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Abstract: A growing body of study have documented the association of gut dysbiosis or fecal
metabolites with chronic kidney disease (CKD). However, it is not clear whether the phenomenon
simply reflects the microenvironment changes correlated with the CKD severity or contributes to
the progression of CKD. In this study, we identified the gut microbiota and metabolite in feces
samples correlated with CKD severity using the Nanopore long-read sequencing platform and
UPLC-coupled MS/MS approach. A cross-sectional cohort study was performed from 1 June 2020 to
31 December 2020. One hundred and fifty-six clinical participants, including 60 healthy enrollees and
96 Stage 1–5 CKD patients, were enrolled in this study. The ROC curve generated with the relative
abundance of Klebsiella pneumonia or S-Adenosylhomocysteine showed a gradual increase with
the CKD severity. Our results further revealed the positive correlation of increased K. pneumonia
and S-Adenosylhomocysteine in gut environment, which may be of etiological importance to the
deterioration of a CKD patient. In that sense, the microbiota or metabolite changes constitute potential
candidates for evaluating the progression of CKD.

Keywords: chronic kidney disease; fecal metabolite; gut microbiota; long-read sequencing; UPLC-
coupled MS/MS

1. Introduction

Irreversible pathological changes in renal function characterize chronic kidney disease
(CKD), the third most prevalent chronic disease worldwide and affects an estimated
850 million people worldwide [1]. Hypertension, obesity, and diabetes mellitus (DM)
are documented as critical risk factors for the development of CKD, which can, in turn,
lead to end-stage renal disease (ESRD or kidney failure) [2]. Kidney failure, in turn,
requires therapeutic interventions, including peritoneal and hemodialysis, and kidney
transplantation, with the most common of these an expensive financial burden for the
healthcare system. Accordingly, the prevention of CKD altogether and/or the slowing of
its progression to end-stage disease must be a high priority [3].

The relevance between the gut bacterial community (also referred as the microbiota)
and diverse diseases is an emerging avenue to pursue [4]. A growing body of evidence
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suggests the potential influence of CKD-associated gut dysbiosis on the progression of CKD
through the gut-kidney axis [5,6]. Microbiota-population differentials of more than 100
operational taxonomic units (OTUs) have been identified using an animal kidney-failure
model and in ESRD patients, compared to those in healthy counterparts [7,8]. For instance,
decreases in the distribution of Firmicutes, Actinobacteria, and Proteobacteria with concomi-
tant increases in Bifidobacteria and Lactobacilli were identified in ESRD patients [9,10]. A
low-protein diet is commonly recommended to lessen the proteinuria with reduced intra-
glomerular pressure, sodium loading, and nitrogenous waste in moderate to advanced
chronic kidney disease (CKD) patients [11]. Low-protein intake consequently led to gut dys-
biosis and interfered with the gut microbiota-mediated fermentation, resulting in metabolic
alteration with the generation of diverse metabolites [12,13]. A decrease in p-cresyl sulfate
in serum with concomitant increases in Blautia, Faecalibacterium, and Roseburia species was
identified in CKD patients receiving protein restriction [14]. Nevertheless, the impact of
a low-protein diet on preserving the kidney function is continuously controversial and
under-investigated [15]. Fiber supplementation was reported to be associated with an
elevation in the relative abundance of Faecalibacterium, subsequently leading to the reduced
systemic inflammation noted in ESRD patients [16]. In contrast, CKD-patient fecal micro-
biota transplantation to the gut of healthy mice resulted in insulin resistance, impaired
kidney function, and uremia [17]. Nevertheless, the impact of gut dysbiosis or altered
metabolite profile on the causation, progression, or gastrointestinal-environment toward
CKD should be further clarified.

In this study, the gut dysbiosis or fecal metabolite profile in CKD patients in each of
three stages and those of healthy participants was classified using long-read sequencing
and LC-QTOFMS platform. Changes in the abundance of identified operational taxonomic
unit (OUT) or metabolite in feces samples were evaluated in relation to CKD severity. The
results of dual-omics assays suggested that the K. pneumonia and S-Adenosylhomocysteine
functioned as the potential factors toward the causation or deterioration of CKD via gut-
kidney axis.

2. Materials and Methods
2.1. Ethics Statement of the Study Cohort and Sample Collection

Enrollment of clinical participants and the experiments involving human participants
were conducted according to the guidelines of the Declaration of Helsinki and approved
by the Institutional Review Board of Taipei Medical University (approval no. N202003133).
Formal informed consent was collected from the recruited participants prior to following
experiment. Patients with CKD were enrolled from the Division of Nephrology at Taipei
Municipal WanFang Hospital, and healthy participants were recruited from the Health
Examination Center at Taipei Municipal WanFang Hospital. The stage of the CKD patient
was defined as an estimated glomerular filtration rate (eGFR; mL/min/1.73 m2) in accor-
dance with 2012 KDIGO clinical practice guideline for the evaluation and management of
chronic kidney disease [18]. Accordingly, enrolled patients were grouped into mild (Stage 1:
eGFR ≥ 90; Stage 2: eGFR 60–89), moderate (Stage 3A: eGFR 45–59; Stage 3B: eGFR 30–44),
and advanced (Stage 4: eGFR 15–29; Stage 5 eGFR < 15) CKD. A comprehensive physical
examination was conducted on all normal counterparts to ensure a satisfactory health sta-
tus with particular respect to kidney function, diabetes, and hypertension. The recruitment
of CKD patient was applied as well in another study [19]. A standard questionnaire was
used to evaluate lifestyle, including diet, smoking, consumption of alcohol, and level of
exercise of all participants. Use of antibiotics, a history of malignant disease, chemotherapy
or radiation therapy, and regular use of a stool softener within the three months preceding
entry into the study were all exclusion criteria.

2.2. Metadata and Biochemical Analysis

Peripheral venous blood samples were collected for serum creatinine (sCre) and
fasting blood glucose (FBG) and assayed using Beckman Coulter AU5800 biochemical
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analyzers (Beckman Coulter Inc., Brea, CA, USA). Glycated hemoglobin (HbA1c) levels
were determined using a Capillary 3 tera Instrument (Sebia, Lisses, France). Levels of
fasting blood glucose and the percentage of glycated hemoglobin (HbA1c) in CKD patients
were included to evaluate possible confounding variables related to diabetes. According to
the contents of the questionnaire, participants were queried regarding age, gender, and
dietary habits, including nutrient intake and any use of probiotics.

2.3. Bacterial DNA Extraction

Fecal samples were properly collected and preserved using a feces catcher and
DNA/RNA Shield Fecal Collection tubes (Zymo Research, Irvine, CA, USA). Total ge-
nomic DNAs were extracted from 0.2 g of feces using the Quick-DNA Fecal/Soil Microbe
Microprep Kit (Zymo Research) according to the manufacturer’s instructions. The quantity
of extracted DNA was measured using a fluorometric kit (GeneCopoeia, Rockville, MD,
USA) and a Qubit fluorometer (ThermoFisher Scientific, Wilmington, DE, USA). Qualified
DNA samples were kept in a −80 ◦C freezer for subsequent DNA-sequencing analysis.

2.4. 16S Ribosomal (r)RNA Gene Sequencing

Bacterial subpopulations in fecal samples were analyzed using a third-generation long
read-sequencing approach. In brief, 10 ng of extracted genomic DNA was subjected to 16S
rRNA library construction using a Barcoding kit (SQK-16S024, Oxford Nanopore Technolo-
gies (ONT), Oxford, UK) according to the manufacturer’s protocol. The barcoded library
was captured, washed, and eluted from magnetic beads (AMPure XP, Beckman Coulter,
High Wycombe, UK). Two nanograms of the individual barcoded library were pooled,
loaded, and sequenced on MinION flow cells (FLO-MIN106D R9.4.1, MinION instrument;
Oxford Nanopore Technologies, Oxford, U.K.). The average length of sequenced read was
1540 nt, and the sequenced read number of each individual sample was 100,000 per sample
to meet a sequencing depth of 50.

2.5. Metabolites Extraction

Fifty milligrams of sample was weighted to a micro-centrifuge tube, and 1 mL extract
solution (acetonitrile:methanol:water = 2:2:1) was added. After 30 s vortex, the samples
were homogenized for 4 min and sonicated for 5 min on ice. Then the samples were
incubated for 1 h at −20 ◦C and centrifuged at 12,000 rpm for 15 min at 4 ◦C. The resulting
supernatant was transferred to a fresh glass vial for analysis.

2.6. UPLC-MS/MS Analysis

Each sample (10 µL) was injected into a vanquish focused ultra-high-performance
liquid chromatography (UHPLC) system coupled with an Orbitrap Elite Mass Spectrometry
(Thermo Fisher Scientific) using electrospray ionization. UHPLC parameters were set as
below: A 2.1 × 100 m2 Acquity HSS T3 1.8 µm C18 column (Waters) was used. The column
oven temperature was set at 40 ◦C. The binary mobile phase including deionized water
containing 0.1% formic acid as solvent A, and LC-MS grade acetonitrile with 0.1% formic
acid as solvent B. The flow rate was 0.25 mL/min with a linear gradient elution over
15 min. For the first minutes, solvent B percentage was held at 5%, linearly increased to
100% for the next 7 min, and kept constant for 3 min, then finally return to 5% in 1 min.
To avoid any carry over effect, there was one blank injection after every sample injection,
and one QC injection after every five sample injections for the peak area normalization.
Mass spectrometry data were collected in positive mode with a default data-dependent
acquisition method, one MS full scan performed in profile mode at 60,000 esolution,
followed by 10 data-dependent MS2 scans at 15,000 resolution. The mass scan range
was set from 70 to 1000 m/z. The normalized collision energy (NCE) of 25. The spray
voltage was 3.5 kV, the capillary temperature was set at 280 ◦C. The sheath gas was set at
30 arbitrary units and the aux gas was set at five arbitrary units.
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2.7. Bioinformatic Analysis

For gut microbiota analysis, the MinION-sequenced reads were first uploaded via
the EPI2ME desktop agent (ONT) to the EPI2ME website algorithm (https://epi2me.
nanoporetech.com, accessed on 1 May 2021). The quality and quantity of sequencing
results were accessed through a web-interface. Analytical results of 16S rRNA classification
were aligned for identification with the NCBI database, which contains 18,927 16S rRNA
referents, using EPI2ME Labs Launcher (ONT). In brief, the 16S CSV file generated by
EPI2ME Agent was subjected to alignment with NCBI taxonomy database through taxonkit
software (v0.8.0, National Center for Biotechnology Information, Bethesda MD, USA).
Subsequently, the counts of sequenced reads were extracted from the annotated table.
Alpha- and beta-diversities of taxonomic profiling of MinION data were synchronously
assessed using the Microbial Genomics Module (CLC genomics workbench (Qiagen v21.0.3;
CLC Bio, Aarhus, Denmark)) with the 16S rRNA reference curated from the NCBI database.

2.8. UP-LC-MS/MS Data Preprocessing and Annotation

The raw data were converted to the mzXML format using ProteoWizard and pro-
cessed with an in-house program, which was developed using R and based on XCMS, for
peak detection, extraction, alignment, and integration. Then an in-house MS2 database
(BiotreeDB V2.1; accessed on 1 June 2021) was applied in metabolite annotation. The cutoff
for annotation was set at 0.3.

2.9. Statistical Analysis

Statistics regarding long-read sequencing results, including the number of total reads,
read quality, and sequencing depth obtained by MinION sequencing, are shown as the
mean ± standard error of the mean (SEM). Continuous variables were compared using a
one-way analysis of variance (ANOVA), followed by Tukey’s multiple-comparison post-
hoc test. A variable was considered to be significant with a p value of <0.05 (* p < 0.05;
** p < 0.01; *** p < 0.005). The availability of 50 participants in each group was sufficient to
achieve a moderate effect size (0.60–0.08) with a significance of 5% and statistical power
of 80% [20]. Differential abundances of the identified OTUs to the species level between
the healthy group and CKD patients were assessed using a linear discriminant analysis
effect size (LEfSe) assay through a website interface (https://huttenhower.sph.harvard.
edu/galaxy/root, accessed on 4 May 2021) using default settings. The populations of
identified gut OTUs between the healthy group and CKD patients were considered to differ
statistically significantly with a linear discriminant analysis (LDA) score (log10) of >3 and
a p value of <0.05. The utility of LDA-confirmed OTUs for predicting the occurrence of
CKD was evaluated using the receiver operating characteristic (ROC) curve and area under
the ROC curve (AUC) ratio as implemented in R programming. The correlation between
the sub-populations of identified OTUs and clinical metadata was evaluated using the
Spearman’s correlation coefficient.

3. Results
3.1. Demographic Data of Recruited Participants in This Study

To evaluate the correlation of the identities and distribution of the gut bacterial
community sub-populations with CKD progression, 60 healthy participants and 96 patients,
comprising 15 with stage 1–2, 60 with stage 3, and 21 with stage 4–5 CKD, were selected
through a careful quality control for this study (Figure 1). As shown in Table 1, no difference
in age or gender was observed among any of the groups. The levels of serum creatinine
and the eGFR mirrored kidney-disease severity in the CKD patients.

https://epi2me.nanoporetech.com
https://epi2me.nanoporetech.com
https://huttenhower.sph.harvard.edu/galaxy/root
https://huttenhower.sph.harvard.edu/galaxy/root
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Figure 1. Flow chart demonstrates the enrollment of study participants.

Table 1. Demographics of healthy participants and enrolled chronic kidney disease patients.

Healthy Group
(n = 60)

Stage 1 and 2
CKD

(n = 15)

Stage 3 CKD
(n = 60)

Stage 4 and 5
CKD

(n = 21)
p Value

Ethnicity
(Taiwanese) 60 (100%) 15 (100%) 60 (100%) 21 (100%) No Difference

Age
(Median(IQR)) 66 (41–87) 67 (50–84) 71 (33–90) 71 (43–87) >0.5

Sex
Female
Male

>0.532 (53.3%)
28 (46.7%)

4 (26.67%)
11 (73.33%)

30 (50%)
30 (50%)

10 (47.62%)
11 (52.38%)

T2DM 0 (0%) 6 (40%) 9 (15%) 7 (33.3%) >0.5

Fasting Blood
Glucose (mg/dL)

(Median(IQR))
89 (61–100) 114 (91–425) 101 (81–216) 108 (77–278) >0.5

PleaseHbA1c (%)
(Median(IQR)) 5.1 (4.2–6.0) 7.05 (5.2–9.4) 5.8 (4.1–8.6) 6 (4.7–8.5) >0.5

Serum Creatinine
(mg/dL)

(Median(IQR))
0.72 (0.5–1.15) 1.05 (0.73–1.41) 1.475 (0.86–3.36) 3.12 (1.96–13.15) 0.031

eGFR
(ml/min/1.73 m2)

(Median(IQR))
92.4 (63.9–134.2) 69.88 (63.57–81.18) 43.37 (37.32–51.7) 18.11 (10.04–25.73) 0.018

3.2. Statistical Results of Gut Microbial Communities in Enrolled Subjected Assessed with
Long-Read Sequencing Results

The average numbers of sequenced and qualified reads per sample were filtered and
generated using the CLC Genomics Workbench (v.21.0.2, Aarhus, Denmark) (Table 2). As
shown in Table 2, no significant differences in sequencing efficiency were noted among all
groups.
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Table 2. Summary statistics of long-read sequencing results.

Group Healthy Group
(n = 60)

Stage 1 and 2
CKD

(n = 15)

Stage 3 CKD
(n = 60)

Stage 4 and 5
CKD

(n = 21)
p Value

Number of Raw
reads per sample 86,121 (±7321) 101,233 (±15,702) 91,775 (±13,488) 113,206 (±23,517) >0.5

Number of
qualified reads per

sample
63,879 (±5121) 93,508 (±8332) 80,034 (±7540) 96,681 (±8116) >0.5

Correctly classified
(% (SD)) 89.22 (5.64) 90.13 (4.97) 91.59 (5.06) 87.31 (7.21) >0.5

Analyses using the Shannon entropy (Figure 2A) and Simpson indices (Figure 2B)
showed no obvious difference in terms of α-diversity between the groups’ microbial
communities from long-read sequencing results. The dissimilarity between the groups’
microbial communities was evaluated with the weighted Unifract distance or Bray–Curtis
index. Statistical results of the weighted UniFrac or Bray–Curtis dissimilarity analysis
principal coordinate analysis (PCoA) indicated that unique bacterial population aggregates
were identified in fecal samples of CKD patient at distinct stages compared to those of the
healthy group (Figure 3A,B). These results delineated differences in the composition rather
than the richness or numerical abundance of the gut microbial communities between the
CKD patients and healthy participants.
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3.3. Identification and Comparison of the Microbial Communities in the Guts of the Healthy Group
and CKD Patients Classified Using a Long-Read Sequencing Platform

The long-read sequencing approach has been demonstrated to exhibit a higher effi-
ciency than that of short-read sequencing for taxonomic classification of the gut microbiota
at the species level [21,22]. In this study, around 350–400 OTUs at the species level were
classified in individual groups using MinION sequencing-coupled with the EPI2ME al-
gorithm, and the top 20 classified OTUs at the species level in all groups are shown in
Figure 3. The majority of the top-20 classified OTUs in the healthy group were normal gut
flora, including the genera Blautia, Anaerostipes, Bacteroides, and Ruminococcus (Figure 4A).
Increases in the relative levels of genera Streptococcus, Klebsiella pneumonia, and Haemophilus
parainfluenzae were identified in the gut microbiota of patients with CKD at distinct stages
(Figure 4B–D). The relatively higher abundances of Fusobacterium varium or Fusobacterium
mortiferum were classified in fecal samples of stage 3 CKD patients (Figure 4C) or stage
4 and 5 CKD patients (Figure 4D). Gradual increases in the relative abundances of K.
pneumonia, S. criceti, and H. parainfluenzae were further identified at distinct stages of CKD
as compared to the healthy group (Figure 5A–C). A significant elevation in the relative
level of F. mortiferum was solely noted in feces samples of stage 4 and 5 CKD patients, com-
pared to the other groups (Figure 5D). These results indicate the presence of opportunistic
pathogens in the gut microbiota of patients across distinct CKD stages.
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(B) Streptococcus criceti, (C) Haemophilus parainfluenzae, and (D) Fusobacterium mortiferum in the fecal
samples of all groups are shown in a box plot.

3.4. Differential Abundances of Identified OTUs at the Species Level between Healthy Participants
and CKD Patients Evaluated Statistically

To assess the utility of long-read sequencing results, differential populations identities
and quantities of the identified OTUs between the healthy group and CKD patients were
evaluated through statistical analyses. A heat map illustrating the differential abundances
of 16 identified OTUs was generated using the CLC Genomics Workbench (v.20.0.1). The
increased levels of K. pneumonia, H. parainfluenzae, F. mortiferum, Lactobacillus delbrueckii, and
S. criceti were noted in CKD patients across distinct stages compared to the healthy group
(Figure 6A). Differential abundances of identified OTUs between healthy participants and
CKD patients were further evaluated using a linear discriminant analysis (LDA) effect-size
(LEfSe) assay [23]. The LDA score indicated relatively numerically high abundances of
K. pneumonia, S. criceti, H. parainfluenzae, and F. mortiferum in the microbial communities
of CKD participants (Figure 6B, red bars) compared to the healthy group (LDA score
(log10) > 3). In contrast, Bacteroides plebeius, Romboutsia timonesis, and Roseburia intestinalis
were relatively more abundant in the gut microbiota of healthy participants (Figure 5B,
green bars) (>0.5%) compared to all other microbial communities.
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scores computed for OTUs with differential abundances in healthy participants (green bar) and CKD patients (red bar).

3.5. Metabolic Profiles among Healthy Participants and CKD Patients across Distinct Stages

To further validate the relevance of CKD severity with gut metabolite profile generated
by host cells and gut microbiota, the feces samples collected from the healthy participants
(n = 20), CKD 1 and 2 patients (n = 15), CKD 3 patients (n = 20), and CKD 4 and 5 patients
(n = 15) were subjected to LC-QTOFMS analyses. The discriminating metabolites were
subjected to following analysis with the criteria, including VIP (variable importance in
projection) values > 1.5 and p < 0.05. As shown in Table 3, a total of 10 metabolites were
selected in this study. As compared to the healthy controls, the significant increases in all
identified metabolites (fold-change >2; p < 0.05) were noted in the feces samples of CKD
patients (Table 3). The relative standard deviation (RSD) for the 10 differential metabolites
varying from 3.37 to 24.62%, which suggested the analytic consistency throughout the
whole study. Gradual increases in the discriminating intensity of four metabolites with
high VIP value, including S-Adenosylhomocysteine, Propionic acid, Myristic acid, and
L-Carnitine, were noted across the distinct stages of CKD (Figure 7). These results sug-
gested the potential utility of gut metabolites on evaluating or predicting the severity of
CKD.
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Table 3. Summary statistics of top 10 discriminating metabolites in feces samples.

Metabolite KEGG HMDB Microbe Hsa Healthy CKD VIP p Value Fold Change RSD (%)

S-Adenosylhomocysteine C00021 HMDB0000939 + + 1.81 × 10−5 0.000258 2.51 0.029 6.94 3.37

Propionic acid C00163 HMDB0000619 + + 0.000239 0.012946 2.36 0.021 3.17 23.17

Myristic acid C06424 HMDB0000806 + + 0.005311 0.001116 2.35 0.019 3.49 9.85

L-Carnitine C00318 HMDB0000062 NA + 7.44 × 10−6 0.000509 2.25 0.131 2.72 19.38

Capsaicin C06866 HMDB0002227 + + 0.000343 0.002697 1.75 0.034 6.02 11.52

L-Tyrosine C00082 HMDB0000158 + + 0.000186 0.005451 1.74 0.037 4.81 24.62

Ephedrine C01575 HMDB0015451 + + 4.51 × 10−6 0.000865 2.03 0.019 6.25 17.22

gamma-Terpinene C09900 HMDB0005806 NA NA 0.000131 0.001716 1.39 0.039 4.43 20.15

Tricetin C10192 HMDB0029620 NA NA 0.120803 0.000461 1.27 0.124 3.09 20.54

Trehalose C01083 HMDB0000975 + + 0.000273 0.02608 1.21 0.042 6.18 24.15
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Figure 7. Severity-related changes in fecal metabolic signatures of CKD across distinct stages. Intensity of fecal metabolites
among different groups were analyzed by Wilcoxon rank sum test. *** p < 0.001; ** p < 0.005; * p < 0.01.

3.6. Potential Utility of Identified OTUs or Gut Metabolites on Differentiating CKD Subjects
across Distinct Stages

To evaluate the potential of the gut microbiota in differentiating CKD patients from
healthy participants, a random forest regression model was constructed with the differential
abundances of identified OTUs using the receiver operating characteristics (ROC) curve.
The ROC curve generated with the relative abundance of K. pneumonia or S. criceti toward
the diagnosis of all CKD patients resulted in an area under the ROC curve (AUC) of 0.837
or 0.804 (Figure 8A, left panel). Increases in the AUCs generated with the quantitative
populations of K. pneumonia or S. criceti with respect to the severity of CKD (Figure 7
middle and right) suggested the utility of identified OTUs on the diagnosis of patient with
late-stage CKD.
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By contrast, the higher AUC values generated with the intensity of four metabolites
toward the diagnosis of all CKD patients suggested the greater utility that gut metabolites
exerted than those of gut dysbiosis on diagnosis of all CKD patients (Figure 8B, left).
Nevertheless, the predictive utility of four metabolites was much more efficient toward
the stage 4 and 5 CKD patients as compared to other participants (Figure 8B, middle
and right). Besides Propionic acid, the positive correlation of the relative abundance of
K. pneumonia with S-Adenosylhomocysteine (Figure 8C, ρ = 0.612), L-Carnitine (Figure 8C,
ρ = 0.579), and Myristic acid (Figure 8C, ρ = 0.469) were noted in the feces samples of CKD
patients. These results suggest the usefulness of the increased levels of K. pneumonia or
gut metabolites as potential candidates for evaluating the deterioration of patient with
early-stage CKD.

4. Discussion

With advancements in high-throughput sequencing approaches, gut dysbiosis has
been observed in diverse diseases and, therefore, suggested to be important in understand-
ing these disease processes [24]. It is crucial to realize whether gut dysbiosis is predictive
and/or causative of disease progression, or simply a passive biomarker of disease state.
Herein, we conducted a cross-sectional cohort study to classify microbial communities at
the species level, and its association with fecal metabolites across different stages of CKD.
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These results highlight a potential host-microbe-metabolite axis that was relevant to the
severity of CKD.

The association of gut dysbiosis and changes of the intestinal wall or inflammatory
activity has been observed in patients with diabetes-induced CKD [25,26]. The result of 16S
rRNA sequencing demonstrated that less diversity in microbial community and dominance
of opportunistic pathogenic taxa, including genera Klebsiella and Enterobacteriaceae, with
concomitant decreases in the abundances of Roseburia and Blautia genera were found in the
feces samples of patients with T2DM [27]. Hyperglycemia and gut dysbiosis may constitute
a potential circuit increasing the permeability of intestinal wall and inflammatory activity
with resulting in the initiation or progression of CKD. Fecal transplantation from healthy
donors was reported to lessen the deterioration of diabetes patients with reprogrammed gut
dysbiosis, suggesting the potential determinant that gut microbiota serve throughout the
process of disease [28,29]. The integrity and barrier function of gut wall was compromised
both in patients with CKD-related factor [26,30,31]. Changes in the richness of gut microbial
genera related to the mucosal barrier function of intestinal wall, such as the decreases
in Roseburia and Faecalibacterium with concomitant increases in Clostridium perfringens,
Betaproteobacteria, and Desulfovibrio, were found in diabetes patients [32,33]. The richness
of genera Roseburia, Faecalibacterium, or Bifidobacteria has been correlated with increased
levels of butyrate [34,35], a short chain fatty acid, which strengthens the integrity of gut
barrier through stable tight and efficient mucus production [36,37]. Moreover, a disrupted
gut barrier was noted in individuals with increased abundance of K. pneumonia in gut
microbiota [38]. Gut barrier dysfunction resulted in the leakage of pro-inflammatory
product generated by the pathogenic taxa, subsequently leading to insulin resistance
and progression of CKD in diabetic patients [39,40]. By using the long-read sequencing
platform, an increase in the relative level of K. pneumonia in gut microbiota of CKD patient
was consistently noted, which suggested the potential impact of K. pneumonia on the
progression of CKD. In addition, the influence of colorectal cancer-related F.mortiferum on
CKD development was worthy of further investigation.

Several gastrointestinal bacteria were recently demonstrated to be highly relevant to
the elevation or generation of uremic toxins, which served the independent risk factor in
CKD patient [41]. We identified the gradual increases in fecal S-adenosylhomocysteine,
L-Carnitine, Propionic acid, and Myristic acid using untargeted LC-MS/MS platform
across the progression of CKD, which was consistent with other previous reports [42–45].
Among these four metabolites, the positive relevance of renal dysfunction or insuffi-
ciency in ESRD or T2DM patients with the elevated S-adenosylhomocysteine level in
serum or urine was frequently identified in previous studies [46,47]. Accumulation of
S-adenosylhomocysteine consequently interfered with post-translational or epigenetic
regulation involved in the activity of methylation reactions that were related to the re-
nal function [48]. K. pneumonia has been demonstrated to be capable of encoding the
5’-methylthioadenosine/S-adenosylhomocysteine nucleosidase involved in the production
of S-adenosylhomocysteine [49]. In addition, the presence of L-Carnitine was documented
to facilitate the interaction between host cells and K. pneumonia, which may interfere with
the integrity or barrier function of the intestinal wall [50]. These results suggested that the
interplay between K. pneumonia and S-Adenosylhomocysteine may function as a putative
mechanism toward the deterioration of CKD. Recruitment of single ethnicity population
and uneven case number in each CKD group are the limitations in this study. Neverthe-
less, the influence of identified candidate on CKD progression might be deciphered by
conducting a longitudinal study with the same study participants.

5. Conclusions

In conclusion, our findings facilitated a further understanding in the relevance be-
tween the gut environment and CKD across different stages. These results provided a
potential avenue for emerging diagnosis or intervention of renal impairment with CKD-
related microbiome or metabolite.



J. Clin. Med. 2021, 10, 3881 13 of 15

Author Contributions: Conceptualization, T.-H.C., B.H.S. and J.-C.L.; methodology, J.-C.L.; software,
J.-C.L.; validation, T.-H.C. and J.-C.L.; formal analysis, C.-W.L., Y.-H.H., C.-K.H., C.-S.H. and J.-C.L.;
inves-tigation, C.-W.L., Y.-H.H., C.-K.H., C.-S.H. and J.-C.L.; resources, J.-C.L.; data curation, C.-W.L.,
Y.-H.H., C.-K.H., C.-S.H. and J.-C.L.; writing—original draft preparation, B.H.S. and J.-C.L.; writing—
review and editing, T.-H.C., B.H.S. and J.-C.L.; visualization, J.-C.L.; supervision, T.-H.C. and J.-C.L.;
project administration, J.-C.L.; funding acquisition, J.-C.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by a grant (MOST 109-2622-B-038-002-CC3) from the Ministry of
Science and Technology, Taiwan.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Review Board of Taipei Medical University
(approval no. N202003133).

Informed Consent Statement: Informed consent was obtained from all participants recruited in the
study.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author due to privacy restrictions.

Acknowledgments: We appreciate Michael Tzeng, the general manager of Unimed Healthcare, Inc.
(Taipei, Taiwan), for funding the DNA/RNA Shield Fecal Collection tubes, Quick-DNA Fe-cal/Soil
Microbe Microprep Kit, and Quick-16S NGS Library Prep Kit (Zymo Research, Irvine, CA, USA)
used in this study.

Conflicts of Interest: The authors declare that no conflict of interest should be disclosed.

References
1. Chen, T.K.; Knicely, D.H.; Grams, M.E. Chronic kidney disease diagnosis and management: A review. JAMA 2019, 322, 1294–1304.

[CrossRef] [PubMed]
2. Kazancioglu, R. Risk factors for chronic kidney disease: An update. Kidney Int. Suppl. 2011, 2013, 368–371. [CrossRef] [PubMed]
3. Taler, S.J.; Agarwal, R.; Bakris, G.L.; Flynn, J.T.; Nilsson, P.M.; Rahman, M.; Sanders, P.W.; Textor, S.C.; Weir, M.R.; Townsend, R.R.

KDOQI US commentary on the 2012 KDIGO clinical practice guideline for management of blood pressure in CKD. Am. J. Kidney
Dis. 2013, 62, 201–213. [CrossRef] [PubMed]

4. Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [CrossRef]
[PubMed]

5. Vaziri, N.D.; Zhao, Y.Y.; Pahl, M.V. Altered intestinal microbial flora and impaired epithelial barrier structure and function in
CKD: The nature, mechanisms, consequences and potential treatment. Nephrol. Dial. Transplant. 2016, 31, 737–746. [CrossRef]
[PubMed]

6. Evenepoel, P.; Poesen, R.; Meijers, B. The gut-kidney axis. Pediatr. Nephrol. 2017, 32, 2005–2014. [CrossRef]
7. Vaziri, N.D.; Wong, J.; Pahl, M.; Piceno, Y.M.; Yuan, J.; DeSantis, T.Z.; Zhenmin, N.; Nguyen, T.H.; Andersen, G.L. Chronic kidney

disease alters intestinal microbial flora. Kidney Int. 2013, 83, 308–315. [CrossRef]
8. Kieffer, D.A.; Piccolo, B.D.; Vaziri, N.D.; Liu, S.; Lau, W.L.; Khazaeli, M.; Nazertehrani, S.; Moore, M.E.; Marco, M.L.; Martin, R.J.;

et al. Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in
rats. Am. J. Physiol. Renal Physiol. 2016, 310, F857–F871. [CrossRef]

9. Crespo-Salgado, J.; Vehaskari, V.M.; Stewart, T.; Ferris, M.; Zhang, Q.; Wang, G.; Blanchard, E.E.; Taylor, C.M.; Kallash, M.;
Greenbaum, L.A.; et al. Intestinal microbiota in pediatric patients with end stage renal disease: A Midwest Pediatric Nephrology
Consortium study. Microbiome 2016, 4, 50. [CrossRef]

10. Jiang, S.; Xie, S.; Lv, D.; Wang, P.; He, H.; Zhang, T.; Zhou, Y.; Lin, Q.; Zhou, H.; Jiang, J.; et al. Alteration of the gut microbiota in
Chinese population with chronic kidney disease. Sci. Rep. 2017, 7, 2870. [CrossRef]

11. Kalantar-Zadeh, K.; Fouque, D. Nutritional management of chronic kidney disease. N. Engl. J. Med. 2017, 377, 1765–1776.
[CrossRef] [PubMed]

12. Gentile, C.L.; Weir, T.L. The gut microbiota at the intersection of diet and human health. Science 2018, 362, 776–780. [CrossRef]
[PubMed]

13. Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R.;
et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334, 105–108. [CrossRef] [PubMed]

14. Di Iorio, B.R.; Rocchetti, M.T.; De Angelis, M.; Cosola, C.; Marzocco, S.; Di Micco, L.; di Bari, I.; Accetturo, M.; Vacca, M.; Gobbetti,
M.; et al. Nutritional therapy modulates intestinal microbiota and reduces serum levels of total and free indoxyl sulfate and
p-cresyl sulfate in chronic kidney disease (medika study). J. Clin. Med. 2019, 8, 1424. [CrossRef]

15. Li, A.; Lee, H.Y.; Lin, Y.C. The effect of ketoanalogues on chronic kidney disease deterioration: A meta-analysis. Nutrients 2019,
11, 957. [CrossRef] [PubMed]

http://doi.org/10.1001/jama.2019.14745
http://www.ncbi.nlm.nih.gov/pubmed/31573641
http://doi.org/10.1038/kisup.2013.79
http://www.ncbi.nlm.nih.gov/pubmed/25019021
http://doi.org/10.1053/j.ajkd.2013.03.018
http://www.ncbi.nlm.nih.gov/pubmed/23684145
http://doi.org/10.1038/s41579-020-0433-9
http://www.ncbi.nlm.nih.gov/pubmed/32887946
http://doi.org/10.1093/ndt/gfv095
http://www.ncbi.nlm.nih.gov/pubmed/25883197
http://doi.org/10.1007/s00467-016-3527-x
http://doi.org/10.1038/ki.2012.345
http://doi.org/10.1152/ajprenal.00513.2015
http://doi.org/10.1186/s40168-016-0195-9
http://doi.org/10.1038/s41598-017-02989-2
http://doi.org/10.1056/NEJMra1700312
http://www.ncbi.nlm.nih.gov/pubmed/29091561
http://doi.org/10.1126/science.aau5812
http://www.ncbi.nlm.nih.gov/pubmed/30442802
http://doi.org/10.1126/science.1208344
http://www.ncbi.nlm.nih.gov/pubmed/21885731
http://doi.org/10.3390/jcm8091424
http://doi.org/10.3390/nu11050957
http://www.ncbi.nlm.nih.gov/pubmed/31035482


J. Clin. Med. 2021, 10, 3881 14 of 15

16. Laffin, M.R.; Tayebi Khosroshahi, H.; Park, H.; Laffin, L.J.; Madsen, K.; Kafil, H.S.; Abedi, B.; Shiralizadeh, S.; Vaziri, N.D.
Amylose resistant starch (HAM-RS2) supplementation increases the proportion of Faecalibacterium bacteria in end-stage renal
disease patients: Microbial analysis from a randomized placebo-controlled trial. Hemodial. Int. 2019, 23, 343–347. [CrossRef]
[PubMed]

17. Uchiyama, K.; Wakino, S.; Irie, J.; Miyamoto, J.; Matsui, A.; Tajima, T.; Itoh, T.; Oshima, Y.; Yoshifuji, A.; Kimura, I.; et al.
Contribution of uremic dysbiosis to insulin resistance and sarcopenia. Nephrol. Dial. Transplant. 2020, 35, 1501–1517. [CrossRef]
[PubMed]

18. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the
evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150.

19. Wu, I.W.; Gao, S.S.; Chou, H.C.; Yang, H.Y.; Chang, L.C.; Kuo, Y.L.; Dinh, M.C.V.; Chung, W.H.; Yang, C.W.; Lai, H.C.; et al.
Integrative metagenomic and metabolomic analyses reveal severity-specific signatures of gut microbiota in chronic kidney
disease. Theranostics 2020, 10, 5398–5411. [CrossRef]

20. Casals-Pascual, C.; González, A.; Vázquez-Baeza, Y.; Song, S.J.; Jiang, L.; Knight, R. Microbial diversity in clinical microbiome
studies: Sample size and statistical power considerations. Gastroenterology 2020, 158, 1524–1528. [CrossRef]

21. Wei, P.L.; Hung, C.S.; Kao, Y.W.; Lin, Y.C.; Lee, C.Y.; Chang, T.H.; Shia, B.C.; Lin, J.C. Characterization of fecal microbiota with
clinical specimen using long-read and short-read sequencing platform. Int. J. Mol. Sci. 2020, 21, 7110. [CrossRef] [PubMed]

22. Shin, J.; Lee, S.; Go, M.-J.; Lee, S.Y.; Kim, S.C.; Lee, C.H.; Cho, B.-K. Analysis of the mouse gut microbiome using full-length 16S
rRNA amplicon sequencing. Sci. Rep. 2016, 6, 29681. [CrossRef]

23. Shoskes, D.A.; Altemus, J.; Polackwich, A.; Tucky, B.; Wang, H.; Eng, C. The urinary microbiome differs significantly between
patients with chronic prostatitis/chronic pelvic pain syndrome and controls as well as between patients with different clinical
phenotypes. Urology 2016, 92, 26–32. [CrossRef]

24. Fan, X.; Jin, Y.; Chen, G.; Ma, X.; Zhang, L. Gut microbiota dysbiosis drives the development of colorectal cancer. Digestion 2020,
15, 1–8. [CrossRef] [PubMed]

25. Felizardo, R.J.; Castoldi, A.; Andrade-Oliveira, V.; Câmara, N.O.S. The microbiota and chronic kidney diseases: A double-edged
sword. Clin. Transl. Immunol. 2016, 5, e86. [CrossRef]

26. Kanbay, M.; Onal, E.M.; Afsar, B.; Dagel, T.; Yerlikaya, A.; Covic, A.; Vaziri, N.D. The crosstalk of gut microbiota and chronic
kidney disease: Role of inflammation, proteinuria, hypertension, and diabetes mellitus. Int. Urol. Nephrol. 2018, 50, 1453–1466.
[CrossRef] [PubMed]

27. Ren, Z.; Fan, Y.; Li, A.; Shen, Q.; Wu, J.; Ren, L.; Lu, H.; Ding, S.; Ren, H.; Liu, C.; et al. Alterations of the Human Gut Microbiome
in Chronic Kidney Disease. Adv. Sci. 2020, 7, 2001936. [CrossRef]

28. Peng, J.; Narasimhan, S.; Marchesi, J.R.; Benson, A.; Wong, F.S.; Wen, L. Long term effect of gut microbiota transfer on diabetes
development. J. Autoimmun. 2014, 53, 85–94. [CrossRef] [PubMed]

29. Vrieze, A.; Van Nood, E.; Holleman, F.; Salojärvi, J.; Kootte, R.S.; Bartelsman, J.F.; Dallinga-Thie, G.M.; Ackermans, M.T.;
Serlie, M.J.; Oozeer, R.; et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with
metabolic syndrome. Gastroenterology 2012, 143, 913–916. [CrossRef]

30. Bosi, E.; Molteni, L.; Radaelli, M.G.; Folini, L.; Fermo, I.; Bazzigaluppi, E.; Piemonti, L.; Pastore, M.R.; Paroni, R. Increased
intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 2006, 49, 2824–2827. [CrossRef]

31. Cani, P.D.; Possemiers, S.; Van de Wiele, T.; Guiot, Y.; Everard, A.; Rottier, O.; Geurts, L.; Naslain, D.; Neyrinck, A.; Lambert, D.M.;
et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement
of gut permeability. Gut 2009, 58, 1091–1103. [CrossRef]

32. Roesch, L.F.; Lorca, G.L.; Casella, G.; Giongo, A.; Naranjo, A.; Pionzio, A.M.; Nan, L.; Mai, V.; Wasserfall, C.H.; Schatz, D.; et al.
Culture-independent identification of gut bacteria correlated with the onset of diabetes in a rat model. ISME J. 2009, 3, 536–548.
[CrossRef] [PubMed]

33. Pushpanathan, P.; Srikanth, P.; Seshadri, K.G.; Selvarajan, S.; Pitani, R.S.; Kumar, T.D.; Janarthanan, R. Gut microbiota in type2
diabetes individuals and correlation with monocyte chemoattractant protein1 and interferon gamma from patients attending a
Tertiary Care Centre in Chennai, India. Indian J. Endocrinol. Metab. 2016, 20, 523–530. [PubMed]

34. Cai, L.; Wu, H.; Li, D.; Zhou, K.; Zou, F. Type 2 Diabetes Biomarkers of Human Gut Microbiota Selected via Iterative Sure
Independent Screening Method. PLoS ONE 2015, 10, e0140827. [CrossRef]

35. Brown, C.T.; Davis-Richardson, A.G.; Giongo, A.; Gano, K.A.; Crabb, D.B.; Mukherjee, N.; Casella, G.; Drew, J.C.; Ilonen, J.;
Knip, M.; et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for
type 1 diabetes. PLoS ONE 2011, 6, e25792. [CrossRef]

36. Peng, L.; Li, Z.R.; Green, R.S.; Holzman, I.R.; Lin, J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly
via activation of AMP-activated protein kinase in caco-2 cell monolayers. J. Nutr. 2009, 139, 1619–1625. [CrossRef]

37. Burger-van Paassen, N.; Vincent, A.; Puiman, P.J.; van der Sluis, M.; Bouma, J.; Boehm, G.; van Goudoever, J.B.; van Seuningen, I.;
Renes, I.B. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: Implications for epithelial protection.
Biochem. J. 2009, 420, 211–219. [CrossRef] [PubMed]

38. Nakamoto, N.; Sasaki, N.; Aoki, R.; Miyamoto, K.; Suda, W.; Teratani, T.; Suzuki, T.; Koda, Y.; Chu, P.; Tanikiet, N.; et al. Gut
pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis.
Nat. Microbiol. 2019, 4, 492–503. [CrossRef]

http://doi.org/10.1111/hdi.12753
http://www.ncbi.nlm.nih.gov/pubmed/30924310
http://doi.org/10.1093/ndt/gfaa076
http://www.ncbi.nlm.nih.gov/pubmed/32535631
http://doi.org/10.7150/thno.41725
http://doi.org/10.1053/j.gastro.2019.11.305
http://doi.org/10.3390/ijms21197110
http://www.ncbi.nlm.nih.gov/pubmed/32993155
http://doi.org/10.1038/srep29681
http://doi.org/10.1016/j.urology.2016.02.043
http://doi.org/10.1159/000508328
http://www.ncbi.nlm.nih.gov/pubmed/32932258
http://doi.org/10.1038/cti.2016.36
http://doi.org/10.1007/s11255-018-1873-2
http://www.ncbi.nlm.nih.gov/pubmed/29728993
http://doi.org/10.1002/advs.202001936
http://doi.org/10.1016/j.jaut.2014.03.005
http://www.ncbi.nlm.nih.gov/pubmed/24767831
http://doi.org/10.1053/j.gastro.2012.06.031
http://doi.org/10.1007/s00125-006-0465-3
http://doi.org/10.1136/gut.2008.165886
http://doi.org/10.1038/ismej.2009.5
http://www.ncbi.nlm.nih.gov/pubmed/19225551
http://www.ncbi.nlm.nih.gov/pubmed/27366720
http://doi.org/10.1371/journal.pone.0140827
http://doi.org/10.1371/journal.pone.0025792
http://doi.org/10.3945/jn.109.104638
http://doi.org/10.1042/BJ20082222
http://www.ncbi.nlm.nih.gov/pubmed/19228118
http://doi.org/10.1038/s41564-018-0333-1


J. Clin. Med. 2021, 10, 3881 15 of 15

39. Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; et al.
Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007, 56, 1761. [CrossRef]

40. Nymark, M.; Pussinen, P.J.; Tuomainen, A.M.; Forsblom, C.; Groop, P.; Lehto, M. Serum lipopolysaccharide activity is associated
with the progression of kidney disease in finnish patients with type 1 diabetes. Diabetes Care 2009, 32, 1689–1693. [CrossRef]

41. Ramezani, A.; Massy, Z.A.; Meijers, B.; Evenepoel, P.; Vanholder, R.; Raj, D.S. Role of the Gut Microbiome in Uremia: A Potential
Therapeutic Target. Am. J. Kidney Dis. 2016, 67, 483–498. [CrossRef]

42. Zhu, S.; Zhang, F.; Shen, A.W.; Sun, B.; Xia, T.Y.; Chen, W.S.; Tao, X.; Yu, S.Q. Metabolomics Evaluation of Patients with Stage 5
Chronic Kidney Disease before Dialysis, Maintenance Hemodialysis, and Peritoneal Dialysis. Front. Physiol. 2021, 11, 630646.
[CrossRef]

43. Guo, F.; Dai, Q.; Zeng, X.; Liu, Y.; Tan, Z.; Zhang, H.; Ouyang, D. Renal function is associated with plasma trimethylamine-N-oxide,
choline, L-carnitine and betaine: A pilot study. Int. Urol. Nephrol. 2021, 53, 539–551. [CrossRef]

44. Carron, C.; Pais de Barros, J.P.; Gaiffe, E.; Deckert, V.; Adda-Rezig, H.; Roubiou, C.; Laheurte, C.; Masson, D.; Simula-Faivre, D.;
Louvat, P.; et al. End-Stage Renal Disease-Associated Gut Bacterial Translocation: Evolution and Impact on Chronic Inflammation
and Acute Rejection After Renal Transplantation. Front. Immunol. 2019, 10, 1630. [CrossRef]

45. Shchelochkov, O.A.; Manoli, I.; Sloan, J.L.; Ferry, S.; Pass, A.; Van Ryzin, C.; Myles, J.; Schoenfeld, M.; McGuire, P.; Rosing, D.R.;
et al. Chronic kidney disease in propionic acidemia. Genet. Med. 2019, 21, 2830–2835. [CrossRef]

46. Herrmann, W.; Schorr, H.; Obeid, R.; Makowski, J.; Fowler, B.; Kuhlmann, M.K. Disturbed homocysteine and methionine cycle
intermediates S-adenosylhomocysteine and S-adenosylmethionine are related to degree of renal insufficiency in type 2 diabetes.
Clin. Chem. 2005, 51, 891–897. [CrossRef] [PubMed]

47. Valli, A.; Carrero, J.J.; Qureshi, A.R.; Garibotto, G.; Bárány, P.; Axelsson, J.; Lindholm, B.; Stenvinkel, P.; Anderstam, B.;
Suliman, M.E. Elevated serum levels of S-adenosylhomocysteine, but not homocysteine, are associated with cardiovascular
disease in stage 5 chronic kidney disease patients. Clin. Chim. Acta 2008, 395, 106–110. [CrossRef]

48. Yang, J.; Fang, P.; Yu, D.; Zhang, L.; Zhang, D.; Jiang, X.; Yang, W.Y.; Bottiglieri, T.; Kunapuli, S.P.; Yu, J.; et al. Chronic Kidney
Disease Induces Inflammatory CD40+ Monocyte Differentiation via Homocysteine Elevation and DNA Hypomethylation. Circ.
Res. 2016, 119, 1226–1241. [CrossRef] [PubMed]

49. Cornell, K.A.; Winter, R.W.; Tower, P.A.; Riscoe, M.K. Affinity purification of 5-methylthioribose kinase and 5-methylthioadenosine/S-
adenosylhomocysteine nucleosidase from Klebsiella pneumoniae. Biochem. J. 1996, 317, 285–290. [CrossRef] [PubMed]

50. Pranavathiyani, G.; Prava, J.; Rajeev, A.C.; Pan, A. Novel Target Exploration from Hypothetical Proteins of Klebsiella pneumoniae
MGH 78578 Reveals a Protein Involved in Host-Pathogen Interaction. Front. Cell Infect. Microbiol. 2020, 10, 109. [CrossRef]

http://doi.org/10.2337/db06-1491
http://doi.org/10.2337/dc09-0467
http://doi.org/10.1053/j.ajkd.2015.09.027
http://doi.org/10.3389/fphys.2020.630646
http://doi.org/10.1007/s11255-020-02632-6
http://doi.org/10.3389/fimmu.2019.01630
http://doi.org/10.1038/s41436-019-0593-z
http://doi.org/10.1373/clinchem.2004.044453
http://www.ncbi.nlm.nih.gov/pubmed/15774574
http://doi.org/10.1016/j.cca.2008.05.018
http://doi.org/10.1161/CIRCRESAHA.116.308750
http://www.ncbi.nlm.nih.gov/pubmed/27992360
http://doi.org/10.1042/bj3170285
http://www.ncbi.nlm.nih.gov/pubmed/8694776
http://doi.org/10.3389/fcimb.2020.00109

	Introduction 
	Materials and Methods 
	Ethics Statement of the Study Cohort and Sample Collection 
	Metadata and Biochemical Analysis 
	Bacterial DNA Extraction 
	16S Ribosomal (r)RNA Gene Sequencing 
	Metabolites Extraction 
	UPLC-MS/MS Analysis 
	Bioinformatic Analysis 
	UP-LC-MS/MS Data Preprocessing and Annotation 
	Statistical Analysis 

	Results 
	Demographic Data of Recruited Participants in This Study 
	Statistical Results of Gut Microbial Communities in Enrolled Subjected Assessed with Long-Read Sequencing Results 
	Identification and Comparison of the Microbial Communities in the Guts of the Healthy Group and CKD Patients Classified Using a Long-Read Sequencing Platform 
	Differential Abundances of Identified OTUs at the Species Level between Healthy Participants and CKD Patients Evaluated Statistically 
	Metabolic Profiles among Healthy Participants and CKD Patients across Distinct Stages 
	Potential Utility of Identified OTUs or Gut Metabolites on Differentiating CKD Subjects across Distinct Stages 

	Discussion 
	Conclusions 
	References

