA, light physical activity; MVPA, moderate to vigorous physical activity; SED,
sedentary time; SB, sedentary behavior; fMRI, functional magnetic resonance imaging.
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TABLE 2 Abbreviations.

Abbreviations Full name

MRI Magnetic resonance imaging

fMRI Functional magnetic resonance imaging

WHO World Health Organization

DTI Diffusion tensor imaging

CDC Centers for Disease Control and Prevention

BMI Body mass index

FA Fractional anisotropy

ABCD Adolescent Brain Cognitive Development

VFR Visceral fat ratio

LMI Lean mass index

PA Physical activity

SED Sedentary time

LPA Light physical activity

MVPA Moderate to vigorous physical activity

SB Sedentary behavior

YAP-S Youth Activity Profile Spain

CAS Cognitive Assessment System

DXA Dual-energy X-ray absorptiometry

RD Radial diffusivity

SLF Superior longitudinal fasciculus

FGF21 Fibroblast growth factor 21

ADHD Attention deficit and hyperactivity disorder

temporal, and superior frontal white matter; the anterior
and posterior limbs of the internal capsule; and the external
capsule. In addition, the authors found increased fractional
anisotropy (FA) values in multiple white matter tracts in the
left cerebral hemisphere, and a positive association between
BMI and FA in several white matter tracts. Furthermore,
these findings, which showed reductions in gray matter in
obese children compared with their healthy weight peers,
are in agreement with the studies by Bauer et al. (2015)
and Jiang et al. (2022). Bauer et al. (2015) found a reduced
left hippocampal volume in obese children compared with
normal-weight children. Jiang et al. (2022) found that obese
children had greater reductions in gray matter volume in the
prefrontal lobe, thalamus, right precentral gyrus, caudate, and
parahippocampal gyrus/amygdala than normal-weight children.
We created a figure that shows the regions of reduced gray
matter volume in obese children according to the findings of
Ou et al. (2015), Bauer et al. (2015), and Jiang et al. (2022) (see
Figure 1).

In addition to changes in gray and white matter structure,
obesity is associated with children’s cortical thickness. Ronan
et al. (2020) investigated MR-derived measures of cortical
thickness for 2,700 children aged 9–11-years from the
Adolescent Brain Cognitive Development (ABCD) dataset.
The ABCD dataset is derived from a study of over 10,000
children recruited from 21 sites in the US in 2017; this

study focused on childhood brain development and employed
structural MRI methods to image the structures of children’s
brains. Researchers used the National Institutes of Health
Toolbox Cognition Battery to evaluate each child’s composite
score for executive function, which was corrected for age.
The authors also conducted a mediation analysis to detect
whether cortical thickness mediated the relationship between
BMI and executive function. This study found a negative
correlation between children’s BMI and age-corrected executive
function. And increased BMI was linked to a thinner cortex
in a wide range of brain regions, especially the prefrontal
cortex, which is an area related to executive function. Moreover,
a lower composite score on tests of executive function was
also associated with a lower reduced mean global cortical
thickness. Finally, cortical thickness was a significant mediator
of the relationship between BMI and executive function.
Laurent et al. (2020) also using the ABCD dataset and
similar analysis methods, found substantially similar results. In
contrast, Saute et al. (2018) showed contrary results regarding
cortical thickness in obese adolescents aged 15–18 years. They
found no association between BMI and cortical thickness in
any brain region, whereas a higher visceral fat ratio (VFR), an
indicator of intra-abdominal fat, was linked to greater cortical
thickness.

Body mass index is an indicator of body composition that
helps determine whether a person is obese, overweight, normal
weight, or underweight. In recent years, several studies have
focused on the lean mass index (LMI), which is a measurement
focused on lean body tissue. Gracia-Marco et al. (2020)
conducted a cross-sectional study as a part of the ActiveBrains
project. The ActiveBrains project was a randomized controlled
trial that aimed to examine the effects of an exercise program
on brain, cognitive and academic performance and evaluated
physical and mental health outcomes in 110 overweight and
obese children aged 8–11 years in Granada, Spain. In this
cross-sectional study, researchers collected baseline data on
body composition and brain volume in 100 overweight or
obese children. Structural brain images were captured from
participants by using MRI. This study showed that LMI was
positively correlated with regional gray matter volume in
the superior frontal and -orbital gyri and in crus I of the
cerebellum, yet BMI was not correlated with gray matter volume
in any brain regions in overweight children. Additionally,
higher BMI was linked to greater white matter volume in the
gyrus rectus and cerebellar lobule VIII, and higher LMI was
associated with greater white matter volume in a wide range
of brain regions, including frontal regions, parietal regions,
subcortical regions, and the cerebellum, in overweight or
obese participants. These findings are in agreement with a
study indicating that decreased lean mass was related to brain
atrophy in early Alzheimer’s disease populations (Burns et al.,
2010).
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FIGURE 1

Brain regions showing the differences between obese children and normal-weight children in the literature.

Physical activity, brain structure,
and cognitive functioning in
overweight and obese children

Physical activity, a powerful marker of children’s physical
health, is defined as any movement produced by human skeletal
muscles that increases energy expenditure from the resting
value. Sedentary behavior consists of any behavior performed
when individuals are in a resting state, such as a seated or
recumbent posture. Overweight or obese children perform less
PA and engage in more sedentary behavior (SB) than normal-
weight children (Wafa et al., 2016). Several observational
studies have found relationships among PA, brain structure, and
cognition.

In the study by Migueles et al. (2020), researchers collected
data on children’s PA using accelerometers. Accelerometers
are small wearable monitors that objectively measure PA
(Ainsworth et al., 2015). Accelerometer technology facilitates
the assessment of accelerations produced by movement and
is regarded as an effective instrument to measure PA levels.
Accelerometers objectively measure the frequency, duration
and intensity of PA; however, they are expensive, require
time, and are difficult to administer in a large population
(Marasso et al., 2021). Participants wore an accelerometer on
the nondominant wrist for 7 consecutive days and completed
a sleep log where they recorded the time they went to bed
and the time they rose every day; the sleep logs were used

to calculate the children’s daily sleeping duration. Children’s
daily sedentary time (SED), light physical activity (LPA), and
moderate to vigorous physical activity (MVPA) were calculated
using the data from accelerometers. Structural brain images
were acquired with MRI. The authors observed a positive
association between the objectively assessed MVPA time and
gray matter volume in the right hippocampus of children
with obesity type I. Specifically, replacing 20 min/day of
SED with MVPA would be correlated with 100 mm3 more
gray matter volume in the right hippocampus. Relative to
LPA and MVPA, a longer time spent in objectively assessed
SED was associated with lower gray matter volume in the
right hippocampus in overweight children. These findings
are inconsistent with previous studies that failed to find
an association between PA and gray matter volume in the
hippocampus in adolescents (Herting et al., 2016; Ruotsalainen
et al., 2019). A potential explanation for this difference is that
these two studies used self-reported instruments to measure
participants’ PA, which differed from the objective assessment
method.

Rodriguez-Ayllon et al. (2020a) also used accelerometers
to objectively measure PA and SB, but they required children
to wear two accelerometers, located on the right hip and
nondominant wrist for 7 consecutive days (24 h/day). The
total time in minutes per day consisted of LPA, MVPA, and
SED. Additionally, the authors applied the Youth Activity
Profile Spain (YAP-S) to evaluate the information on subjects’
self-reported PA and SB. DTI was used to capture the
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white matter microstructure. The authors showed that when
concerning objectively measured PA, there were positive
correlations of LPA, MVPA and total PA with global FA. In
terms of the self-reported measures, self-reported total PA
was positively correlated with global FA, whereas watching
television, a self-reported SB, was negatively correlated with
global FA.

All activity during waking hours can be classified into
categories: SB is the opposite of PA, and these two behaviors
make up all of people’s waking hours. Zavala-Crichton et al.
(2020) focused on SB, brain structure and intelligence in
8 to 11-year-old overweight and obese children as part of
the ActiveBrains project. SB was assessed by using the YAP-
S questionnaire. Children were asked how much time, on
average, they spent performing four sedentary activities (i.e.,
watching television, playing video games, using a cell phone,
and using a computer), and total SB was calculated for each
day in a week. The authors found that watching television was
inversely related to gray matter volume in frontal, parietal,
and occipital regions, while playing more video games was
associated with reductions in gray matter volume in temporal
regions. Additionally, there was a negative correlation between
the total SED and gray matter volume in the cerebellum; in
turn, greater gray matter volume in the cerebellar crus II was
associated with a higher crystallized intelligence score. One
study regarding the relationship between SB s and gray matter
volume in children showed mixed results. Takeuchi et al. (2015)
discovered that watching television was positively correlated
with gray matter volume in frontopolar and medial prefrontal
areas.

Mora-Gonzalez et al. (2019a) also used an accelerometer
to objectively measure participants’ PA and sedentary time.
Subjects wore two accelerometers on their nondominant wrist
and right hip simultaneously for 7 consecutive days (24 h/day).
The domains of cognitive flexibility and inhibition were
evaluated through different tests from the nine subscales of
the Delis–Kaplan Executive Function System, and planning
ability was examined through the Zoo Map Test from the
Behavioral Assessment of Dysexecutive Syndrome. Researchers
showed that there was no significant association between PA,
sedentary time and all domains of executive function indicators
in overweight and obese children. These findings are contrary
to the study of Davis et al. (2015) which found that compared
with normal weight children who performed less PA, the more
active normal weight children had higher planning scores, which
indicated better executive function.

Mora-Gonzalez et al. (2020) assessed participants’ PA using
accelerometers worn on the hip and nondominant wrist.
The participants were 8 to 11-year-old overweight or obese
children. Neuroelectric activity (i.e., P3 amplitude and latency)
was registered using an electroencephalogram. The authors
used a flanker task to evaluate participants’ inhibitory control,
which measures a subset of cognitive function. They observed

associations of PA (moderate, vigorous, and moderate to-
vigorous) with inhibitory control and underlying brain activity
in overweight and obese children.

Mora-Gonzalez et al. (2019b) utilized the same method to
assess participants’ PA and neuroelectric activity as the study by
Mora-Gonzalez et al. (2020). The authors assessed participants’
working memory using the delayed nonmatching-to-sample
task. They found that vigorous PA was correlated with a higher
response accuracy on the working memory task and with a larger
P3 amplitude in overweight and obese children.

The above studies that observed the association of PA
with brain structure and cognition in overweight and obese
children were cross-sectional studies. Cross-sectional studies
were inexpensive and require less time than the longitudinal
studies, and their samples are usually taken from the whole
population. However, it is difficult for cross-sectional studies
to make causal inferences; moreover, the situation may
provide different results if another time-frame is chosen
(Levin, 2006).

Exercise, cognition, and the
structure and activation of the
brain in obese children

Studies of acute physical exercise
interventions

The observational research mentioned above is plausibly
insufficient to establish causal links. In contrast, intervention
studies that employ either short or long-term physical exercise
interventions, are better able to show the causal effects of
exercise on the brain and cognitive abilities.

Tomporowski et al. (2008) recruited 69 children between
7 and 11 years of age who were overweight and inactive (did
not take part in a regular PA program more than 1 h per
week) as participants. After being randomly assigned to the
exercise group and control group, participants were required
to perform a 23 min treadmill walk or remained sedentary
and watched an age-appropriate video for 23 min. These
children performed a visual switching task in a private room
before and after the intervention. However, after the exercise
intervention, the researchers failed to detect the impact of
an acute bout of exercise on task switching performance
in the exercise group. These results are consistent with
studies that failed to examine single bouts of moderately
intense PA affecting task switching performance in adults
(Kubesch et al., 2003).

Raine et al. (2020) also conducted a study employing a bout
of acute moderate-intensity aerobic exercise in preadolescent
children. A total of 116 children aged 8–11 years were recruited
as participants. Participants were randomly separated into two
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different experimental conditions: the exercise intervention
condition and the resting control condition. The exercise
intervention group conducted 20 min of treadmill walking,
while the resting control group was reading in a seated position
silently for 20 min. After each intervention, children were
instructed to perform a flanker task that required inhibitory
control; reaction time and accuracy were calculated and
recorded. The authors found that children showed better
inhibitory control after acute moderate aerobic exercise than
after the same duration of seated reading. However, these
beneficial outcomes of exercise interventions seem to be
attenuated in those children who have a higher BMI, which
suggests that if children are extremely obese, they will not
fully obtain the acute benefits of aerobic exercise on cognitive
functioning.

Studies of long-term physical exercise
interventions

Many studies have also discovered a long-term exercise
intervention effect on brain structure, brain activation, and
cognitive function in overweight children. Davis et al. (2007)
selected overweight children aged 7–11 years who attended no
regular PA program more than 1 h per week as participants,
and they were randomly assigned to a low-dose (20 min/day)
or high-dose (40 min/day) aerobic exercise group, or a no
exercise control group. The low-dose and high-dose exercise
groups engaged in activities including running games, jump
rope, and modified basketball and soccer, while the sedentary
control group was not offered any after-school program. The
children in the exercise group attended this intervention
program for 5 days per week for 15 weeks. Participants’
cognitive performance was evaluated before and after the
exercise program using the Cognitive Assessment System (CAS),
which consists of four scales measuring different classes of
cognitive processes: planning, attention, simultaneous, and
successive processes. Of these scales, only the planning scale
reflects executive function. The authors found that the control
group had a significantly decreased posttest score relative
to the high-dose exercise group; these group differences
appeared only on the CAS planning scale and not on the
attention, simultaneous, or successive scale. However, there
were no significant posttest score differences in planning
between the low-dose group and high-dose group or the
control group and low-dose group. These findings suggested
that children in the high-dose exercise group had greater
improvements in executive function than children in the
nonexercise control condition.

Long-term exercise alters the brain activation of overweight
children as they perform cognitive tasks, and it also improves
their academic performance. Davis et al. (2011) utilized the
same aerobic exercise intervention program and recruited

identical participants as the study of Davis et al. (2007). This
study used fMRI to detect participants’ brain activation while
completing an antisaccade task that required executive function.
There were fMRI brain scans before and after the exercise
intervention in the control group and the exercise group,
and participants were randomly separated into low- and high-
dose exercise groups. Participants’ academic achievement was
examined by administrating the Woodcock–Johnson Tests of
Achievement III, which contained the Broad Reading and Broad
Mathematics tests. The researchers found increased bilateral
prefrontal cortex activity and decreased bilateral posterior
parietal cortex activity in the exercise groups compared with
the control group from baseline to posttest. Moreover, a dose-
dependent benefit of exercise on mathematics achievement was
observed, but there was no significant difference in mathematics
achievement between the exercise groups and the control
group. The findings of this study are consistent with those
that investigated exercise stimulated alterations in brain activity
and behavioral changes in adults (Colcombe et al., 2004;
Pereira et al., 2007).

Krafft et al. (2014c) recruited 43 overweight children aged
8–11 years, who were randomly divided into an aerobic exercise
condition or an attention control condition. Both groups were
provided an instructor-led after-school program every school
day, 40 min per day for 8 months. The aerobic exercise group
took part in instructor-led aerobic activities, for example, tag
and jump rope, while the attention control group participated
in instructor-led sedentary activities, such as art and board
games. Body fat was measured with a dual-energy X-ray
absorptiometry (DXA) scan. No group-by-time interactions
were observed for adiposity in the participants. Before and after
the intervention, fMRI data were collected while participants
were performing two cognitive control tasks: the antisaccade
and flanker tasks. The investigators found that relative to the
sedentary control group, the exercise group showed increased
activation over time in brain regions contributing to the
flanker tasks, including the anterior cingulate and superior
frontal gyri, and decreased activation over time in regions
contributing to the antisaccade tasks, including the precentral
gyrus and posterior parietal cortex. In summary, this study
presents novel causal evidence that regular aerobic exercise
programs alter brain function on two different cognitive tasks
in overweight children.

Long-term exercise enhances white matter integrity in
overweight children. Schaeffer et al. (2014) utilized the
same exercise intervention program and selected a subset
of participants from the study of Krafft et al. (2014c)
mentioned above, but this study concentrated on white matter
microstructure. At baseline, the exercise group and attention
control group did not significantly differ in BMI or percent
body fat. From baseline to posttest, the exercise group showed
significantly decreased body fat compared with the control
group. However, the BMI did not differ significantly between
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the two groups at the posttest assessment. The authors found
that participants in the exercise group had significantly higher
FA values in the bilateral uncinate fasciculus and lower
radial diffusivity (RD) values in the left uncinate fasciculus,
a frontotemporal white matter fiber tract, than the sedentary
control group when normalized to baseline values. These
findings are in line with previous research demonstrating a
positive influence of long-term aerobic exercise intervention on
white matter integrity in adults (Voss et al., 2013).

Krafft et al. (2014b) applied the same aerobic exercise
program and followed the same participants as the study of
Schaeffer et al. (2014). However, these researchers concentrated
on the association between participants’ attendance of the
intervention and frontoparietal white matter integrity in
overweight children. The authors demonstrated that in an
8-month exercise intervention in overweight children, a
group × time × attendance interaction was found. However,
such an interaction was noted only in the exercise group and not
in the control group. Specifically, in the exercise group, greater
attendance was correlated with increased white matter integrity,
namely, increased FA and decreased RD, in the bilateral superior
longitudinal fasciculus (SLF) compared with the control group.

Exercise also alters the resting-state synchrony in overweight
children. Krafft et al. (2014a) focused on the exercise
intervention effect on resting-state synchrony in overweight
children. The investigators also performed the same 8-month
after-school exercise program for 22 overweight children aged
8 to 11-years who were randomly divided into an exercise group
and a sedentary control group. Before and after the 8-month
programs, all participants underwent resting-state fMRI scans.
Resting-state fMRI analyses were performed on four networks,
namely, the default-mode, salience, cognitive control, and motor
networks. The authors found that the exercise group showed
decreased synchrony over time in the default-mode network,
cognitive control network, and motor network but increased
synchrony between the motor network and a frontal region
compared with the control group.

To the best of our knowledge, no study has observed
that physical exercise changes the gray matter volume, cortical
thickness, or surface area in overweight and obese children.
However, there was evidence showing changes in gray and white
matter volume in older adults after physical exercise (Colcombe
et al., 2006; Matura et al., 2017).

Regarding the pathogenesis of physical exercise, studies
using rodent models have shown that exercise alleviates obesity-
induced metabolic disorders by affecting the expression of
fibroblast growth factor 21 (FGF21) (Geng et al., 2019).

Park et al. (2019) used fed male mice a high-fat diet for
20 weeks, causing the mice to become obese. Then, the high-
fat diet mice performed a treadmill exercise for 12 weeks. The
authors observed that the high-fat diet mice showed a decrease
in insulin signaling and neuroplasticity in the hippocampus and

the dentate gyrus and impaired cognitive function, which were
reversed by physical exercise.

Discussion

In recent years, as neuroimaging technologies have
developed, researchers are more likely to be able to further
explore and understand the brains of children, and the
research selected in this literature review mainly used MRI and
fMRI to observe differences in brain structure and activation
in obese children.

Altogether, we summarized the existing research and
obtained mixed results of alterations in the brain, including
gray and white matter structures and cortical thickness, in
overweight and obese children compared with their normal-
weight peers for the first time. The possible reason for these
mixed results across studies may be due to the way obesity
was identified and measured. An individual’s body mass is
composed of both fat and lean mass; consequently, BMI does
not directly measure body fat (van den Berg et al., 2013;
Wright et al., 2022). The majority of previous research used
BMI as the indicator to classify whether the participants were
normal weight, overweight, or obese and assessed whether
BMI was correlated with an individual’s brain structure and
cognitive functioning (Saute et al., 2018; Laurent et al., 2020;
Ronan et al., 2020). Therefore, it is difficult to tell whether
previous associations were due to the fat or lean components
of the body. In the study by Gracia-Marco et al. (2020),
the researchers showed that there was a positive association
between LMI and gray matter volume in several brain regions
in overweight children, but this association was not found when
BMI was used. This may suggest that BMI alone does not
sensitively reflect body composition in overweight and obese
children (Ortega et al., 2016b; Hinton et al., 2017); thus, using
BMI may not be sensitive enough to explore all obesity-related
abnormalities in the brain. To the best of our knowledge, few
studies have concentrated on the relationship between LMI and
brain structure. Future studies can examine the associations
between LMI and total and regional gray and white matter
volumes in different populations, and the findings may explain
some of the previously reported heterogeneity across studies.

The time that overweight children spend in daily PA and
SB s is associated with their brain structure and cognitive
abilities (Mora-Gonzalez et al., 2019a; Zavala-Crichton et al.,
2020). Objective assessment and self-reports are two common
methods of measuring PA and SB. Self-reported measures
are less accurate than objective assessments; therefore, recent
studies have used accelerometers to objectively assess PA and SB
(Migueles et al., 2020; Mora-Gonzalez et al., 2020). Nevertheless,
accelerometers merely record the time children spend in total
SB; the time spent in a specific behavior (e.g., watching
television, playing video games, or using a computer or cell
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phone) is unlikely to be measured from accelerometer data
alone (Rodriguez-Ayllon et al., 2020a). Future studies may focus
on developing an initiative to objectively assess the time that
individuals spend in daily specific SB, replacing the existing
self-report questionnaire method, which is less accurate.

Obese children show poorer cognitive functioning than their
healthy weight peers, including deficits in inhibition (Kamijo
et al., 2012; Reyes et al., 2015), cognitive flexibility (Wirt
et al., 2015), attention (Cserjési et al., 2007), and academic
achievement (Datar and Sturm, 2006). During childhood,
inhibition is particularly important because it allows children
to inhibit impulsive behavior, and helps children to prolong
attention, which leads to better academic performance (St Clair-
Thompson and Gathercole, 2006). Children with attention
deficit and hyperactivity disorder (ADHD) exhibit increased
inhibitory control after an acute bout of physical exercise
(Ludyga et al., 2017). In children with autism spectrum disorder,
benefits were observed in inhibitory control after acute physical
exercise (Bremer et al., 2020). These findings suggested that
the greatest improvement of acute PA appeared in children
who needed it most (i.e., lower performers) (Drollette et al.,
2014). However, one study investigated whether greater BMI
was associated with decreased inhibitory control after acute
physical exercise (Davis et al., 2007) and suggested that the
effects on children with ADHD, autism, and lower performance
did not expand to children with a higher BMI. Acute bout of
physical exercise is beneficial to improving inhibitory control,
but the improvement is weakened as children’s BMI increases.
This inconsistent result should be a cause for concern because
physical exercise is possibly ineffective for those children with
the highest BMI. Future studies should explore whether the
negative relationship between BMI and inhibitory control still
exists in children following a long-term exercise intervention,
and to determine whether this relationship exists for other
aspects of cognition (e.g., cognitive flexibility and attention) in
addition to inhibitory control.

In the study by Schaeffer et al. (2014), the researchers used
MRI methods to measure the changes in the white matter
integrity of overweight children after a long-term physical
exercise intervention. Long-term exercise increases white matter
integrity in overweight children. On the one hand, motor
training may affect white matter integrity in children. For
example, a MRI study found that children who practice piano
showed increased FA in frontal fiber tracts compared with
their peers in the control group (Bengtsson et al., 2005).
On the other hand, previous studies reported an association
between physical fitness and white matter microstructure in
overweight and obese children (Rodriguez-Ayllon et al., 2020b).
Thus, researchers have not determined whether the changes
in white matter integrity in overweight children following
long-term physical exercise are due to complex motor skill
training or improvements in physical fitness. Future studies
may explore which factors mentioned above play a more

crucial role in affecting white matter integrity in obese children.
Most previous studies in children selected to perform the
aerobic exercise intervention (Cao et al., 2021; Lee, 2021)
whereas few studies selected anaerobic exercise, such as strength
training (Marson et al., 2016; García-Hermoso et al., 2018;
Chen et al., 2021). However, physically healthy children over
7 or 8 years old can perform light strength training activities
such as pushups and sit-ups, following safety instructions
and under adults’ supervision. Weightlifting and bodybuilding,
which require very heavy weights, are not recommended
for children. If children perform strength training properly
and safely, they may increase their muscle strength and
bone mineral density (Faigenbaum and Myer, 2010; Comité
Nacional, de Medicina, del Deporte, and Infantojuvenil., 2018;
Stricker et al., 2020). Future research can utilize appropriate
strength training interventions for overweight and obese
children to determine their influence on children’s brain health
and cognition.

To the best of our knowledge, most intervention
studies on this topic involved scanning children’s brains
and conducting cognitive tests again immediately after the
exercise intervention (Tomporowski et al., 2008; Raine
et al., 2020), whereas few studies performed a subsequent
postintervention follow-up to explore whether the effects of
exercise on brain structure and function were sustained in
the long-term, or quickly returned to a baseline level (Delisle
Nyström et al., 2018; Whooten et al., 2018). If the exercise
benefits last for a long time, the corresponding exercise
frequency required to maintain positive outcomes can be
determined. However, the exact duration of the beneficial
effects of physical exercise for overweight and obese children
remains unknown and future studies may examine whether
exercise improvements have a short-term or long-term effects
in children.

Exercise is usually regarded as an outdoor activity but more
interest has been expressed in maintaining an active lifestyle
for overweight and obese children at home in recent years
(Arun Babu, 2022). Home exercise including sit-ups, yoga,
stretching, etc., is less vigorous, requires little space and no
equipment, can be safely and easily performed and should
be suggested for children at home. As recreational exercise is
more attractive to children than strictly fitness-oriented exercise,
some exercise games, such as squat relays, indoor ball games,
skipping tags, and bear crawl, are also recommended (Yu
et al., 2018). However, no evidence is available to confirm
the most beneficial type, intensity, or duration of exercise
for obese children to perform at home as a method to
attenuate the changes in their brain and cognition caused by
obesity. Since different studies used various exercise programs,
comparing different researchers’ findings is impossible if the
variables are not controlled. Future studies should compare
the effects of various exercise programs and explore the most
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beneficial exercise programs that are suitable for obese children
to perform at home.

The prevalence of childhood obesity has increased eightfold
since 1975, affecting the public healthcare system, families and
communities (Grant-Guimaraes et al., 2016; Kumar and Kelly,
2017; Weihrauch-Blüher and Wiegand, 2018). Childhood is a
sensitive period for brain and cognitive development (Gilmore
et al., 2018) and both PA and exercise are beneficial for children
regardless of their weight status (Hillman et al., 2008). Exercise
can help children maintain a healthy weight and even attenuate
the alterations of brain and cognition caused by obesity. We
suggest that children, especially those with obesity, increase
their daily physical exercise, decrease SB, and develop an
active lifestyle. Overall, exercise should be a regular activity for
children, and establishing an enjoyable exercise routine may
help in the long-term.
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