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Extracellular traps and the role
in thrombosis
Tonglei Han†, Hanfei Tang†, Changpo Lin†, Yang Shen,
Dong Yan, Xiao Tang* and Daqiao Guo*

Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China

Thrombotic complications pose serious health risks worldwide. A significant

change in our understanding of the pathophysiology of thrombosis

has occurred since the discovery of extracellular traps (ETs) and their

prothrombotic properties. As a result of immune cells decondensing

chromatin into extracellular fibers, ETs promote thrombus formation by acting

as a scaffold that activates platelets and coagulates them. The involvement

of ETs in thrombosis has been reported in various thrombotic conditions

including deep vein thrombosis (DVT), pulmonary emboli, acute myocardial

infarction, aucte ischemic stroke, and abdominal aortic aneurysms. This

review summarizes the existing evidence of ETs in human and animal model

thrombi. The authors described studies showing the existence of ETs in

venous or arterial thrombi. In addition, we studied potential novel therapeutic

opportunities related to the resolution or prevention of thrombosis by

targeting ETs.

KEYWORDS

extracellular traps, neutrophil, macrophage, thrombosis, venous

Introduction

Thrombosis is a major contributor to the global disease burden because one in four
people die from thrombotic conditions (1). As a result of blood clots impeding normal
blood flow in the arteries or veins, thrombosis causes conditions such as ischemic stroke,
ischemic heart disease, and venous thromboembolism (VTE). Previously, thrombosis
was only considered as a vessel or blood disease. The discovery of extracellular

Abbreviations: AAA, Abdominal aortic aneurysm; aggETs, aggregated ETs; citH3, Citrullinated
histone H3; COVID-19, Coronavirus disease 19; DFS, Deferasirox; DNase, Deoxyribonuclease;
dsDNA, Double-stranded DNA; DVT, Deep vein thrombosis; ET, Extracellular traps; HMGB1, High
mobility group box 1; ICA, Internal carotid artery; IFNs, Type I interferons; IL, Interleukin; LPS,
Lipopolysaccharide; MCA, Middle cerebral artery; MI, Myocardial infarction; MPO, Myeloperoxidase;
NE, Neutrophil elastase; NETs, Neutrophil extracellular traps; METs, Macrophage extracellular
traps; MCETs, Mast cell extracellular traps; PAD, Peripheral artery disease; PAD-4, Peptidylarginine
deiminase 4; PE, Pulmonary embolism; PF4, Platelet factor 4; PKC, Protein kinase C; PMA, Phorbol
myristate acetate; RANTES, Regulated on activation normal t-cell expressed and secrected; ROS,
Reactive oxygen species; VTE, Venous thromboembolism; vWF, von Willebrand factor.

Frontiers in Cardiovascular Medicine 01 frontiersin.org

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.951670
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.951670&domain=pdf&date_stamp=2022-08-25
https://doi.org/10.3389/fcvm.2022.951670
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2022.951670/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-951670 August 19, 2022 Time: 16:4 # 2

Han et al. 10.3389/fcvm.2022.951670

traps (ETs) has significantly changed our understanding of
thrombosis. ETs, net-like structures formed from DNA and
proteins, studded with histones and cellular proteins, are
released by many types of immune cells (2–4). Up to now,
much more immune cells have been confirmed to have the
ability to form ETs, including mast cells (5), eosinophils (6),
monocytes (7) and macrophages (8) etc. After activating stimuli
including exogenous microorganisms (bacteria, virus, fungi, and
parasites), the immune complexes are released, these cells will
undergo a new type of programmed cell death “ETosis” and then
release ETs (2, 9–11).

The first evidence for neutrophil extracellular traps (NETs)
appeared in 2004 (12). ETs ensnare both gram-positive
and gram-negative bacteria, and myeloperoxidase (MPO) or
neutrophil elastase (NE) degrades bacterial virulence factors
(12). ETs, recently considered as a double-edged sword, were
initially found to be capable of immobilizing and killing
microorganisms and are also involved in the pathology of many
diseases, such as autoimmune diseases (13), occlusions (14),
aseptic inflammation (15), and even in coronavirus disease
19 (COVID-19) thrombosis (16). Growing evidence indicated
that ETs were present in thrombi from animal models or
in patients with thrombosis and played an important role
in thrombotic diseases (17–20). There are three forms of
ETs: aggregated ETs (aggETs), full-size ETs, and ET remnants.
However, the main prothrombotic inducer remains debatable
(21). Nevertheless, many important functions of these different
types of ETs, such as NETs, macrophage/monocyte extracellular
traps (METs), and mast cell extracellular traps (MCETs), remain
incompletely understood. For better prevention, diagnosis,
and treatment of thrombosis, a deeper understanding of its
underlying mechanisms is crucial. This article aimed to describe
the ETs formation process, review the roles of ETs in thrombosis,
and identify possible drugs that could antagonize ETs.

What is ETosis and ETosis stimuli

The first evidence for the ETosis mechanism of neutrophils
was reported in 1996, in which cell death of neutrophils could
be induced by phorbol myristate acetate (PMA) for as little as
10 min (22). However, later studies have suggested that ETosis
could take several hours (9, 12). The ETosis process includes
flattening of isolated neutrophils, formation of intracellular
vacuoles, chromatin decondensation, histone citrullination, loss
of the nuclear envelope, cytoplasmic granular proteins mixed
with nuclear contents, destruction of membrane integrity, and
finally release of ETs (23). “NETs” are used as an example here
(Figure 1). It’s worth noting that a study reported that not all
ETosis pathways ended in cell death (24). Some evidence also
suggests that the formation of NETs was not a direct cause of
cell death (25, 26). Thereby, ETosis was considered as a new
active process which different from apoptosis or necrosis and

resulted in substantial morphological changes including signs
of chromatin decondensation, mixing of nuclear, granular, and
cytoplasmic components (9, 22).

Even numerous triggers were reported, the pathways of
the formation of NETs are still under debate and the key
molecules essential are also difficult to clearly explain the
specific mechanism of NETosis. In addition to PMA, interleukin
(IL)-8, and lipopolysaccharide (LPS) were also found to be
capable of activating NETosis, and extracellular structures
identified as fragile fibers of decondensed DNA decorated with
granule proteins and histones could be observed (12, 27, 28).
IL-1 receptor antagonist significant decreased NETs release
from neutrophils in vitro and the recombinant IL-1 treatment
induced NETs formation again (29). IL-6, was indicated to be an
inducer of the formation of energy dependent NETs (30). IFN-r,
was verified to be a NETs formation modulator (31). Fewer NETs
were observed in the bronchoalveolar lavage fluid of IFN-r−/−

mice vs. wild-type mice (32). Neutrophils were still viable when
the nuclear lobular shape was lost and chromatin expanded
in the cytoplasm; before rupture of the plasma membrane,
calcein blue was still present but negative for annexin V (9).
Reactive oxygen species (ROS) are reported to be an important
prerequisite for NETs formation (33). NETs cannot be produced
by neutrophils with mutations in the NADPH oxidase of
phagocytes when stimulated by PMA, but can be restored after
hydrogen peroxide is added. This study indicated that the
activation of NADPH oxidase is essential for NETosis (33).
Hakkim et al. reported that protein kinase C (PKC) signaling
via the RafMEK-ERK pathway can also activate NETosis (33).
Both ROS and MPO are essential for NE activation (34). NE
can degrade core histones and facilitate the decondensation
of chromatin and citrullination of histones in synergy with
the calcium-dependent enzyme peptidyl arginine deiminase 4
(PAD-4) (35). These results indicate that ROS, MPO, NE, and
PAD-4 play important roles in NETosis. A previous study
showed that PAD-4 activity is necessary for NETs formation
(36). After PAD-4 is knocked out or inhibited, the formation of
human or mouse NETs is disrupted (37–39). Notably, excessive
NETs were observed in influenza A and COVID-19 virus-
induced lung inflammation (40–43). This indicated virus might
be a stimulus for NETs formation. However, several studies have
observed that under the same stimulus, the formation can be
independent of the activity of PAD-4 (44, 45).

Neutrophils formed neutrophil
extracellular traps in acute
inflammation

Neutrophils are the first responders and critical fighters of
the innate immune system, and are heterogeneous and abundant
leukocytes that participate in acute inflammation, including
infection and injury (46). Approximately 60% of leukocytes are
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FIGURE 1

The Chromatin changes when NETosis and the process of NETosis. When “NETosis” occur, the chromosomes in nuclear will experience the
following phases: chromatin depolymerization, DNA uncoiling and histone modification, finally forming net-like structures. The NETosis process
include: isolated neutrophils flattened, the formation of intracellular vacuoles, chromatin decondensation, histone citrullination, the loss of the
nuclear envelope, the mixing of cytoplasmic granular proteins and nuclear contents, membrane integrity destroyed, and ultimately, NETs were
released. A large amount of NETs gathered and formed the “aggNETs.”

circulating neutrophils, released from the bone marrow and
with a short lifespan (47, 48).

In 2004, a novel substance NETs produced by neutrophils
that underwent NETosis was discovered in vitro (12). NETs
are composed of filamentous DNA scaffolds, granular proteins
and histones (12). Many substances have been explored to
determine whether they can promote or inhibit NET formation.
PMA has been verified many times and has been used to
induce NETs formation (49). Andzinski et al. reported that
type I interferons (IFNs) display a proinflammatory subset of
neutrophils and enhance NETs formation (50). Boufenzer et al.
(23) demonstrated that the activation of TREM-1 increases the
formation and release of NETs, promotes vascular dysfunction,
and activates endothelial cells. The direct interaction between
platelets and neutrophils during platelet-driven NETosis is
mediated mainly by P-selectin/PSGL-1 and GPIbα/Mac-1.
Soluble mediators released by platelets, including high mobility
group box 1 (HMGB1), regulated on activation normal T-cell
expressed and secreted (RANTES) and platelet factor 4 (PF4),
further stimulated NETs formation (51–53). Previous studies
demonstrated that platelets had the ability to directly stimulate
the production of NETs (52, 54). Following the above findings,
platelet-derived exosomes in patients with sepsis were shown to
promote excessive formation of NETs and subsequently result
in organ injury (55). Kono et al. (56) reported that deferasirox
(DFS) is an iron chelator that can inhibit ROS production and

NETs formation. Several studies on the intracellular regulatory
mechanism of NETs formation demonstrated that a lack of
miR-146a targeting the TLR4 signaling pathway in mice could
effectively prevent the formation of NETs (57, 58). As a result,
platelet TLR4 detected TLR4 ligands in the blood and activated
neutrophils, forming NETs (59). Although NETs have received
increasing attention, most relevant studies have only focused on
animal and in vitro experiments (60). The clinical value of NETs
in thrombosis requires further exploration.

Macrophages, monocytes and mast
cells can also form extracellular traps

The tissue macrophage differs from the circulating blood
monocyte, which is derived from bone marrow or originates
from tissue-based embryonic precursors and is maintained
independently of bone marrow progenitor cells (61–63).
Macrophages are involved in many functions, such as
maintaining homeostasis, tissue repair, and immune regulation
(64–66).

Current studies have reported that macrophages that
undergo METosis could also produce ETs, which were named
METs (2). METosis occur rapidly within 30 min (67, 68).
The METs are produced by macrophages when they encounter
microorganisms and are similar to NETs, which are also
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composed of DNA met-like structures. METs can immobilize
and kill microorganisms, but may also contribute to disease
pathology. In 2008, a study first reported that mast cells in vitro
could produce NETs like extracellular structures which were
named MCETs with antimicrobial activity (3). The formation
of MCETs in mast cells was later reported when exposed
to other GAS strains (69) or to other extracellular bacteria.
For instance, BMMCs or HMC-1 infected with S. aureus
(70), HMC-1 in contact with Pseudomonas aeruginosa (3),
or BMMCs co-cultured with Enterococcus faecalis (71). The
bacteria trapped in MCETs are killed (70, 71). Nakazawa et al.
(72) demonstrated that macrophage polarization may affect
METosis. The M1 activated state is more prone to METosis
when exposed to NETs materials.

With the exception of live bacterial cells, Wong et al.
(73) reported that METs were released from bacteria when
they were exposed to specific virulence factors, such as ESX-
1 and the secretion system of Mycobacterium tuberculosis. It
was also demonstrated that mouse RAW264.7 and J774A.1
macrophage-like cells incubated at 42◦C for 1.5 h and followed
by recovery at 37◦C were more prone to form METs co-
cultivated with Streptococcus agalactiae (57). Halder et al.
(67) reported that METs released from monocytes have an
important host defense function which is capable of inhibiting
fungal growth. Previous studies have shown that METs can be
formed if proinflammatory mediators induce the production
of ROS, although these findings were not consistent across
all experimental conditions and cell types (74, 75). However,
why some macrophages develop METosis while others do not
remains controversial. To date, an increasing number of types
of immune cells have been demonstrated to have the ability to
form ETs; however, the specific mechanisms and functions of
different types of ETs remain unclear.

Specific markers for identifying
extracellular traps and several methods
for detecting extracellular traps
formation

To clarify the distribution of ETs in tissues and detect
ETs content, it is necessary to search for specific markers
for subsequent research. Several known ET components,
including citrullinated histones, elastase, or MPO, are stained
in the additional verification proposal. Although the circulating
concentrations of these markers were easily influenced, they
were still the most commonly used in many studies (11, 76).
Citrullinated histone H3 (citH3) has been identified as one
of the most specific markers for ETs (77–79). Elastase was
originally considered a neutrophil-specific marker, but has also
been discovered in human macrophage-like cells and peripheral
blood monocytes (67). In addition, MPO is also found in METs
produced from a variety of macrophage populations, including

glomerular macrophages, monocytes, J774A.1 macrophage-
like cells, and caprine monocytes (67, 68, 80, 81). A recent
study reported that CDr15 in the plasma could be a new
marker for detecting NETs (82). The surrogate markers for
ETs are plasma cell-free DNA, including double-stranded DNA
(dsDNA), histone-DNA complexes, and chromatin, which have
often been estimated in clinical trials in recent years (83–
86). Recently, there were also studies reported that MPO-DNA
complexes and cit-H3-DNA complexes in serum samples could
be treated as a useful biomarker of serum NETs level (87).

ELISA is the screening test that is commonly used for
detection of serum markers. However, there has been a study
indicating that ELISAs for MPO, NE and nucleosomes do
not specifically determine the formation of NETs, and the
standardization of tests for MPO-DNA and citH3 is problematic
(88). Recently, flow cytometry analysis has gained increasing
interest for NETs identification and quantification. There is no
potential for observer bias in this new methodology since it
allows rapid and robust assessment of several thousand cells
per sample, and it is independent from potential observer
bias. To assess the formation of NETs in vivo, detecting NETs
components on extracellular vesicles (EVs) (89) and cells (90,
91) by using flow cytometric assays may be an alternative
method. Otherwise, for assessing and visualizing the formation
of NETs, live cell imaging, conventional microscopy, intravital
microscopy, and scanning or transmission electron microscopy
are commonly used imaging-based applications (9, 88, 92). The
drawback of such approaches is that they are difficult to precisely
distinguish if DNA-protein complex from NETs other than
another kind of cell death (93–95).

Extracellular traps in venous
thromboembolism

VTE, which mainly includes deep vein thrombosis (DVT)
and pulmonary embolism (PE) (96), ranks third among all
causes of acute cardiovascular syndrome (97). DVT causes post-
thrombotic syndrome, whereas PE causes chronic pulmonary
hypertension. Both these conditions affect quality of life.
Recently, the role of ETs in VTE has gained increasing attention,
and the following describes DVT and PE.

Extracellular traps are abundance present in
deep vein thrombosis

DVT is a prevalent disease worldwide with severe major
complications accompanied by high morbidity and mortality.
The Virchow’s triad, including hypercoagulability, vascular
dysfunction, and stasis, is considered an excellent guide to
understand thrombotic risk factors (98). Recently, dysregulation
of the immune system was suggested to be considered in the
process of thrombosis (99).
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In human venous thrombosis, NETs act as fibrous scaffolds
for von Willebrand factor (vWF), fibrin, and platelets. This is
the first report to confirm that NETs have a prothrombotic
(11). A case report first confirmed that NETs were abundant
in human thrombus samples, especially in patients with DVT
and microscopic polyangiitis (100). Savchenko et al. (96)
collected 16 thrombi obtained from 11 patients during autopsy
or surgery. Histological analysis showed that a large number
of DNA web structures and citH3 were concentrated in the
thrombi organizing parts, with only a few in already organized
sections. These results indicate that thrombi development is
associated with NETs. In some animal experiments, researchers
have obtained similar findings. Brill et al. (101) collected
samples from patients with chronic thromboembolic pulmonary
hypertension patients and a vena cava ligation mouse model.
The NET-specific marker citH3 was abundant and co-localized
with vWF in thrombi, especially in the fresh parts. Similarly,
large amounts of NET-like structures were observed in thrombi
in a mouse DVT model (102). Therefore, dissolution of NETs
may facilitate thrombolysis. Based on these findings, plasma
DNA levels are clinically used in the diagnosis of DVT with
a rather high sensitivity of 81%, and the DNA in thrombi
is positively correlated with vWF activity, D-dimer level,
neutrophil activation, and clinical Wells score (103, 104).

Extracellular traps have prothrombotic effect in
pulmonary embolism

PE is a severe complication of DVT (105). The level of
nuclear DNA in circulation is significantly elevated in patients
with PE, and there is a clear positive correlation with mortality
(106, 107). In patients with chronic thromboembolic pulmonary
hypertension, neutrophils were found to exist on the surface
of thrombi with high reactivity, and soluble NETs surrogates
were significantly increased compared to healthy controls (108).
Furthermore, a plasma test in patients with diabetes mellitus
verified that NETs were mainly formed in the early stages of
thrombosis, especially in the acute stage, which was different
from ETs produced by other immune cells (109). Using a
murine orthotopic 4T1 breast cancer model, Cao et al. (110)
demonstrated that dunnione (a strong substrate of NADPH
quinone oxidoreductase 1) could inhibit NETs formation and
the subsequent occurrence of PE by decreasing cellular NAD
levels. These findings confirm that ETs are involved in PE,
especially in the progression of thrombosis. Additionally,
controversial studies have suggested that ETs may be associated
with outcomes in patients with PE. A clinical study that enrolled
25 healthy controls and 126 normotensive acute PE patients
revealed that high circulating citH3 levels enhanced NETs
formation and were associated with an increased risk of acute
PE-related death (111). In recent years, the coronavirus disease
(COVID-19) epidemic has spread globally. Several researchers
found that thrombotic complications are associated with severe
COVID-19 morbidity and mortality (112, 113). However, Prevel

et al. (114) reported that in 50 hospitalized COVID-19-related
ARDS patients, plasma markers such as cell-free DNA, MPO–
DNA complexes, and citH3 were associated with survival but
not with PE. As there is a lack of research on ETs in COVID-
19 and limited by sample size, further in-depth studies are
needed. Above all, these findings prove that ETs contribute to
the progression of thrombosis and may be potential therapeutic
targets for preventing PE.

Extracellular traps in arterial
thrombosis

Clinical challenges remain in the prevention and treatment
of arterial thrombosis. Understanding the relevant molecular
mechanisms can help identify new targets and therapeutic
approaches that can improve protection against severe
thrombotic events. The role of ETs has mostly been studied
in the following common arterial thrombosis diseases: acute
myocardial infarction (MI), acute ischemic stroke, abdominal
aortic aneurysm (AAA), peripheral artery disease (PAD), and
thrombotic microangiopathies (TMAs).

Extracellular traps contribute to the
pathological progression of acute myocardial
infarction

Abundant neutrophils and NETs have been discovered in
fresh culprit site thrombi in patients who have died from
MI (115–117). NETs combined with pro-inflammatory IL-17
drive the accumulation of neutrophils (118) and have been
suggested to play an important role in the pathogenesis of MI
(119). A substantial burden of NETs has also been observed
in thrombectomy samples from patients with stent thrombosis
after percutaneous coronary intervention (120). Several clinical
studies have indicated that NETs can promote thrombosis of
the coronary microvasculature and damage heart function (121–
123). Abo-Aly et al. (124) enrolled 22 ST-segment elevation MI
patients who underwent percutaneous coronary intervention
in an open-label prospective randomized study. Patients’ total
elastase, MPO-elastase complexes in plasma, and thrombolysis
in myocardial infarction flow scores were demonstrated to be
significantly reduced after receiving a dose of 30 mcg/kg bolus
cangrelor followed by a 4 mcg/kg/min intravenous infusion
from the start of intervention to 2 hours later (124). Previous
studies have revealed the presence of ETs in the thrombus and
plasma of patients with MI, and found possible relationships
between ETs and adverse events. Whether monitoring of
these ETs markers could help prevent adverse events need
further exploration.

In addition, if ETs play an important role in the pathological
progression of MI, it might be a selective therapeutic target
for developing new drugs to prevent MI-relevant thrombosis
events. However, whether ETs are simply a marker of adverse
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prognosis is still unclear (125). A clinical study confirmed that
NETs were present at the culprit site of acute MI thrombus, and
the formation of NETs was induced by HMGB1, which is an
important risk-related molecular pattern (126). Compared with
venous thrombi, coronary artery thrombi had a significantly
higher NETs burden and were positively correlated with infarct
size (127), as well as in patients infected with COVID-9
(128). Recently, the dsDNA level measured 1 d after MI was
also found to be related to the myocardial salvage index, left
ventricular ejection fraction, and microvascular obstruction
during follow-up (129). In vitro, neutrophils collected from
the culprit lesion site showed a greater tendency to develop
NETosis compared to neutrophils from non-infarcted coronary
arteries (130). By activating and differentiating fibrocytes, NETs
also contribute to myocardial fibrosis at the culprit site (77).
Notably, several previous studies had already confirmed that
neutrophil:lymphocyte ratios, peripheral neutrophil count, and
NETs-related markers correlated with adverse cardiovascular
outcome (131, 132). And meanwhile, there are also evidence
demonstrate that markers of ETs, neutrophil activation and
DNase activity are related to inflammatory indicators, such
as interleukin-6 and C-reactive protein (133). Above all, MI
is a complex progression involving numerous inflammatory
factors, if ETs played a major role is still debatable. Otherwise,
a considerable proportion of patients with MI have a history
of chronic coronary heart disease (CHD). Many studies have
focused on NETs in the acute stage, and there is still a lack
of research on the role of other types of ETs in the long-term
progression of MI.

Extracellular traps-induced thrombosis may be
the cause of acute ischemic stroke

Strokes caused by thromboembolic occlusions of the middle
cerebral artery (MCA) and/or internal carotid artery (ICA) are
the second leading cause of death and morbidity worldwide
(134). Abundant NETs were discovered in thrombus samples
taken from patients with ischemic stroke, and a large number
of neutrophils were positive for citH3 in these thrombectomy
samples (135, 136). Deng et al. (137) also verified that
NETs were present in thrombi obtained from patients with
acute ischemic stroke. Inhibition of NETs formation could
decrease infarct size in a mouse permanent middle cerebral
artery model. There is increasing evidence that NETs can
antagonize tissue plasminogen activators by stabilizing clot-
induced thrombus formation and promoting coagulation, a
frequently encountered problem in the treatment of stroke
patients (138–140). This demonstrates that NETs are involved
in the pathogenesis of cerebral occlusion. Otherwise, a high
level of plasma DNA indicated that patients were at risk of
death at follow-up (141, 142), whereas nucleosomes were related
to infarction volume and neurological dysfunction (143). Tsai
et al. performed a clinical control trial that included 50 patients
with acute ischemic stroke and 50 at-risk controls. The results

demonstrated that plasma DNA significantly increases after
stroke (144). Vallés et al. (145) conducted a clinical study of
243 patients with acute ischemic stroke. They determined NETs
markers, including citH3, nucleosomes, and cell-free DNA in
plasma. The 12 months follow-up results showed that patients
with high citH3 levels had an increased all-cause mortality.
Prognosis and outcome were associated with soluble NETs
markers, which are indicators of stroke severity based on
the National Institutes of Health Stroke Scale (NIHSS). These
findings show that close monitoring of plasma ETs markers
is essential, and effective treatment of ETs might prevent the
occurrence of acute ischemic stroke.

Extracellular trap is a key factor in thrombosis
in abdominal aortic aneurysm

AAA, an arterial disease related to thrombosis with
potentially fatal consequences of aortic rupture, is characterized
by multilayer intraluminal thrombosis and vessel dilation (146).
An intraluminal thrombus, whose growth is accelerated by
turbulent blood flow, damages aneurysmal walls by immune-
inflammatory pathways (147). In human AAA, Delbosc et al.
(148) revealed that neutrophil activation resulted in NETs
formation in the intraluminal thrombus, leading to cell-free
DNA release. Consistent results were obtained in the rat AAA
model. Meher et al. (149) performed further clinical research
on human AAA thrombi. NETs were found to co-localize with
IL-1β, a pro-inflammatory mediator that drives the process of
AAA and accelerates the formation of NETs. Johnston et al.
(150) verified a similar result and explored the mechanism
in an elastase perfusion mouse AAA model. This proved that
genetic deletion or receptor antagonism of IL-1β reduced NETs
formation and AAA initiation and progression. Fernández-
Ruiz (151) also confirmed that NETs stimulated by IL-1β

aggravate the formation of AAA in a mouse AAA model induced
by elastase perfusion. Despite the association between AAA
and thrombotic disease, most clinicians and researchers focus
only on the etiological mechanisms of arterial dilation. Other
pathological evidence related to NETs in aneurysm thrombosis
is scarce and requires further investigation.

Extracellular traps aggravate peripheral artery
disease and thrombotic microangiopathies

In general, PAD refers to diseases of the non-coronary
vasculature which can be aneurysmal, atherosclerotic,
inflammatory, or a combination of pathologies (152). Farkas
et al. (153) demonstrated that NETs levels in PAD thrombi were
similar to those in the coronary arteries and stroke thrombi.
On comparing plasma samples from patients with PAD and
DVT, neutrophil elastase alpha1 anti-trypsin complex, showed
a significant increase in PAD (154).

TMAs are a group of rare, but serious disorders can be
caused by a variety of clinical events, such as disseminated
intravascular coagulation, hemolytic uremic syndrome, etc.
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(155). Fuchs et al. (156) conducted a cohort study of plasma
samples from 10 healthy controls and 29 acute TMAs patients.
Research has shown that increased plasma extracellular DNA
and histones are associated with the activity. Thrombosis
in COVID-19 patients affected both arterial and venous
circulation, resulting in stroke, acute coronary syndrome, DVT,
PE, and TMAs (157, 158). A prospective cohort study compared
plasma citH3, cell-free DNA, and MPO-DNA complexes in
patients with healthy controls (43). The authors indicated that
MPO-DNA complexes increased in COVID-19 and correlated
directly with illness severity. NETs have prothrombotic clinical
presentations and aggregate occluded small pulmonary vessels
widely in the lungs of patients with COVID-19-related acute
respiratory distress syndrome (43). To date, there is still a
lack of research on ETs in PAD and TMAs; however, it has
been verified that ETs are involved in the progression of such
thrombotic diseases.

Extracellular traps as a potential
therapeutic target

It is essential to find therapeutic compounds that inhibit ETs
and block their detrimental effects since ETs play such a crucial
role in thrombotic diseases. There have been several pathways
proposed to target different ET components. Therefore, the
mechanism of ETs formation must be explored for every
single condition, and specific therapeutic strategies must be
developed for every single condition. Except for DNA bone
structure, the histones derived from NETs should also be noted.
Previous studies demonstrated that histones within NETs played
a cytotoxic role in the pathogenesis of endothelium damage (59,
159). Excessive NETs formation can be suppressed by treating
NE, MPO, PAD4, and extracellular DNA (160, 161). Developing
drugs, inhibiting PAD4, and treating with Deoxyribonuclease
(DNase) 1 are the most promising treatments for NETs-induced
occlusions (162).

The inhibition of PAD4 decrease the
formation of extracellular traps

A family of enzymes called peptidylarginine
deiminases (PADIs) is involved in post-transcriptional
deamination/citrullination. A positively charged arginine
molecule is converted to an uncharged citrulline molecule in
this process. Among the five members of PADI, PAD4 is unique.
By decondensing chromatin, it contributes to NET formation, as
evidenced in the in vitro studies of peripheral blood neutrophils
(163). This makes PAD4 an attractive therapeutic target for
treating occlusive NET-related diseases. A synthetic inhibitor
of PAD4 called Cl-amidine has been used in the treatment
of rheumatoid arthritis in mammals for decades (164, 165).

Cl-amidine effectively blocked the synthesis of NETs based on
its irreversible blocking properties in both in vitro neutrophils
and murine lupus models in vivo (163, 166, 167), and disease
severity was effectively attenuated in mouse models of various
diseases, such as cardiovascular events (166), sepsis (168), and
collagen-induced arthritis (169). Administration of Cl-amidine
prevented thrombotic occlusion in a mouse model of ischemic
stroke by promoting NET lysis (170). Although conflicting
results exist, there is a certain dependence of NETosis on
enzymatic PAD4 activity, making PAD4 inhibition a potentially
promising treatment for human thrombotic disease.

Deoxyribonuclease can degrade
extracellular traps

The Deoxyribonuclease (DNase) family, including DNase1
and DNase1-like 3 (DNase1L3), is a class of enzymes that can
degrade ETs (170). Non-hematopoietic tissues express DNase1
and it preferentially degrades protein-free DNA (4, 171).
Immune cells secrete DNase1L3, also called DNase gamma,
which cleaves protein-DNA complexes (4, 172). DNase degrades
NETs by hydrolyzing the DNA backbone (11) and reduces the
size and amount of aggNETs (173). Lack of dual host protector
DNases in vivo cannot remove ETs efficiently, and aggETs can
occlude vessels (21). The homeostatic balance between NET
formation and degradation is dependent on adequate DNase
activity (174). The mice were protected from vascular occlusion
in either reconstitution with or the presence of only one
functional type of DNase (170). It has been demonstrated that
targeting chromatin and NETs with DNase 1 in several mouse
or rat disease models is beneficial for experimental DVT (101,
102) and ischemic injury, including testicular torsion (175) and
ischemic stroke (174). Shrestha et al. (176) demonstrated that
NETs exert antitumor effects in a murine tumor model. Retinoic
acid can induce hypersegmented neutrophils which enhances
NETs formation and cytotoxicity against tumor cells in a murine
tumor model. However, the addition of DNase reversed this
antitumor effect because of NET degradation. The results of
this study demonstrated that DNase could effectively remove
NETs and that the balance between DNase and NETs plays an
important role in cancer diseases. Ge et al. (177) reported that
the use of DNase 1 alone could reduce neutrophil infiltration in
a rat model of ischemia/reperfusion, and that cardiac function
was improved by the co-administration of tissue plasminogen
activator (tPA). In contrast, another study indicated that in mice
with coronary artery ligations, DNase 1 treatment improved
cardiac function without reducing neutrophil infiltration into
ischemic myocardium (178). It is possible that these apparently
contradictory results are due to variations in the ligation
methodology, the duration of ischemia, and the timing of the
DNase treatment. In vitro, DNase 1 accelerated thrombolysis
mediated by tPA in human coronary (127) and cerebral (135)
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FIGURE 2

The summarized mechanism of NETs formation and its consequences in thrombosis. The figure was constructed by Adobe Illustrator.

thrombi compared with tPA alone. Furthermore, patients with
MI experiencing low DNase activity typically have a larger
infarct size (127). Taking into account the growing evidence for
the benefits of applying DNase in well-established models of
disease. Patients with neutrophil-driven disease, in which NETs
play a pathogenic role, may benefit from DNase 1 treatment.

Heparin has the effect of antagonizing
neutrophil extracellular traps

Historically, unfractionated heparin and low-molecular-
weight heparins have been recognized as the cornerstones of
treatment for DVT (179) and MI (180). Due to the inflammatory
nature of thrombotic diseases, it is intriguing that heparin has
anti-inflammatory effects (181, 182). Heparins can not only
hinder NETs formation as shown by treatment of in vitro
human neutrophils and in vivo healthy volunteers (183), but
can also target existing NETs in vitro in various ways. In
NETs, two major enzymes, neutrophil elastase and cathepsin
G, were shown to be inhibited by heparin (184, 185). By
binding and disassembling histones, heparin inhibits NETs’ pro-
thrombotic properties in vitro (11) and in vivo in mice (102,
186). Heparin’s antithrombotic properties in human plasma
have been counteracted by excessive release of histones during
cell death and NETosis, according to an in vitro study (187).
Sevuparin, a low-anticoagulant heparin analog, inhibits NE and
histone H4 proteins associated with NETs secreted by human
neutrophils in vitro (188). Another study showed that non-
anticoagulant heparin prevented histone-mediated cytotoxicity

in a murine sepsis model and improved survival (189). There
are many types of heparin, which are commonly used in clinics.
Thus, an appropriate dose of heparin under close monitoring
might be an important adjunct therapy to reduce NET burdens
without increasing bleeding complications. Despite this, there
are few reports on heparin-targeted treatment of ET-related
diseases, and further research is needed.

Acetylsalicylic acid (aspirin), a
non-steroidal drug with an
antithrombotic effect

Aspirin, an antiplatelet drug, is used for prevention
of arterial thromboses for many years. Previous studies
reported that platelets could activate NETosis via the platelet-
neutrophil interaction and facilitate innate immunity (51, 88).
During endotoxemia and in septic conditions, the binding
of glycoprotein 1bα (GP1bα) on platelets and αMβ2 (MAC-
1) on neutrophils could activate NETosis and promote the
release of NETs in vitro (190, 191). Otherwise, platelet activation
by TLR2 and TLR4 results in the release of Pselectin, which
binds to the neutrophil receptor (PSGL-1), leading to the
development of NETosis as demonstrated in mice (59, 192,
193). When exposed to LPS, platelets could also be activated
by arachidonic acid and thrombin, and the formation of NETs
increased (51, 194). As platelet and neutrophil interactions
mediate NETosis, inhibiting these interactions with antiplatelet
therapy can prevent NETs formation (195, 196). The activation
of platelet could be inhibited by aspirin had been confirmed
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in primary graft dysfunction murine models (197). Aspirin
pretreatment of mice with endotoxin-triggered acute lung injury
decreased the formation of NETs and the severity of lung
injury (194, 196). In a vitro study of neutrophils, Lapponi
et al. demonstrated that NETs formation was inhibited after
the intervention with aspirin (198). Based on these results,
aspirin may be useful in treating pathologic NETosis induced
by platelets. However, aspirin predisposes patients to stomach
ulcers, so more studies are needed to determine what conditions
could benefit from taking aspirin without experiencing too
many side effects.

Other substances potential inhibit
NETosis

In addition to the above-mentioned widely used drugs,
there were also other substances reported recently in a few
studies that might inhibit NETosis, such as cyclosporine
A (199), prostaglandins E2 (200, 201), recombinant human
thrombomodulin (202), activated protein C (203), metformin
(204), and Vitamin D (205). Although uncertainties still
remain in these findings, they represented different directions
for future studies.

Conclusions and perspectives

Although the formation and aggregation of ETs actively
limits the spread of inflammatory mediators and pathogens,
excessive accumulation of ETs is also a cause of thrombotic
diseases. A summary of these studies highlighted and discussed
above, ETs clearly play an important role in the initiation and
progression of thrombosis (Figure 2). Based on these findings,
ETs have been considered new potential therapeutic targets.
Until now, the digestion of established ETs and prevention
of new ETs formation to alleviate the severity of thrombosis
remains controversial. Although in vitro and in vivo data are
promising, more in-depth studies are needed to evaluate the
clinical safety and benefits of anti-ETotic regimens.
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