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Abstract

Because of a possible impact of capsaicin in the high concentrations on enterocyte injury

(cytotoxicity) and bactericidal activity on probiotics, Lactobacillus rhamnosus L34 (L34) and

Lactobacillus rhamnosus GG (LGG), the probiotics derived from Thai and Caucasian popu-

lation, respectively, were tested in the chili-extract administered C57BL/6 mice and in vitro

experiments. In comparison with placebo, 2 weeks administration of the extract from Thai

chili in mice caused loose feces and induced intestinal permeability defect as indicated by

FITC-dextran assay and the reduction in tight junction molecules (occludin and zona occlu-

dens-1) using fluorescent staining and gene expression by quantitative real-time polymer-

ase chain reaction (qRT-PCR). Additionally, the chili extracts also induced the translocation

of gut pathogen molecules; lipopolysaccharide (LPS) and (1!3)-β-D-glucan (BG) and fecal

dysbiosis (microbiome analysis), including reduced Firmicutes, increased Bacteroides, and

enhanced total Gram-negative bacteria in feces. Both L34 and LGG attenuated gut barrier

defect (FITC-dextran, the fluorescent staining and gene expression of tight junction mole-

cules) but not improved fecal consistency. Additionally, high concentrations of capsaicin

(0.02–2 mM) damage enterocytes (Caco-2 and HT-29) as indicated by cell viability test,

supernatant cytokine (IL-8), transepithelial electrical resistance (TEER) and transepithelial

FITC-dextran (4.4 kDa) but were attenuated by Lactobacillus condition media (LCM) from

both probiotic-strains. The 24 h incubation with 2 mM capsaicin (but not the lower concentra-

tions) reduced the abundance of LGG (but not L34) implying a higher capsaicin tolerance of

L34. However, Lactobacillus rhamnosus fecal abundance, using qRT-PCR, of L34 or LGG

after 3, 7, and 20 days of the administration in the Thai healthy volunteers demonstrated the

similarity between both strains. In conclusion, high dose chili extracts impaired gut
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permeability and induced gut dysbiosis but were attenuated by probiotics. Despite a better

capsaicin tolerance of L34 compared with LGG in vitro, L34 abundance in feces was not dif-

ferent to LGG in the healthy volunteers. More studies on probiotics with a higher intake of

chili in human are interesting.

Introduction

Capsaicin, a major active ingredient of chili, is responsible for the hot taste with several dose-

related effects; ranging from the cell (or neuron) stimulation to the induction of cell death [1–

3]. With the proper doses, capsaicin demonstrated several beneficial reactions, including anti-

inflammation, anti-oxidants, anti-tumor, and immune stimulation [3–7]. Indeed, chili

becomes one of the health-promoting diets [8]. However, consumption of extremely spicy

food or high dose of capsaicin might induce some adverse effects. Accordingly, chili-induced

diarrhea or dyspepsia is a common complication of spicy food consumption [9]. Although an

inadequate time for water absorption and causes chili-induced diarrhea or loose stool due to

capsaicin-induced gut-hypermotility (capsaicin irritating effect) is well-known [10, 11], diar-

rhea from other effects of capsaicin is possible. As such, the high doses of capsaicin activate

inflammation and induce cytotoxicity (cell cycle arrest and apoptosis) in several cells [12–14]

and capsaicin bactericidal activity [15] might selectively select some groups of gut bacteria lead

to the fecal dysbiosis. Then, it is possible that too much consumption of chili might cause diar-

rhea from the direct enterocyte injury and gut dysbiosis. Although the pungency (spiciness) of

Thai chili according to the Scoville scale, based on the concentration of capsaicinoid compo-

nents is in the middle rank among all types of chili around the world [16, 17], Thai chili is an

ingredient in nearly all Thai cuisines, even with fruits (mixing with salt and sugar). The fre-

quent chili ingestion of Thai population might be associated with some unique features in

their gut microbiota and the probiotics that are derived from Thai people might be more toler-

ance to capsaicin. Because of the possible similarity in gut microbiome within the population

due to the influence of co-evolution (hosts and gut microbes) [18–21] and diets [22, 23], Lacto-
bacillus rhamnosus L34 (L34; the probiotics derived from Thai microbiome [24–29]) might

have a unique property against capsaicin. In parallel, Lactobacillus rhamnosus GG (LGG) are

the commercially available probiotics that are derived from the Caucasian population with

profound beneficial effects in several models [30–33]. Because animal models have been devel-

oped to study the effect of probiotics in various models [24–29], in this study we used C57BL/6

mice to test Lactobacillus rhamnosus in chili-induced gut injury model. Due to the possibility

that L34 might be more tolerant against higher capsaicin concentrations than LGG, both

strains of probiotics were tested in i) a mouse model with chili extract administration, ii) enter-

ocytes (Caco-2 and HT-29 cell lines) and iii) the healthy volunteers.

Materials and methods

Animals and animal model

The Institutional Animal Care and Use Committee of the Faculty of Medicine, Chulalongkorn

University, Bangkok, Thailand (SST025/2563) approved the animal care and use procedure in

accordance with the US National Institutes of Health guidelines using 8-week-old male

C57BL/6 mice (Nomura Siam International, Pathumwan, Bangkok, Thailand). All mice were

housed in an animal facility that designed for the use of bacteria in mice under a 12:12 h light-
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dark cycle at animal center, Faculty of Medicine, Chulalongkorn University. Mice were kept in

the same cage for the determination of several parameters in chili-administered model, while

some mice were kept in different cages in each experimental group for the microbiota analysis.

To compare the result between 6 independent groups with one-way analysis of variance

(ANOVA), we use G-power program to calculate sample size per group. Therefore, a mini-

mum number of mice (8 mice per group) were used to obtain the proper statistical test and the

significance was determined by p-value < 0.05. Then, a total of 48 mice were randomized into

several groups for the determination of several parameters in chili-administered model and

the feces from some mice were used for the fecal microbiome analysis. For investigating the

effect of Lactobacillus rhamnosus in chili-administered model, mice were randomly divided

into 6 groups: the control phosphate buffer solution (PBS) group (n = 8) without chili adminis-

tration, the control L. rhamnosus 34 (L34) group (n = 8), the control L. rhamnosus GG (LGG)

group (n = 8) and the chili-extract administered group treated with PBS (n = 8), L34 (n = 8),

and LGG (n = 8) which received at 1 × 108 colonies forming unit (CFU) of Lactobacilli. For

chili extracts, 40 g of Thai chili was diluted in 250 mL of absolute ethanol before autoclave at

121˚C for 15 min following a previous publication [34]. After that, the samples were subjected

to filtration twice with Whatman filter paper (number 42) (GE Healthcare, Chicago, IL, USA)

and dried in hot air oven at 55˚C (Shel Lab, Cornelius, OR, USA) for 4 days before suspension

by 60 mL sterile water. According to this protocol, the chili extract approximately contains 1

mg of capsaicin per 1 mL of the solution [34]. Then, the chili extract at 0.5 mL (approximately

50 mg capsaicin/ dose) or phosphate buffer solution (PBS) control was orally administered in

mice once a day at 8:00 AM. In parallel, the probiotics, including Lactobacillus rhamnosus L34

(L34) (Chulalongkorn University, Bangkok, Thailand) or Lactobacillus rhamnosus GG (LGG)

(Mead-Johnson, Evansville, IN, USA) at 1 × 108 colonies forming unit (CFU) in 0.3 mL PBS or

PBS alone were orally administered once a day at 16:00 PM. Mice were observed and moni-

tored daily for body weight, stool consistency and feces from each group of mice were collected

before sacrifice for microbiome analysis. After 14 days administration, mice were euthanized

with cardiac puncture under isoflurane anesthesia and mouse samples (blood, and colon tis-

sue) were collected. Serum and colon tissue were snap frozen in liquid nitrogen and kept in

-80˚C before use. The stool consistency was semi-quantitatively evaluated as “the stool consis-

tency index” using the following score; 0, normal; 1, soft; 2, loose and 3, diarrhea, as previously

published [35].

Serum cytokine and gut permeability analysis

Serum tumor necrosis factor (TNF)-α was determined by enzyme-linked immunosorbent

assays (ELISA) (Invitrogen, Carlsbad, CA, USA). Gut permeability was determined by fluores-

cein isothiocyanate dextran (FITC-dextran) assay, serum lipopolysaccharide (LPS), serum

(1!3)-β-D-glucan (BG) and immunofluorescent detection of tight junction proteins following

previous publications [28, 36–38]. The spontaneous detection of LPS and BG, the molecular

components from gut microorganisms (Gram-negative bacteria and fungi, respectively), in

serum without systemic inflammation and the identification of non-intestinal absorbable mol-

ecules in serum after an oral administration indicate gut permeability defect [36–38]. Then,

FITC-dextran, an intestinal non-absorbable molecule with molecular weight (MW) of 4.4

kDa, (Sigma-Aldrich, St. Louis, MO, USA), at 12.5 mg per mouse was orally administered at 3

h before serum FITC-dextran detection by a Fluorospectrometer (NanoDrop 3300; Thermo-

Fisher Scientific, Wilmington, DE, USA). Serum LPS and BG was measured by HEK-Blue LPS

Detection (InvivoGen, San Diego, CA, USA) and Fungitell (Associates of Cape Cod, Inc., East

Falmouth, MA, USA), respectively. When the values of BG were lower than 7.8 pg/mL, the
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data were recorded as 0 due to being beyond the lower limit of the standard curve. Addition-

ally, gut tight junction was determined using mouse colons that were prepared in Cryogel

(Leica Biosystems, Richmond, IL, USA), cut into 5 μm thick frozen sections and stained with

antibodies against occludin and zonula occludens-1 (ZO-1) with the green fluorescent second-

ary antibody (Alexa Fluor 488) (Life Technologies, Carlsbad, CA, USA). The fluorescent color

was visualized and scored by ZEISS LSM 800 (Carl Zeiss, Germany). For cytokines in colon tis-

sue, including TNF-α and interleukin (IL)-6, the samples were weighed, sonicated thoroughly

using a Ultra-Turrax homergenizer (IKA, Staufen, Germany) in 500 μL of PBS, pH 7.4 con-

taining protease inhibitor, centrifuged at 12,000 × g for 15 min at 4˚C to separate the superna-

tant and the supernatant cytokine levels were measured using ELISA (Invitrogen).

Furthermore, 10% formalin fixed paraffin-embedded colon sections were stained with Hema-

toxylin and Eosin (H&E) (Sigma-Aldrich) and analyzed for intestinal injury with the modified

semi-quantitative score at 200× magnification by 2 pathologists in a blinded manner based on

mononuclear cell infiltration (in mucosa and sub-mucosa), epithelial hyperplasia (epithelial

cell in longitudinal crypts), reduction of goblet cells, and epithelial cell vacuolization in com-

parison with control are following scores; 0; leukocyte < 5% and no epithelial hyperplasia

(<10% of control), 1; leukocyte infiltration 5–10% or hyperplasia 10–25%, 2; leukocyte infiltra-

tion 10–25% or hyperplasia 25–50% or reduced goblet cells (>25% of control), 3; leukocyte

infiltration 25–50% or hyperplasia >50% or intestinal vacuolization, 4; leukocyte infiltration

>50% or ulceration as previously published [26].

Gene expression of tight junction proteins using polymerase chain reaction

To quantitatively determine the intestinal tight junction injury, gene expression of occludin

and ZO-1 were determined with quantitative reverse transcription polymerase chain reaction

(qRT-PCR) following a published protocol [39]. Briefly, total RNA was prepared from the

colon tissue samples with an RNA-easy mini kit (Qiagen, Hilden, Germany) and was quanti-

fied by Nanodrop 1000 Spectrophotometer (Thermo Scientific). Total reverse transcribed

RNAs were processed with a High-Capacity cDNA Reverse Transcription (Thermo Scientific)

before performing by qRT-PCR with SYBR Green PCR Master Mix using QuantStudio6 Flex

Real-time PCR System (Thermo Scientific). The primers for occludin were (forward; 50-CC

TCCAATGGCAAAGTGAAT-30, reverse; 50- CTCCCCACCTGTCGTGTAGT-30) and for

ZO-1 were (forward; 50- GCAAGAGGAGTCCCTGACTG-30, reverse; 50-CGGCTCTGTCCT
AACTCCAG-30). The results were demonstrated in terms of relative quantitation of the com-

parative threshold (delta-delta Ct) method (2-ΔΔCt) as normalized by β-actin (an endogenous

housekeeping gene) with the following primers (forward; 5’-CGGTTCCGATGCCCTGAGG
CTCTT-3’ and reverse; 5’-CGTCACACTTCATGATGGAATTGA-3’).

Fecal microbiome analysis

Feces from each mouse (0.25 g per mouse; 3 mice per group) from different cages in each

experimental group were collected for the microbiota analysis following a previous report [40].

Of note, mice in the same groups were housed in different cages because co-housing might

induce similar gut microbiota within the same cage. In short, metagenomic DNA was

extracted from individual mice by DNeasy PowerSoil Kit (Qiagen, Maryland, USA). The qual-

ity and concentration of the extracted DNA were measured by agarose gel electrophoresis and

nanodrop spectrophotometry. Libraries of the V4 hypervariable region of 16S rRNA gene

were amplified by polymerase chain reaction (PCR) using Universal prokaryotic primers 515F

(forward; 50-GTGCCAGCMGCCGCGGTAA-30) and 806R (reverse; 50-GGACTACHVGGGTWT
CTAAT-30), modified with the Illumina adapter and Golay barcode sequences in Miseq300
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platform (Illumina, San Diego, CA, USA). The raw sequences and operational taxonomic unit

(OTU) were classified following Mothur’s standard operating platform [41, 42]. The non-met-

ric multidimensional scaling (NMDS), the distance-based ordination method, was performed

based on the Bray-Curtis dissimilarity. The 16S rDNA sequences in this study were deposited

in an NCBI open access Sequence Read Archive database with accession number

PRJNA776693.

Human fecal samples

Feces of the healthy volunteers were collected at the King Chulalongkorn Memorial Hospital,

Bangkok, Thailand following the approved protocol by the Ethical Institutional Review Board,

Faculty of Medicine, Chulalongkorn University (IRB No. 130/62), according to the Declara-

tion of Helsinki, with the written informed consent from each individual volunteer. The inclu-

sion criteria of the volunteers were i) adults between 18–65 years old without neither

underlying diseases nor any current medications and ii) ingestion of Thai chili containing diet

at least 1 meal per day. The exclusion criteria were i) underlying diseases (hypertension, diabe-

tes, liver diseases, and kidney injury), ii) any medications, including antibiotics and health sup-

plements within 1 month of the recruitment, and iii) ingestion of any products containing

probiotics (for example; Yogurt, Kimchi and pickled fish) within 2 weeks. Then, the volunteers

were orally once daily administered with L. rhamnosus L34 (Greater Pharma co., Bang Phlat,

Bangkok, Thailand) or L. rhamnosus GG (Mead-Johnson) at 1 × 109 CFU/dose. To determine

the abundance of fecal Lactobacilli of the healthy volunteer, real-time polymerase chain reac-

tion (PCR) was performed on fecal contents at the baseline (3 days before probiotic adminis-

tration; 0 time-point (D0)) and after several days of administration, including 3 (D3), 7 (D7)

and 20 (D20) days, and after stop the probiotics for 3 days (D23) and 7 days (D30) to explore

rate of the probiotic reduction. The total DNAs were extracted by a QIAamp fast DNA Stool

Mini Kit (Qiagen, Hiden, Germany) following manufacturer’s instructions with the primers

for variable regions of 16S rRNA gene sequence of L. rhamnosus; rham (forward; 50-TGCAT
CTTGATTTAATTTTG-30) and Y2 (reverse; 50-CCCACTGCTGCCTCCCGTAGGAGT-30) [43].

The amplicon was approximately 290 base pairs (bp) and the genome size of L. rhamnosus
(also designated as LR ATCC 53103) was 3,005,051 bp [44]. Bacterial genome is approximately

1.98 × 109 g/mol and contains 6.02 × 1023 molecules/mol. One bacterium corresponds to 3.3 fg

of DNA. The constructive of standard curve was generated by the QuantStudio™ Design &

Analysis Software v1.4.3 (Thermo Fisher Scientific) using 10-fold serial dilution (6.6 fg to 660

pg) with bacterial concentrations ranging from of 2 to 2 × 105 bacteria. In parallel, the quantifi-

cation of fecal bacteria was indicated by real-time PCR which represented by cycle threshold

(Ct value). Real-time PCR was performed in a QuantStudio™ Design & Analysis Software

v1.4.3 with primers are as followed; total Gram negative bacteria (16S rRNA Gram neg.) (for-

ward; 50-GGAGGAAGGTGGGGATGACG-30, reverse; 50-ATGGTGTGACGGGCGGTGTG-30),
Klebsiella (KP16) (forward; 50-GCAAGTCGAGCGGTAGCACAG-30, reverse; 50-CAGTGTGG
CTGGTCATCCTCTC-30) [45], Salmonella (STM4497) (forward; 50-AACAACGGCTCCGGTA
ATGAGATTG-30, reverse; 50-ATGACAAACTCTTGATTCTGAAGATCG-30) [46], Bacteroides
(Bac) (forward; 50-GGCGCACGGGTGAGTAAC-30, reverse; 50-TGTGGGGGACCTTCCTCT
C-30) [47], Bacteroides fragilis (forward; 50-CGGAGGATCCGAGCGTTA-30, reverse; 50-CC
GCAAACTTTCACAACTGACTTA-30), Lactobacillus (L341bp) (forward; 50-AGCAGTAGGGA
ATCTTCCA-30, reverse; 50-CACCGCTACACATGGAG-30) [48], Akkermansia (AM) (forward;

50-CAGCACGTGAAGGTGGGGAC-30, reverse; 50- CCTTGCGGTTGGCTTCAGAT-30) [49],

and total fungi (ITS) (forward; 50-TCCGTAGGTGAACCTGCGG-30 and reverse; 50-TCCTCC
GCTTATTGATATGC-30) [50].
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Cell viability test of capsaicin-activated enterocytes

Because of the known cytotoxicity of capsaicin [12, 13] (a main substance responsible for the

hot and spicy taste in the chili), capsaicin (305.41 g/mol molecular weight; Sigma-Aldrich,

St. Louis, MO, USA) were tested with enterocytes (Caco-2 and HT-29 cell lines). As such, the

human colorectal adenocarcinoma cells, Caco-2 (ATCC HTB-37) and HT-29 (ATCC HTB-

38), from the American Type Culture Collection (Manassas, VA, USA) were maintained in

supplemented Dulbecco’s modified Eagle medium (DMEM) and McCoy’s 5a modified

medium, respectively, at 37˚C under 5% CO2 and sub-cultured before use in the experiments.

Then, capsaicin in the different concentrations (0.02, 0.2 and 2 mM) was incubated with the

enterocytes for 24 h before the determination of cell viability using tetrazolium dye 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) solution (Thermo Fisher Scientific,

Rockford, IL, USA) [38]. The activated cells were incubated with 0.5 mg/mL of MTT solution

for 2 h at 37˚C in the dark and diluted by dimethyl sulfoxide (DMSO; Thermo Fisher Scien-

tific) before measurement with a Varioskan Flash microplate reader at absorbance of optical

density (OD) 570 nm.

Proinflammatory activation in enterocytes

Because capsaicin induces diarrhea [9] possibly through capsaicin-induced gut hypermobility

[10, 11] and cytotoxicity [12, 13] (especially with the presence of microbial molecules), capsai-

cin alone or with lipopolysaccharide (LPS), a major component of Gram-negative bacteria in

gut, with or without (1!3)-β-D-glucan (BG), a major component of fungi in gut, were incu-

bated with the enterocytes with and without the Lactobacillus condition media (LCM). For

LCM preparation, L. rhamnosus L34 or LGG at an OD600 of 0.1 were incubated anaerobically

for 48 h before supernatant collection by centrifugation and filtration (0.22-μm membrane fil-

ter) (Minisart; Sartorius Stedim Biotech GmbH, Göttingen, Germany). After that, cell-free

supernatant of the samples (500 μL) was concentrated by speed vacuum drying at 40˚C for 3 h

(Savant Instruments, Farmingdale, NY), resuspended in an equal volume of DMEM or

McCoy’s 5a modified medium for testing in Caco-2 or HT-29 cells, respectively, and stored at

-20˚C until use. Then, capsaicin (Sigma-Aldrich) at 0.02 mM alone or with LPS from E. coli
O26:B6 (Sigma-Aldrich) at 100 ng/mL with or without BG, using whole glucan particle

(WGP) that was purified from Saccharomyces cerevisiae (Biothera, Eagan, MN), at 100 μg/mL

were incubated with the enterocytes with or without 5% (vol/vol) LCM (each strain) (the total

volume was adjusted into 200 μL/well by the culture media) for 24 h before determination the

level of IL-8 by using a Human CXCL8/IL-8 ELISA kit (Quantikine immunoassay; R&D Sys-

tems, Minneapolis, MN, USA) according to the manufacturer’s instructions.

Transepithelial electrical resistance (TEER) and enterocyte permeability

The integrity of monolayer enterocytes in different conditions was determined by TEER using

Caco-2 cells, but not HT-29 cells due to a limited ability of monolayer growth of HT-29 cells

[51]. Caco-2 cells (ATCC HTB-37) at 5 × 104 cells per well were seeded onto the upper com-

partment of 24-well Boyden chamber trans-well plate using DMEM-high glucose supple-

mented with 20% fetal bovine serum (FBS), 1% HEPES, 1% sodium pyruvate, and 1.3%

Penicillin/Streptomycin for 15 days with daily media replacement to establish the confluent

monolayer. After that, capsaicin (Sigma-Aldrich) at 0.02 and 0.2 mM with or without 5% (vol/

vol) LCM of L. rhamnosus L34 or LGG were incubated at 37˚C under 5% CO2 for 24 h. Subse-

quently, TEER was measured by an EMOM2 Epithelial Voltohmmeter (World Precision

Instruments Inc., Sarasota, FL, USA) by placing the electrodes in supernatant at basolateral

and apical chamber. The TEER value in media culture without cells was used as a blank and
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was subtracted from all measurements. The unit of TEER was ohm (O) × cm2. In parallel, 5 μL

of FITC-dextran (4.4 kDa) (Sigma-Aldrich) at 10 mg/mL was added to the apical side of the

trans-well chamber with 24 h stimulated Caco-2 cells. Then, FITC-dextran from the basolat-

eral side of the trans-well plate was measured at 1 h after incubation using Fluorospectrometer

(NanoDrop 3300) (ThermoFisher Scientific) as modified from the published protocols [52–

54]. The concentration of FITC-dextran from the basolateral side represents the severity of

permeability defect of Caco-2 cells.

Capsaicin bactericidal effect against the probiotics

Due to the possible bactericidal activity of capsaicin against the probiotics [15], capsaicin

(Sigma-Aldrich) at 20 mM in different concentrations (0.2, 2, and 20 mM) or medium control

(De Man, Rogosa and Sharpe; MRS) were incubated with L. rhamnosus L34 (Chulalongkorn

University) or L. rhamnosus GG (Mead-Johnson) at 3.0 × 107 CFU/mL for 24 h before determi-

nation of bacterial abundance as previously described [55]. Briefly, L. rhamnosus at an OD600

of 0.1 (3.0 × 107 CFU/mL) in MRS broth with or without capsaicin (Sigma-Aldrich) at 20 mM

were incubated anaerobically for 24 h. After incubation, the optical density of each culture was

determined at 600 nm (OD600) by spectrophotometer (Bio-Rad Smart Spec Plus, Bio-Rad Lab-

oratories Inc, Hercules, CA, USA) to calculate bacterial number, and then 10-fold serially

diluted in MRS broth, and cultured as stated previously for 48 h for bacterial enumeration.

Extracellular flux analysis. Because of the known influence on cell energy of capsaicin in

cancer cells [56], the energy metabolism profiles of enterocytes (HT-29 cells) [57] with the esti-

mation of glycolysis and mitochondrial oxidative phosphorylation through extracellular acidi-

fication rate (ECAR) and oxygen consumption rate (OCR), respectively, were performed by

the Seahorse XF Analyzers (Agilent, Santa Clara, CA, USA) as previously described [28, 29,

58–62]. In brief, HT-29 cells (1 × 104 cells/ well) were grown and stimulated with capsaicin in

with McCoy’s 5a modified medium control, with or without LCM of L. rhamnosus L34 or

LGG for 24 h in a Seahorse cell culture plate before replacing by Seahorse substrates (glucose,

pyruvate, and L-glutamine) (Agilent, 103575–100) in pH 7.4 at 37˚C for 1 h prior to the chal-

lenge with different metabolic interference compounds including oligomycin 1.5 μM, carbonyl

cyanide-4-(trifluoromethoxy)-phenylhydrazone (FCCP) 1 μM, and rotenone/ antimycin A

0.5 μM according to the manufacturer’s instructions. The glycolysis data were analyzed by Sea-

horse Wave 2.6 software.

Statistical analysis

Mean ± standard error of mean (SEM) was used for data presentation. The difference between

groups was examined for statistical significance by one-way analysis of variance (ANOVA) fol-

lowed by Tukey’s analysis or Student’s t-test for comparisons of multiple groups or 2 groups,

respectively. All statistical analyses were performed with SPSS 11.5 software (SPSS, IL, USA)

and GraphPad Prism version 9.0 software (La Jolla, CA, USA). A p-value of< 0.05 was consid-

ered statistically significant.

Results

Chili extracts induced loose stool and mild intestinal inflammation, partly

through gut dysbiosis

Chili extracts administration for 2 weeks in mice caused loose stool without an alteration in

body weight and systemic inflammation (serum TNF-α) (Fig 1A–1C). However, the chili

extracts induced gut permeability defect as indicated by FITC-dextran assay and the loss of
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intestinal tight junction molecules; occludin and ZO-1 (using fluorescent color staining and

gene expression analysis), without the enhanced gut translocation of organismal molecules;

(1!3)-β-D-glucan (BG) and lipopolysaccharide (LPS) (undetectable), nor colon histological

injury (Figs 1D–1J and 2), indicating the limited severity of intestinal injury. Notably, LPS and

BG are the major component of Gram-negative bacteria and fungi, respectively, which are the

most and the second most abundance organisms, respectively, in gut [63]. Additionally, chili

extracts also induced inflammatory cytokines (TNF-α and IL-6) in the colon tissue (Fig 1K

and 1L), which supported a possible enterocyte toxicity from high dose of chili [2, 64]. The

Fig 1. Characteristics of mice after administration by chili extracts or phosphate buffer solution (PBS) control with Lactobacillus rhamnosus L34 (L34) or L.

rhamnosus GG (LGG) as determined by stool consistency index (A), body weight (B), serum TNF-α (C), gut barrier defect; FITC dextran assay, serum (1!3)-

β-D-glucan (D, E) and injury of enterocyte tight junction molecules (occludin and ZO-1); mean fluorescent intensity (%) of occludin and ZO-1 (F, G), colon

injury score (H), gene expression of occludin and ZO-1 on colon tissue (I-J), and inflammatory cytokines (TNF-α and IL-6) from colon tissue (K, L) are

demonstrated (n = 8/ group). �, p< 0.05.

https://doi.org/10.1371/journal.pone.0261189.g001
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administration of L. rhamnosus, either L34 or LGG strains, attenuated the local inflammation

(cytokines in colon tissue) (Fig 1K and 1L) and improved intestinal tight junction (Fig 1F, 1G,

1I and 1J) but not reduced the severity of gut barrier defect (Fig 1D) and not altered stool con-

sistency (Fig 1A).

Because of bactericidal activity of capsaicin (a major chili active-component) [65], chili-

induced gut inflammation might, at least in part, be due to gut dysbiosis. Indeed, chili extracts

Fig 2. The representative pictures of colon from mice after administration by chili extracts or phosphate buffer

solution (PBS) control or Lactobacillus rhamnosus L34 (L34) or L. rhamnosus GG (LGG) by fluorescent staining

for occludin and ZO-1 together with Hematoxylin and Eosin (H&E) stained colon histology are demonstrated.

The inset pictures were the high magnification of colons indicating a continuous (upper) and non-continuous (lower)

ZO-1 staining from control PBS mice and chili-administered mice, respectively.

https://doi.org/10.1371/journal.pone.0261189.g002
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induced gut dysbiosis as indicated by increased Bacteroides, the Gram-negative anaerobes

with a possible pathogenesis [51], decreased Firmicutes, the predominant organisms in healthy

condition [51], and enhanced fecal total Gram-negative bacteria, a source of LPS (a potent

pro-inflammatory inducer) in gut [60–62, 66], without an alteration in Proteobacteria, the

pathogenic Gram-negative aerobes [51] (Fig 3A–3D). However, chili extracts did not alter nei-

ther the variety of microorganisms (Chao and Shannon indexes of alpha diversity) nor

microbe abundance in gut as the values of the total OTUs (Fig 3E). Administration of L. rham-
nosus L34 (L34) or L. rhamnosus GG (LGG) in the chili-extract administered mice reduced

Bacteroides, decreased fecal Gram-negative bacteria and increased Firmicutes (Fig 3A–3D).

Furthermore, the difference in fecal microbiome was demonstrated by a separation in non-

metric multidimensional scaling (NMDS) of bacteria based on the species taxonomic level

(S1A Fig). The major organisms (NMDS analysis) in control PBS group and chili-adminis-

tered mice were Streptococcus spp. and Butyricicoccus spp., respectively, while various bacteria

were indicated in the probiotic-administered groups implying an impact of probiotics on gut

bacteria (S1A–S1C Fig).

Capsaicin cytotoxicity on enterocytes and on probiotics, a possible impact

of spicy food

Due to the well-known cytotoxicity and mild bactericidal activity of capsaicin [15, 55, 67, 68],

capsaicin might directly induce enterocyte injury and reduce probiotics abundance. Indeed,

capsaicin concentrations that higher than 0.2 mM reduced cell viability in both Caco-2 and

HT-29 enterocytic cells which could be attenuated by Lactobacillus condition media (LCM)

from both strains of the probiotics (L34 and LGG) (Fig 4A, 4B). Although capsaicin at 0.02

mM did not reduce cell viability (Fig 4A and 4B), this dose of capsaicin enhanced pro-inflam-

matory cytokine (IL-8) production that was also attenuated by LCM from both probiotics (Fig

4C and 4D). Notably, supernatant cytokines were non-detectable in enterocytes (Caco-2 and

HT-29) in the control group (cell culture media alone). Additionally, capsaicin at 0.2 mM also

worsened the integrity of enterocyte tight junction as indicated by the trans-epithelial electrical

resistance (TEER) and trans-epithelial FITC-dextran (on Caco-2 cells) but LCM strengthened

the integrity (Fig 4E and 4F). Although capsaicin at 0.2 and 2 mM reduced enterocyte perme-

ability (Fig 4E and 4F) and cause enterocytic cell death (Fig 4A and 4B), respectively, capsaicin

in both concentrations did not reduce the abundance of both L34 and LGG (Fig 4G). Capsai-

cin at a high dose (20 mM) decreased abundance of LGG, but not L34 (Fig 4G), implied a bet-

ter capsaicin tolerance of L34. In parallel, capsaicin (at 0.2 mM), but not at 0.02 mM,

decreased enterocyte cell energy as indicated by the reduced glycolysis activity, but not mito-

chondrial energy production (Fig 5A–5D), which supported a possible interference of cell

energy metabolism by capsaicin as previously mentioned [56]. However, LCM from both L34

and LGG restored glycolysis activity (Fig 5A–5D) that might be associated with the reduced

enterocyte inflammatory responses against capsaicin (Fig 4A–4F).

Because L. rhamnosus L34 is derived from Thai population and most of Thai cuisines com-

pose of chili (even with some fruits), L34 might be a strain with a higher tolerance to chili than

LGG (the probiotics derived from the Caucasian) [69]. Then, L34, LGG or placebo was admin-

istered in healthy Thai volunteers (Table 1) that consume Thai chili at least a meal per day.

However, abundance of Lactobacilli in feces of the volunteers was not different between L34

and LGG after the administration for 3, 7, and 20 days (Fig 6A–6C). The Lactobacilli abun-

dance in the volunteers with placebo was very low or non-detectable in the placebo group and

the abundance in the probiotic-administered groups (more than 7 days) were higher than the

placebo group but rapidly disappeared within 3 days after stop probiotics (Fig 6A–6D). The
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Fig 3. Gut microbiota analysis from feces of mice after administration by chili extracts or phosphate buffer solution (PBS) control with

Lactobacillus rhamnosus L34 (L34) or L. rhamnosus GG (LGG) as determined by relative abundance of bacterial diversity at phylum and at genus
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characteristics of Lactobacilli fecal abundance were similar between L34 and LGG (Fig 6A–

6D), despite a better tolerance on the high dose capsaicin of L34 over LGG in vitro (Fig 4G). In

some time-points of administration, fecal bacterial abundance (detected by real-time PCR) of

the L34-administered volunteers, including Klebsiella, Bacteriodes, Bacteriodes fragilis, and

total Gram-negative bacteria, were lower than the LGG group, while fecal abundance of Lacto-
bacilli and total fungi in the L34-administered group were higher than the LGG group (Fig

6E). Further studies on the impact of heavy spicy foods or other diets on probiotics are

interesting.

Discussion

The high dose of chili administration for 2 weeks induced mild enterocyte inflammation and

gut permeability defect through chili-induced gut dysbiosis and capsaicin-induced enterocyte

cytotoxicity, which could be attenuated by Lactobacillus rhamnosus. Despite several health

benefits of capsaicin (a major beneficial component in chili) [70], the substance in a high dose

(50 mg/day) might induce an adverse effect as indicated by gut barrier defect from the high

dose of chili extracts. Here, 2 weeks administration of Thai chili extracts induced loose stool in

all mice supporting the well-known capsaicin induced gut hyper-motility [10, 11]. Due to the

inadequate time in the intestine for water absorption, gut hyper-motility causes loose stool and

diarrhea. Additionally, the chili extracts also induced gut permeability defect that severe

enough for the translocation of FITC-dextran, a non-gut absorbable with molecular weight

(MW) 4.4 kDa, but was not severe enough for gut translocation of the larger pathogen mole-

cules, including lipopolysaccharide (LPS; MW 10–100 kDa or higher) and (1!3)-β-D-glucan

(BG; MW 6–600 kDa or higher) [63]. Notably, passive transport through the healthy intestinal

tight junction normally allows gut translocation of only the molecules smaller than 0.6 kDa

[63]. Despite the non-translocation of LPS and BG, there was a mild reduction of occludin and

ZO-1, the tight junction molecules, after chili administration indicating a possible higher sen-

sitivity of a fluorescent-based detection of gut barrier defect.

Although the anti-inflammatory and anti-oxidant effects of capsaicin are mentioned [6, 71,

72], the high dose of capsaicin induces neurogenic inflammation and cytotoxicity [73, 74].

Here, the dose-related enterocyte toxicity of capsaicin was indicated as the low dose capsaicin

(0.02 mM) induced only enterocyte inflammation (IL-8 production) without an effect on cell

viability, transepithelial electrical resistance (TEER), and cell energy. However, the pro-inflam-

matory effect of 0.02 mM capsaicin against enterocytes were enhanced by the presence of LPS

and BG. With 0.2 mM capsaicin, there was a reduction in enterocytic cell viability, TEER, and

cell glycolysis activity supporting several previous reports [1, 14, 56, 75–79]. Furthermore, cap-

saicin in the very high dose (2 mM) reduced enterocyte viability and demonstrated bactericidal

effect on L. rhamnosus GG supporting cytotoxicity and bactericidal activity of capsaicin [14,

80–82]. Hence, gut barrier defect from the high dose chili extracts might be partly responsible

from the direct enterocyte cytotoxicity of capsaicin that induced local inflammation (colon

cytokines; TNF-α and IL-6) and loose stool.

High dose chili extracts induced intestinal barrier defect partly through fecal dysbiosis. The

fecal dysbiosis is another common cause of intestinal tight junction defect and diarrhea [26]

that might be partly associated with the loose stool after chili administration. Accordingly, the

chili extracts induced gut dysbiosis as indicated by reduced Firmicutes, the highest abundant

level with the average abundance (A-C), relative abundance of bacterial diversity at phylum with graph presentation on Bacteroides, Proteobacteria,

Firmicutes, and the fecal Gram-negative bacteria (D) and the alpha diversity by Chao1 index richness estimation and Shannon’s index evenness

estimation with total operational taxonomic unit (OTUs) (E) are demonstrated. �, p< 0.05; #, p< 0.05.

https://doi.org/10.1371/journal.pone.0261189.g003
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Fig 4. Capsaicin cytotoxicity on enterocytes and on probiotics. Cell viability of enterocytes (Caco-2 and HT-29 cells) with capsaicin (0.2 and 2

mM) in combination with or without the Lactobacillus condition media of Lactobacillus rhamnosus L34 (LCM L34) or L. rhamnosus GG (LCM

LGG) for 24 h (A, B), supernatant IL-8 of the enterocytes (Caco-2 and HT-29) after 24 h incubation with capsaicin alone (Caps), Caps with
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bacteria in healthy condition [83], and increased Bacteroides, bacteria with possible pathoge-

nicity in some conditions [84], and enhanced total Gram-negative bacteria, the source of LPS

in mouse feces. Although capsaicin in a lower dose (8 mg/kg/dose) increases Firmicutes and

reduces Bacteroides in mice [85], high dose capsaicin (more than 0.33 mM) demonstrates bac-

tericidal effect against some bacteria, including Firmicutes and Bacteroides [86], that might be

responsible for chili-induced fecal dysbiosis are previously reported. As such, the non-metric

multidimensional scaling (NMDS) analysis identified 2 different predominant bacterial clus-

ters as following; i) Streptococcus spp. (Family; Streptococcaceae) in the control PBS group and

ii) Butyricicoccus spp. (Family; Clostridiaceae) in the chili-administered group. Although both

bacteria are possible beneficial microbes in Firmicutes group [87–89], the NMDS analysis

demonstrated some differences between chili-administration and the control PBS group. Not

lipopolysaccharide (Caps+LPS), Caps with LPS and (1!3)-β-D-glucan (Caps+LPS+BG) together with the LCM (C, D), the transepithelial

electrical resistance (TEER) and transepithelial FITC-dextran of Caco-2 cells with capsaicin in combination with or without the LCM for 24 h

(E, F) are demonstrated. Additionally, the abundance of L. rhamnosus L34 (L34) or L. rhamnosus GG (LGG) after 24 h incubation with capsaicin

(0.2, 2, and 20 mM) (G) are also indicated. The results were from three independent experiments each in triplicate and expressed as the

mean ± SEM. �, p< 0.05; #, p< 0.05.

https://doi.org/10.1371/journal.pone.0261189.g004

Fig 5. The extracellular flux analysis pattern of enterocytes (HT-29 cells) after 24 h incubation with tissue culture media control or stimulation with

capsaicin (0.2 mM) in combination with or without the Lactobacillus condition media from Lactobacillus rhamnosus L34 (LCM L34) or L. rhamnosus GG

(LCM LGG) as evaluated by oxygen consumption rate (OCR) of the mitochondrial stress test (mitochondrial oxidative phosphorylation) (A) and

extracellular acidification rate (ECAR) of the glucose stress test (glycolysis pathway) (B) with the parameters of glucose stress test, including glycolysis

capacity and glycolysis reserve (C-D) are demonstrated. Independent triplicate experiments were performed. �, p< 0.05.

https://doi.org/10.1371/journal.pone.0261189.g005
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only bactericidal effect of high dose capsaicin, the intestinal inflammation is also a factor that

could directly induce fecal dysbiosis [90] and some of the beneficial microbes (such as Butyrici-
coccus spp.) might be enhanced to counteract with the dysbiosis. More exploration on Butyrici-
coccus spp. might be interesting. Meanwhile, NMDS plot among L. rhamnosus (either L34 or

LGG) administered groups identified several bacteria in the different directions from the con-

trol PBS and the chili-administered groups, implying a possible impact of the probiotics.

On the other hand, there were similar benefits of L. rhamnosus GG and L. rhamnosus L34,

despite the capsaicin bactericidal effect on L. rhamnosus GG. As such, the attenuation of gut

barrier defect and fecal dysbiosis by several probiotics, including L. rhamnosus, is well-known

[28, 29, 51]. Here, both L. rhamnosus L34 (L34; the Thai-derived probiotics) and L. rhamnosus
GG (LGG; the commercially available Caucasian-derived probiotics) attenuated intestinal

inflammation, tight junction defect, and fecal dysbiosis. While the NMDS fecal analysis clearly

separated between the chili-administration and the control PBS groups, the analysis on feces

from mice with probiotics could not be clearly separated to other groups. Both probiotics (L34

and LGG) increased Firmicutes, reduced Bacteroides, and decreased total Gram-negative bac-

teria when compared with the chili-extract administered mice without probiotics. Although

several mechanisms are responsible for probiotics beneficial effects, the anti-inflammatory

substances might be one of these mechanisms. Indeed, Lactobacillus condition media (LCM)

from both L34 and LGG attenuated several effects of high dose capsaicin stimulation, includ-

ing cell viability, pro-inflammation, and cell resistance (TEER) which might be associated with

a preservation on the glycolysis activity. Indeed, cell energy status of the enterocytes is neces-

sary for the maintenance of several cell activities [91, 92]. In parallel, 24 h incubation of 2 mM

capsaicin reduced LGG abundance but no effect on L34, suggesting a higher tolerance to the

high dose capsaicin of L34. Although the influence of diets on fecal microbiome patterns [22]

and antibiotic resistance of probiotic bacteria [93] are well-known, the data on probiotic resis-

tance against some specific diets is still very less.

To further test an impact of capsaicin tolerance of L rhamnosus, probiotics (L34 or LGG) or

placebo was administered in healthy volunteers who had spicy foods at least a meal per day.

Among these volunteers, the abundance of fecal Lactobacillus in placebo group was very less

and the probiotics administration at least 7 days was necessary to sustain the fecal abundance

which rapidly decreased within 3 days after stop the probiotics. The alterations of fecal abun-

dance of L34 and LGG after administration were not different, despite the higher tolerance

against capsaicin of L34 in vitro. Perhaps, the dose of capsaicin from the regular chili-

Table 1. Epidemiology of the volunteers.

Duration (number) Female Age (years) Hct (%) Scr (mg/dL) ALT (U/L) ALP (U/L) Chili dose�

3 days Placebo 9 39 ± 11 42 ± 3 1.09 ± 0.04 32 ± 5 55 ± 3 0.8 ± 0.3

(20 per L34 8 41 ± 5 41 ± 5 1.21 ± 0.05 27 ± 10 47 ± 12 0.9 ± 0.2

group) LGG 12 47 ± 11 45 ± 6 0.98 ± 0.04 35 ± 3 50 ± 7 0.8 ± 0.4

7 days Placebo 9 42 ± 12 43 ± 5 1.08 ± 0.03 38 ± 4 39 ± 10 0.9 ± 0.2

(20 per L34 11 39 ± 17 41 ± 3 1.01 ± 0.08 21 ± 4 42 ± 7 0.9 ± 0.5

group) LGG 14 43± 12 44 ± 5 1.04 ± 0.07 33 ± 6 40 ± 11 0.8 ± 0.3

20 days Placebo 14 40 ± 12 44 ± 3 1.05 ± 0.04 31 ± 5 45 ± 9 0.9 ± 0.2

(40 per L34 10 42 ± 12 46 ± 7 1.07 ± 0.05 27 ± 7 41 ± 8 0.8 ± 0.3

group) LGG 12 40 ± 15 45 ± 6 1.15 ± 0.03 32 ± 5 43 ± 5 0.7 ± 0.2

Hct, hematocrit; Scr, serum creatinine (mg/dL); ALT, alanine transaminase (U/L)

ALP, alkaline phosphatase (U/L); LGG, L. rhamnosus GG; L34, L. rhamnosus L34

�, tablespoon/ day.

https://doi.org/10.1371/journal.pone.0261189.t001
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containing Thai foods was not high enough to show the difference in abundance of L34 and

LGG in feces. More studies of the influence of diets on probiotics are interesting.

Conclusion

Thai chili extracts and high dose capsaicin induced gut barrier defect through enterocyte cyto-

toxicity and bactericidal activity-induced gut dysbiosis which were attenuated by L. rhamnosus

Fig 6. The abundance of fecal Lactobacilli from the human volunteers with placebo, L. rhamnosus L34 (L34) or

Lactobacillus rhamnosus GG (LGG) after 3, 7 and 20 days of the administration using quantitative real-time

polymerase chain reaction (PCR) in relative to standard curve of Lactobacilli (see method) (A-C) and fecal Lactobacilli
at the last day of administration from the volunteers (for a better visualization) (D) are demonstrated. Additionally, the

fecal abundance of several organisms using real-time PCR represented by cycle threshold (Ct. value) are also

demonstrated. �, p< 0.05.

https://doi.org/10.1371/journal.pone.0261189.g006
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probiotics. Although L. rhamnosus L34 (the Thai-derived probiotics) was more tolerance

against 2 mM capsaicin than L. rhamnosus GG (Caucasian-derive probiotics), the Lactobacillus
fecal abundance in the healthy Thai volunteers with chili ingestion of both strains of probiotics

bacteria was non-different. Further tests on the volunteers with heavy chili ingestion are

interesting.

Supporting information

S1 Fig. The non-metric multidimensional scaling (NMDS) based on Thetayc dissimilarity

plot of bacterial communities indicates the relational patterns among groups (A) and the bac-

terial abundance in feces of Streptococci and Butyricicocci are demonstrated (B-C).
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