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Biochemical systems biology augments more traditional disciplines, such as genomics, biochemistry and molecular biology,
by championing (i) mathematical and computational modeling; (ii) the application of traditional engineering practices in the
analysis of biochemical systems; and in the past decade increasingly (iii) the use of near-comprehensive data sets derived from
‘omics platform technologies, in particular “downstream” technologies relative to genome sequencing, including transcriptomics,
proteomics and metabolomics. The future progress in understanding biological principles will increasingly depend on the
development of temporal and spatial analytical techniques that will provide high-resolution data for systems analyses. To date,
particularly successful were strategies involving (a) quantitative measurements of cellular components at the mRNA, protein and
metabolite levels, as well as in vivo metabolic reaction rates, (b) development of mathematical models that integrate biochemical
knowledge with the information generated by high-throughput experiments, and (c) applications to microbial organisms. The
inevitable role bioinformatics plays in modern systems biology puts mathematical and computational sciences as an equal
partner to analytical and experimental biology. Furthermore, mathematical and computational models are expected to become
increasingly prevalent representations of our knowledge about specific biochemical systems.

1. Introduction

The term “systems biology” has emerged recently to describe
the frontier of cross-disciplinary research in biology [1–
5]. This term was propelled into the mainstream merely
ten years ago [1–3], coinciding with the completion of the
Human Genome Project (HGP) [6, 7] and the concomitant
emergence of ‘omics technologies, namely transcriptomics
[8, 9], proteomics [10], and metabolomics [11, 12]. However,
the origins of modern systems biology can be traced back to
the middle of last century [13–15], with history that is both
conceptually complex and institutionally convoluted. For
example, a general systems theory was developed and applied
to biology in late 1960’s [14, 15]. Independently, the theory
of metabolic control was developed, and metabolic flux was
recognized as a “systemic property” [16–18]. Here, we focus
on the reemergence of “systems thinking” linked to the
post-genomic era and the development of global molecular

profiling methods collectively known as ‘omics technologies.
The discussion of systems biology in the broader historical
context can be found elsewhere (see, e.g., [4, 19] and
references therein).

Interest in systems biology has increased rapidly in the
past decade, as evidenced by the number of referencing pub-
lications (Figure 1). Systems biology has fuzzy boundaries
and overlaps with several emerging, post-genomic fields,
such as synthetic biology [20–24], systems microbiology
[25], systems biotechnology [26, 27], integrative biology
[26, 28], systems biomedicine [29], and metagenomics [25,
30]. Numerous definitions of systems biology have been
proposed [1, 2, 4, 5, 31], but to date, there is no universally
accepted definition—reflecting the difficulty in defining
a heterogeneous school of thought by a comprehensive
yet concise definition. Each of the proposed definitions,
however, revolves around a fundamental understanding of
biological systems based on the underlying component

mailto:vlikic@unimelb.edu.au


2 Advances in Bioinformatics

0

500

1000

1500

N
u

m
be

r
of

pu
bl

ic
at

io
n

s

2000 2002 2004 2006 2008

(year)

Figure 1: The number of publications referencing “systems biol-
ogy” in the PubMed database by year (2000–2009). In 2009, over
1,500 such publications appeared in PubMed.

interactions (molecular interactions, in the case of bio-
chemical systems biology). In a broad sense, the same is
the goal of more traditional disciplines, such as molecular
biology, genomics, and biochemistry. Hence, the question
“what is new in Systems Biology?” has been extensively
discussed (see, e.g., [1–5, 31, 32]). Furthermore, it has been
argued that systems biology is an approach, rather than a
scientific discipline in the traditional sense [31–33]. While
the room for future debate on these questions remains, it
is clear that systems biology fundamentally depends on the
applications of mathematical and computational modeling.
As the computational applications in biology are most often
associated with the province of bioinformatics, another
relevant question is: “what is the relationship between
systems biology and bioinformatics?”. Here, we address this
question by focusing on the recent, post-HGP history, and
the reemergence of biochemical systems biology.

2. From Genomics to Systems Biology

The term “genomics” was coined by Thomas Roderick in
1986, and soon after was adopted as the name of the new
journal aimed to support the new discipline of genome
mapping and sequencing [34]. This was a time of great
excitement and profound transformation in biology brought
about by the development of increasingly efficient methods
for DNA sequencing [35–37]. At the time, the call for the
sequencing of the human genome was gaining momentum
[38, 39], and in 1988, the National Research Council of the
US Academy of Sciences recommended the initiation of the
Human Genome Project [39]. The HGP, completed a decade
later, was an enormous success, thus validating the new
discipline of genomics. It rallied the scientific community
in unprecedented ways, from being a global collaboration
of 20 sequencing centers from six countries to opening
new horizons in large-scale biology [39]. The momentum
of the HGP has spurred a plethora of genome-sequencing
projects of other organisms, including plants, animals, and
microorganisms. In the early phases, the sequencing projects

focused mainly on mapping, sequencing, and identifying
genes [40]. As the various genome-sequencing projects gath-
ered momentum, it has become clear that collected genome
sequences were only revealing more of hidden complexity,
and are opening new and deeper biological questions [40,
41]. As a result, an increasing emphasis was placed upon the
relationship between the sequence and function, and the field
of genomics started to differentiate into “sequence genomics”
and “functional genomics” [40, 42, 43].

The early view underpinning genomics was that the
genome, the ultimate sequence map of the organism’s DNA,
is “a rosetta stone from which the complexities of gene
expression in development can be translated and the genetic
mechanisms of disease interpreted” [34]. This simplistic
view rested on the deterministic concept of a gene and
its role in determining biological function and organism’s
phenotype, the notion of which was tacitly extended to
the entire genome. The degree of elusiveness of the gene
concept has become fully apparent only in the last decade
[44–48], based on the analysis of sequenced genomes, and
extensive studies of the transcriptome with new techniques
(such is cap-analysis gene expression (CAGE) and tiling
arrays [49, 50]). Several facts highlight the complexity of
the relationship between the organism’s phenotype and its
genome: (i) less than 2% of human DNA directly encodes
proteins [51], (ii) the genomes of eukaryotic organisms are
nearly entirely transcribed [50, 52], (iii) a massive amount of
noncoding RNA transcripts identified in higher organisms
is thought to have an important regulatory role [53]; and
(iv) a critical importance of post-transcriptional and post-
translational regulation in the control of the function of gene
products, which is both spatially and temporally regulated
[54]. As a result, in the past five years, the concept of the gene
has been subject of substantial revisions [44–48].

Only temporarily overshadowed with the excitement
about generating genome sequences, the true complexity of
the relationship between an organism’s genome and pheno-
type was recognized early. Even in the initial development of
genomics we can recognize the elements of “systems” think-
ing. In 1997, Hieter and Boguski wrote “Functional genomics
will . . . supplement the detailed understanding of gene function
provided by traditional approaches with a powerful new
perspective on the holistic operation of biological systems” [40].
In the next few years, the idea of a “holistic understanding”
was further articulated in terms of mathematical models,
whole-genome data sets, and the experience accumulated in
studies of complex systems [1–3]. Almost simultaneously, the
need for an engineering mindset in molecular biology was
suggested in an influential (and humorous) article written
by a prominent biologist [55]. An aspect of systems thinking
is the recognition that biological systems are “complex”
in the mathematical sense [56–58]. Such complex systems
have long been of interest in physics and mathematics,
and the direct relevance of the knowledge accumulated in
these disciplines to biology was realized [58, 59]. It is now
widely recognized that the availability of fully sequenced
genomes and high-throughput (‘omics) data sets makes the
aspirations of “systems” thinking in biology an achievable
goal [60–64].
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3. System-Level Description, System-Level
Understanding, and the System Itself

There are two frequently quoted approaches to systems
biology, namely, “top-down” and “bottom-up” [5, 65, 66].
Furthermore, systems biology practitioners can be arbitrarily
divided into two (not mutually exclusive) camps: “prag-
matic” and “systems oriented” [67, 68]. O’Malley and Dupre
suggested that both camps of systems biologists lack a clear
definition of what constitutes a “system” [68]. Indeed, the
literature abounds with different definitions and calls for
“system-level description” and “system-level understanding”.
This only confounds the matter since the universally accepted
definition of “system” is lacking. While confusing at first
sight, the meaning of “system” in systems biology depends
on the problem at hand, the objectives of the study, and the
choices made in the art of mathematical modeling.

Mathematical modeling is often used in genomics and
molecular biology, but in systems biology, it takes center
stage, as “no more, but no less, than a way of thinking
clearly” [69]. Biological systems consist of a large number
of functionally diverse components, which interact highly
selectively and often nonlinearly to produce coherent behav-
iors [2]. These components may be individual molecules
(such as in signaling or metabolic networks), assemblies
of interacting complexes, sets of physical factors that guide
the development of an organism (genes, mRNA, associated
proteins and protein complexes), cells in tissues or organs,
and even entire organisms in ecological communities. What
is common to all these examples is the sheer number
of components, and their selective, non-linear interactions
that render the behaviors of these systems beyond the
intuitive grasp. Take, for example, the cell cycle in the
yeast Schizosaccharomyces pombe: the model of its cell-
cycle regulatory network involves about twenty components,
whose interactions can be approximately described with a
dozen differential equations and about 30 kinetic parameters
[70]. The dynamic behavior of this network of interactions is
possible to grasp only with the help of computer simulations
and dynamical systems theory [70, 71]. Another example is
the cellular response of yeast to hyperosmotic shock: it is
only with mathematical modeling that a coherent picture
emerges, connecting various known components of the
system with the observed properties [72].

There are other reasons why the concept of “system” is
so elusive. The role of mathematical models, particularly
in generating experimentally testable hypotheses, has been
discussed extensively [2, 5, 19]. Perhaps less widely appre-
ciated is that mathematical models of biological systems are
increasingly being used to represent our knowledge about
these systems. For example, the iAF1260 model of Escherichia
coli’s metabolic network not only predicts experimentally
observed behavior of E. coli under genetic perturbations [73],
but also in itself is a representation of the E. coli metabolic
network. Similarly, the kinetic model of glycolysis in the
bloodstream form of Trypanosoma brucei [74] is the state-of-
the-art representation of glycolysis in this organism. There
is no alternative way of quantitative thinking about these
complex systems but through models that rely on precise

mathematical descriptions. These mathematical or computa-
tional models are essentially beyond a simple intuitive grasp,
and represent concise summaries of our current knowledge
of respective systems.

There may be significant differences in scope and scale
between different models used in systems biology. Consider,
for example, the model of the yeast genome-scale metabolic
network [75] and the model of glycolysis in yeast [76]. It
is not that one model is better than the other, rather the
two models have different motivations, objectives, scales, and
capabilities: the first is the genome-scale model of the entire
metabolic network, while the second is a model of a single
metabolic pathway which includes detailed descriptions
of kinetics of individual enzyme catalyzed reactions. This
illustrates an important general principle of mathematical
modeling, highly relevant to systems biology: every mathe-
matical model aims for a certain level of description, which
depends on the objective of the study, limitations in our
knowledge about the system of interest, and our ability to
experimentally observe the system/phenomena of interest
(necessary for testing the model’s predictions).

Genome-scale metabolic models typically ignore kinetic
parameters of individual reactions because such models aim
to be comprehensive, and the kinetic parameters for most
reactions are unknown (but see recent theoretical advances
[77]). In contrast, kinetic models are much more detailed but
less comprehensive; however, they can provide not only the
information about the steady state but also the time course
given some initial conditions. Choosing the correct “level of
description” is one of the more difficult aspects in math-
ematical modeling and is a pervasive challenge in systems
biology. Another challenge is choosing the boundaries of the
model (note: this amounts to defining the “system”). This
usually requires exquisite familiarity with the phenomena
of interest, and a considerable experience in mathematical
modeling. Complex dynamical systems form structures
[59], and nature often provides modular designs [78].
This modularity must be both understood and exploited
correctly for optimal modeling. In genome-scale studies of
microbial organisms, a convenient system boundary is the
cell boundary; in most other cases, the question of the
appropriate systems boundary is more opaque and must be
addressed based on the prior knowledge of components and
the coupling between these components. Trivial examples of
this include tissue structure in a multicellular organism or
subcellular compartmentalization of metabolites. Hence all
the difficulties in defining the “system” in systems biology.

Modern systems biology is a rapidly evolving discipline.
In the past, systems thinking was invoked in the context
of a variety of systems and processes: from humans [79,
80] to microorganisms [5, 60, 81], animals [82, 83], and
plants [84], and in regards to different levels of biological
organization, from molecular subnetworks [70, 74, 76,
85, 86], to cellular interaction networks [87], cells, entire
organs [88], organisms [80, 83], and even communities
of organisms [25, 30]. Areas that have proven particularly
fruitful for systems biology include studies of biochemical
networks and applications to microorganisms [60, 61, 73,
89–93].
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Figure 2: A conceptualization of biochemical networks showing genome, transcriptome, proteome, and metabolome-level networks,
highlighting their complexity and mutual interdependence. In biological systems a large number of structurally and functionally diverse
components (genes, proteins, metabolites) are involved in dynamic, non-linear interactions, which in turn involve a range of time scales
and interaction strengths. Direct conversions of species shown in solid lines, while some possible interactions (not necessarily one-step) are
designated in dashed lines. Several types of interactions are shown: (1) enzyme catalysis, (2) posttranscriptional control of gene expression by
proteins/protein complexes, including mechanisms that act on mRNAs (deadenylation, storage granulation) and mechanisms that act either
directly or indirectly on DNA (histone modification, methylation), (3) effect of metabolite on gene transcription mediated by a protein, (4)
protein-protein interaction, (5) effect of a downstream (“reporter”) metabolite on transcription through binding to a protein, (6) feedback
inhibition/activation of an enzyme by a downstream metabolite, and (7) exchange of a metabolite with outside of the system (cell, organism).

4. Biochemical Networks in Microorganisms

We are only beginning to appreciate the full complexity
and the multidimensional nature of biochemical networks
operating in all living organisms (Figure 2). Studies of
metabolic networks, gene regulatory networks, and protein-
protein interaction networks in microbial organisms have
significantly contributed to this, and indeed to the identity of
systems biology. Microorganisms are convenient models for
systems studies for several reasons: (i) decades of genetic and
biochemical work have generated deep biological insights,
and resulted in sophisticated molecular biology techniques
for experimental manipulation, (ii) they can be readily and
rapidly cultured in inexpensive media, providing ample
material for controlled experiments, (iii) many are pathogens
of humans, plants, and domestic animals, and therefore are
of medical or environmental interest, and (iv) many are
important in industrial processes and therefore are relevant
for biotechnology. Furthermore, microbial organisms are
unicellular, and the cell membrane provides a convenient

boundary that delineates the “system” for genome-wide
studies. In the past, microbes have been used in numerous
systems studies, including that of genetic networks [90,
94], protein-protein interactions [89, 95, 96], metabolic
networks [97–100], cell cycle regulation [70, 71], and signal
transduction networks [101].

Three types of biochemical networks, roughly corre-
sponding to three different levels or “omes”, have been
mostly studied in the past: gene regulatory networks [90,
94, 102], protein interaction networks [89, 95, 96, 103] and
metabolic networks [97–100, 104]. When prior knowledge of
modularity allowed the assumption of decoupling, systems
studies on biochemical subnetworks or cross-networks were
possible. Examples of this include modeling of the cell cycle
in yeast [70, 71], specific metabolic pathways [74, 76, 85],
and signal transduction pathways [72, 101, 105]. Several
pioneering studies integrated responses across individual
“omes”. Examples of this include studies of transcriptome
and proteome responses to perturbations in metabolic
pathways [61, 106], the effects of a transcriptional regulator
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on central carbon metabolism in Bacillus subtilis [107], and
coordinated analysis of the minimal bacterium Mycoplasma
pneumoniae, including analysis of its mRNA [91], protein
complexes [92], and the metabolic network [93].

What are these studies telling us? Integrating the infor-
mation from different biological levels reveals complex
and unanticipated global behaviors in what were thought
to be “simple” organisms and biochemical systems. For
example, the metabolic network in E. coli appears remarkably
stable with respect to various types of perturbations, but
the mechanism for how this stability is achieved appears
profoundly different for environmental and genetic per-
turbations [106]. Surprisingly, the flux through the E. coli
pentose phosphate pathway is reversed in response to a
blocking mutation, and yet, this is achieved with only subtle
changes in the enzyme levels [106]. Another telling example
is the smallest self-replicating organism, the bacterium M.
pneumoniae whose genome encodes merely 689 proteins
[93]. Compared to more complex bacteria (E. coli encodes
∼4,200 proteins), M. pneumoniae lacks most transcription
factors and other regulators; yet this organism shows a highly
complex, intrinsically structured transcriptional response,
with many alternative transcripts and multiple regulators per
gene [91]. In spite of its minimal genome, the proteome
of M. pneumoniae exhibits modularity and extensive reuse
of functional components, with a substantial crosstalk
between different cellular processes [92]. Furthermore, M.
pneumoniae shows highly coordinated changes in gene
expression, specific responses to metabolic perturbations,
and adaptability to carbon sources similar to that observed
in E. coli [93]. It is unlikely that M. pneumoniae is a
fundamentally unusual organism; rather, these observations
suggest a host of unknown regulatory mechanisms that
operate across the levels of transcriptome, proteome, and
metabolome [108].

As a result of decades of detailed biochemical work,
metabolic networks are the best understood of all biochemi-
cal networks [109, 110]. We have near-complete collections
of components and topologies of metabolic networks in
model microorganisms such as E. coli [73] and Saccharomyces
cerevisiae [75]. For the model organism E. coli, the majority
of metabolic reactions, enzymes, cofactors, substrates, and
products are known [73]. This, however, represents only
the first step towards understanding how these compo-
nents function in spatial and temporal integration, and
precisely what are the controls exerted on them. While the
topologies of metabolic networks are well understood, we
are only beginning to understand interactions that control
metabolism [111, 112]. Metabolite equilibrium concen-
trations are accessible experimentally through quantitative
metabolomic approaches [11, 12, 113], which is directly
comparable to the measurement of mRNA and protein levels
in transcriptomics and proteomics, respectively. In contrast
to all other types of biochemical networks, experimental
approaches for assessing in vivo reaction rates (fluxes) are
also well developed for metabolic networks [109, 114–
116]. This is of great importance, as metabolic fluxes are
the key determinants of cellular physiology and cannot be
predicted from mRNA, protein, or even metabolite levels

[114]. Thus, measurement of metabolic flux is equivalent to
the measurement of information flow through a signaling
pathway, or the information flow between genes residing on
the same control circuit. New theoretical frameworks for
more efficient extraction of information from experimental
data continue to be proposed [117], and a considerable
progress has been made in the analysis of metabolic fluxes
under isotopic nonstationary conditions [115, 118]. Since
nonstationary flux analysis relies on shorter, transient exper-
iments, this opens an array of new possibilities for flux
analysis in higher organisms, improving the scope of systems
biology studies of metabolic networks [118].

5. Bioinformatic Tools for Systems Biology

While many systems biology approaches involve mathemat-
ical and computational modeling, the development, mainte-
nance, and dissemination of tools for systems biology is in
itself a significant challenge. Examples of this include devel-
opment of data repositories, data standards and software
tools for simulation, analysis and visualization of system
components such as biochemical networks. Another example
are applications of high-throughput molecular profiling
technologies which often require sophisticated data process-
ing and analysis, and typically involve elements of signal
processing and statistical analysis. As the resulting quanti-
tative measurements are transferred to formal mathematical
models for the purpose of modeling, the endeavor becomes
perhaps more systems biology and less bioinformatics.
However, that is only a matter of a degree, with often no clear
boundary between bioinformatics and systems biology.

The need for effective exchange of formal, quantitative
systems biology models has driven the development of
the Systems Biology Markup Language (SBML) [119]. The
SBML project aims for the development of the computer-
readable format for the representation of biological pro-
cesses. SBML provides a well-defined format which different
software tools can use for the exchange of biological models
with high fidelity. A testimony to the importance of SBML
is its adoption by software tools concerned with biological
modeling (at the time of this writing, over 180 software
tools support SBML). The graphical notation for the repre-
sentation of biological processes has been proposed recently
(Systems Biology Graphical Notation, SBGN) [120]. The
current SBGN specification consists of three complementary
languages which aim to describe biological processes and
relationships between biological entities [120].

Since studies of biochemical networks are particularly
successful aspect of systems biology, it is not surprising
that a plethora of computational tools that address different
needs in the analysis of biochemical networks have been
reported, and in many cases, these tools are freely accessible.
Without attempting to be comprehensive, we highlight some
of the widely used research and training tools. Systems
Biology Workbench (SWB) is a framework that allows
different components for systems biology to communicate,
exchange models via SBML, and reuse capabilities with-
out understanding all the details of the each component
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implementation [121]. From the user’s perspective, SWB is a
collection of tools for systems biology that includes programs
for building, viewing, and editing of biochemical networks,
tools for simulation, and tools for import and translation of
models. Another highly useful tool is CellDesigner, a Java-
based program for constructing and editing of biochemical
networks [122]. Recent versions of CellDesigner are able to
import models in SBML and support display of biochemical
networks based on process diagram language specified by
SBGN. In CellDesigner models can be simulated either with a
built-in simulator, or alternatively CellDesigner can connect
to external simulators, such as those provided by SWB [121].
An independent simulator of models encoded in SBML
is COPASI [123]. COPASI can simulate models based on
ordinary differential equations (ODEs) as well as stochastic
models by using the Gillespie’s algorithm. COPASI provides
tools for visual analysis of simulation results, and can also
perform steady-state and metabolic control analyses [123].

As biological research accelerates through the develop-
ment of new technologies and instrumentation, biological
databases have become an indispensable partner in such
research. Building and maintaining of primary databases
such as GenBank [124] or Protein Data Bank [125] have
long been recognized as important bioinformatics work.
Primary biological databases serve both as repositories of
experimentally derived information and are the basis for the
development of secondary databases that capture higher-
level knowledge. An example of such secondary database
is Pfam database of proteins families and domains [126].
Concomitantly with the development of the biochemical
systems biology, an important niche of secondary biological
databases has emerged: the databases that capture the prop-
erties and processes in biochemical networks. The ecosystem
of such databases and associated tools is rapidly growing and
includes metabolic pathways databases organized around
the BioCyc project [127], database of human biological
pathways [128], database of interactions between small
molecules and proteins [129], and databases of protein-
protein interactions [130]. As these databases attempt to
reconstruct and organize information about interactions
between cellular components, they also attempt to build
higher-level knowledge and theories about the biological
processes they are concerned with. Such in silico knowledge
is much needed, as the integral complexity of most biological
processes is beyond what is comprehensible to the human
mind. Therefore, these “systems biology databases” often
represent important foundations for quantitative modeling
of biological systems. In some cases, these databases allow
a direct export of mathematical models. Also, the first col-
lections of mathematical models of biological processes have
been developed (databases of models), concerned solely with
archiving and curating the models in SBML for future reuse
and refinement [131]. Much needed bioinformatics tools for
systems biology research are the tools for visualization of
network structures and network overlay of simulated and
experimental data. These tools include yEd graph editor for
editing networks, and tools for visualization of ‘omics data
in the context of biochemical networks, such as Cytoscape
[132] and Pathway Tools Omics Viewer [133].

6. Future Perspectives

Systems biology is rapidly gaining momentum, as evidenced
by the number of publications referencing the term (Figure
1). To understand the relevance of “systems” thinking for
future biochemical research, one needs only to remember
that we know most of the components in many biochemical
systems, often in exquisite detail, yet understand very little
about how these components interact to produce coherent
temporal and spatial behaviors that are the hallmark of
biological systems [2]. On the other hand, bioinformatics has
originally grown from the need to provide tools and handle
increasingly large amounts of biological data. As a discipline
bioinformatics continues to grow in this important role,
but is also increasingly merging and contributing to systems
approaches to provide tools necessary for perhaps the most
exciting phase in the development of biological sciences.

One of the defining features of systems biology is the
use of mathematical and computational models, which are
essential to rigorously account for the inherent complexity of
biological systems. This complexity arises from the diversity
of components (genes, proteins, and metabolites), the high
selectivity of their interactions, and a non-linear nature
of these interactions. These properties together render the
behavior of biological systems intractable to pure intuition.
The computational models used in biochemical systems
biology typically require iterative building and stepwise
improvements based on the comparison with experiments
[134]. Once sufficiently refined, such models have the ability
to predict the behavior of the biochemical system under
different perturbations, or hypothetical conditions that may
be of interest but are not feasible in experimental settings
(e.g., when they are too expensive for practical implemen-
tation, or when the analysis of many different conditions
is desirable [135]). However, in the new era of systems
biology, mathematical models are more than just tools for
integrating observations, making testable predictions, or for
high throughput in silico experimentation. Highly refined
mathematical models also serve as the embodiments of our
current knowledge about specific biochemical systems.

Mathematical and computational models that underpin
biochemical studies may involve different levels of detail
and scale, depending on the objectives of the study, what
is known a priori, and what additional information is
accessible experimentally. For example, protein complexes
may be studied comprehensively [92], or the focus may be
on a subset of proteins responsible for a specific function,
such as protein import into mitochondria [136]. Most of
the so-called bottom-up approaches, which start from the
descriptions of interactions, focus on a part of the biolog-
ical system because we lack a comprehensive information
about the system of interest [137]. Nevertheless, bottom-
up approaches provide highly useful frameworks for the
integration of diverse knowledge, for example, the principles
established from decades of biochemical work with the
information accessible only with the latest experiments. In
contrast, top-down approaches are largely data driven, with
the caveat that their comprehensiveness is limited by the
limitations in experimental approaches. For example, in one
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of the most comprehensive metabolomic studies to date, 198
out of an expected 453 primary metabolites were quantified
simultaneously in cells grown in minimal medium [138].
Therefore, in such applications advances in technology drive
the level of “comprehensiveness” that can be achieved.

Many biochemical processes can be conceptualized as
complex dynamic networks on the molecular level (Figure
2), and studies of biochemical networks are assuming centre
stage in systems biology [65–67, 139, 140]. Measurements
on different ‘omics levels provide different, often comple-
mentary views of the functions of molecular networks.
Increasingly, we are interested in the crosstalk between the
genes, transcripts, proteins, and metabolites that the gene’s
expression impacts upon [112, 141]. Increasingly sophisti-
cated models will be required to account for increasingly
accurate and comprehensive experimental measurements.
Systems approaches have already provided a deeper under-
standing of diverse biochemical processes, from individual
metabolic pathways [74, 76], to signaling networks [70–72],
to genome-scale metabolic networks [73, 75]. Therefore, we
can safely predict that systems thinking will become even
more pervasive in future. The role of formal mathematical
and computational models in systems approaches renders
the role of bioinformatics increasingly important for systems
biology research.
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Hohmann, “Integrative model of the response of yeast to
osmotic shock,” Nature Biotechnology, vol. 23, no. 8, pp. 975–
982, 2005.



Advances in Bioinformatics 9

[73] A. M. Feist, C. S. Henry, J. L. Reed et al., “A genome-
scale metabolic reconstruction for Escherichia coli K-12
MG1655 that accounts for 1260 ORFs and thermodynamic
information,” Molecular Systems Biology, vol. 3, article 121,
2007.

[74] B. M. Bakker, P. A. M. Michels, F. R. Opperdoes, and H. V.
Westerhoff, “What controls glycolysis in bloodstream form
Trypanosoma brucei?” Journal of Biological Chemistry, vol.
274, no. 21, pp. 14551–14559, 1999.
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