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Solid tumors can be divided into benign solid tumors and solid malignant

tumors in the academic community, among which malignant solid tumors are

called cancers. Cancer is the second leading cause of death in the world, and

the global incidence of cancer is increasing yearly New cancer patients in China

are always the first. After the concept of stem cells was introduced in the tumor

community, the CSC markers represented by ALDH1 have been widely studied

due to their strong CSC cell characteristics and potential to be the driving force

of tumor metastasis. In the research results in the past five years, it has been

found that ALDH1 is highly expressed in various solid cancers such as breast

cancer, lung cancer, colorectal cancer, liver cancer, gastric cancer, cervical

cancer, esophageal cancer, ovarian cancer, head,and neck cancer. ALDH1 can

activate and transform various pathways (such as the USP28/MYC signaling

pathway, ALDH1A1/HIF-1a/VEGF axis, wnt/b-catenin signaling pathway), as

well as change the intracellular pH value to promote formation and

maintenance, resulting in drug resistance in tumors. By targeting and

inhibiting ALDH1 in tumor stem cells, it can enhance the sensitivity of drugs

and inhibit the proliferation, differentiation, and metastasis of solid tumor stem

cells to some extent. This review discusses the relationship and pathway of

ALDH1 with various solid tumors. It proposes that ALDH1 may serve as a

diagnosis and therapeutic target for CSC, providing new insights and new

strategies for reliable tumor treatment.

KEYWORDS
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Abbreviation: CSCs, cancer stem cells; ALDH1, acetaldehyde dehydrogenase 1; RA, retinoic acid; RAR,

retinoic acid receptor; RXR, retinoic acid X receptor; PPAR/b/d, peroxisome proliferator-activated receptor

b/d; ROS, reactive oxygen species; ATRA, all-trans retinoic acid; DEAB, N,N-diethylaminobenzaldehyde;

CRC, colorectal cancer; GC, gastric cancer; ESCC, esophageal squamous cell carcinoma; OC, ovarian

cancer; EOC, Epithelial ovarian cancer; OCSC, ovarian cancer stem cells; BET, bromodomain and

extraterminal; HNSCC, Headneck squamous cell carcinoma.
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Introduction

According to global cancer data, 9.96 million people

worldwide will die by 2020, of which China ranks first in the

world in terms of cancer deaths (1). The cause of cancer death is

still unclear and is currently mainly related to cancer stem cells

and drug resistance. In recent years, with the introduction of the

stem cell concept into cancer research, researchers have found

that cancer heterogeneity is signficant source of disease

progression and treatment failure, and cancer stem cells

(CSCs) are the source of heterogeneity (2). Although the

number is scarce, it has a solid carcinogenic, robust

carcinogenic, carcinogenic solid ability and the potential to

generate various types of cells that constitute tumors (3). The

tumor is a stem cell disease and acetaldehyde dehydrogenase 1

(ALDH1) is one of the most essential markers in CSCs. The

expression level of ALDH1 in solid tumor tissues is higher than

in normal tissues. Therefore, in recent years, more and more

researchers have studied the possibility of ALDH1 as a potential

therapeutic target for CSCs.

ALDH1 is one of the aldehyde dehydrogenases, located

mainly on chromosome 9q21 (4). As an isoenzyme of

acetaldehyde dehydrogenase, ALDH1 exists mainly in the

cytoplasm of liver cells. It is responsible for further oxidation

of acetaldehyde as a substrate by alcohol dehydrogenase to

harmless acetic acids. As a cellular lipase, ALDH1 plays a vital

role in gene expression and tissue differentiation in many tissues.

Current studies have found that ALDH1 is very likely to be a

stem cell marker for various solid tumors (5–7). With in-depth

study by researchers, ALDH1 is highly expressed in lung cancer

(8), invasive cervical cancer (9), breast cancer (10), ovarian

cancer (7), colorectal cancer (11), gastric cancer (5),

esophageal cancer (12), head and neck cancer (13) and other

solid cancers from clinical research. ALDH1A1 is the main

component of ALDH1, and the activation of ALDH1 depends

mainly on ALDH1A1. Recent studies have shown that the higher

the level of ALDH1A1, the worse the prognosis for patients,

especially for tumors of the digestive system. Furthermore,

ALDH1 is not only involved in many critical biological

functions such as cell differentiation and resistance to

radiation therapy and chemotherapy but also clinical research

found that high expression of the ALDH1 gene signature in

cancer tissue is positively correlated with malignant progression

in cancer patients (14). Therefore, it should be clear whether

ALDH1 can be used as a therapeutic target for various solid

tumor stem cells? When targeting ALDH1, can it inhibit the

proliferation and differentiation of tumor stem cell markers and

reduce the recurrence and metastasis of malignant tumors?

Thus, it can provide a new target and basis for the treatment

of solid tumors.
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ALDH1 and mechanism

Mechanisms of ALDH1 in normal tissues

Acetaldehyde dehydrogenase (ALDH) is a randomly assembled

tetramer in the body and contains 19 functional ALDH genes in the

human genome (15), and ALDH1 introduced in this study is one of

the more critical subgroups. The ALDH1 family consists of six

human ALDH genes, including ALDH1A1, ALDH1A2,

ALDH1A3, ALDH1B1, ALDH1L1, and ALDH1L2. The rat and

mouse genomes contain an additional gene, ALDH1A7, which is

92% identical to the mouse ALDH1A1 (16). ALDH1 can not only

be used as a marker of cancer stem cells but also plays an

irreplaceable role in promoting physiological functions such as

alcohol metabolism and synthesis of retinoic acid (RA).

In normal human stem cells, ALDH1 can irreversibly

convert the retinal to RA in the cytoplasm. Then RA will be

transferred to the nucleus, activating the retinoic acid receptor

(RAR), retinoic acid X receptor (RXR), and nuclear hormone

receptor peroxisome proliferator-activated receptor b/d
(PPARb/d) to regulate the transcriptional activity of more

than 500 genes (17), which play an essential role in human

development and maintain homeostasis of human organs.
Mechanisms of ALDH1 in CSCs

ALDH1 is considered a marker of CSCs, which can induce

cancer by maintaining the characteristics of CSCs, modifying

metabolism, and promoting DNA repair. ALDH1 is lowly

expressed in normal tissues and highly expressed in cancer the

expression level of ALDH1is a marker that distinguishes normal

stem cells from cancer stem cells. Clinical research studies have

found that the prognostic ratio of the ALDH1 gene family can be

used as a robust poor predictor of various solid cancers,

including breast cancer, colon cancer, esophageal squamous

cell carcinoma, non-small cell lung cancer, ovarian cancer, and

other cancers (18, 19). As a strong predictor, ALDH1 is also

involved in deriving drug resistance in solid cancers. Although

still controversial, it is undeniable that cancer cells with high

ALDH activity and other stem cell-like characteristics are closely

related to drug resistance and tumor recurrence. The underlying

mechanism is currently unclear but may involve RA

biosynthesis, scavenging of reactive oxygen species (ROS) and

toxic aldehydes (20), USP28/MYC signaling pathway (21),

ALDH1A1/HIF-1a/VEGF axis (22), wnt/b-catenin signaling

pathway (23). As shown in Figure 1. From the above, we can

boldly propose ALDH1 as a potential therapeutic target for solid

cancer and provide a new ideas for further and more accurate

prognosis and the development of new therapeutic targets.
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ALDH1 and various solid tumors

ALDH1 and breast cancer

Breast cancer is the most common cancer in the world and

the leading cause of cancer death in women. IARC estimates that

by 2040, new breast cancer cases will exceed 3 million each

year (1). Although endocrine therapy, radiotherapy, and

chemotherapy have greatly improved the overall survival rate of

breast cancer patients, the limitation of these treatment options is

that they cannot target CSCs, leading to drug resistance and

tumor recurrence, which is still incurable (24, 25). Elevated

ALDH1 levels are associated with resistance to chemotherapy in

breast cancer patients treated with a taxane-doxorubicin-

cyclophosphamide regimen (26). ALDH1 contributes to normal

and tumor stem cell differentiation and breast cancer invasion

and metastasis are mediated by tumor cell subsets that exhibit

stem cell-like featcharacteristics express ALDH1 (10). ALDH1

functions primarily by regulating vitamin A oxidation, and the

expression level of ALDHI has become a marker for

distinguishing normal stem cells from tumor stem cells in

breast tissue (27, 28) and is significantly correlated with a poor

prognosis (29–31). ALDH1A1 and ALDH1A3 can dramatically

enhance ALDH1 activity and are associated with a poor prognosis

in patients with breast cancer (32). The elimination of ALDH1A1,

ALDH1A3 inhibits ALDH1 activity, increases chemosensitivity,

and reverses chemoresistance in breast cancer (33).

Based on its enzymatic activity, ALDH1A1 reduces the

intracellular pH of breast cancer cells and upregulates GMCSF
Frontiers in Oncology 03
by activating the TAK1-NFkB signaling pathway. It induces

MDSC expansion, thus decreasing antitumor immunity and

promoting breast cancer progression (34). ALDH1A1 also

enhances the USP28/MYC signaling pathway to promote

breast cancer stem cells by maintaining a local acid

microenvironment (35). The breast cancer stemness marker

ALDH1A1 activates ALDH1A1/HIF-1a/VEGF axis through

retinoic acid conduction, upstream HIF-1a is activated,

induces VEGF expression and release, and promotes tumor

angiogenesis (22). ALDH1 activation and transcription are is

mainly related to the MUC1-C/TWIST1/EMT pathway (36),

MUC1-C!ERK!CEBPb!ALDH1A1 pathway (20, 37),

Nanog signaling (38), Wnt/b-catenin pathway (39), Notch,

TGF-b pathway (40), SIRT1-PRRX1-KLF4-ALDH1 pathway

(41), IL-6/STAT3/ALDH1 path (42) and so on.

Studies have shown that targeting or inhibiting ALDH1 can

alleviate breast cancer. CAP targets ALDH1 breast CSCs by

regulating AQP3-19Y-mediated ubiquitination of AQP3-5K and

FOXO1 K48, which can improve therapeutic efficacy (43).

Targeting ALDH1 in breast CSCs with ATRA or N,N-

diethylaminobenzaldehyde (DEAB) combined with

doxorubicin or paclitaxel therapy and radiation therapy

significantly reduced tumor cell viability (38). The ALDH1

inhibitor disulfiram inhibited breast tumor growth and

occurrence (34). Limonin (44), quercetin (45), and curcumin

(46) inhibit breast cancer stem cells by downregulating

ALDH1A1. ALDH1 may serve as a potential therapeutic target

for breast CSCs (47), so it can provide a new therapeutic target

and a basis for breast CSCs.
FIGURE 1

Mechanisms of ALDH1 in Cells. (Blue arrows indicate the mechanism of action of ALDH1 in normal tissues, red arrows indicate the mechanism
of action of ALDH1 in cancer stem cells).
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ALDH1 and lung cancer

The mortality rate of lung cancer ranks first among

malignant tumors worldwide (48). Although surgery and

chemotherapy have a specice, particular effect on their

treatment, the 5-year prognosis of patients is severe, mainly

due to tumor metastasis and drug resistance (49–51). ALDH1, as

a lung CSC marker (52, 53), is associated with a poor prognosis

and resistanceto treatment in lung cancer patients (54, 55). High

expression of ALDH1 is negatively correlated with patient

survival (56). Targeting ALDH1 could be a new strategy to

overcome drug resistance (51).

The study shows that ALDH1 promotes functional changes

in the glutathione redox system and enhances chemosensitivity

in non-small cell lung cancer (57). ALDH1A1 confers

resistance to erlotinib by promoting a ROS-active carbonyl

species metabolic pathway in lung adenocarcinoma (51).

Lung adenocarcinoma cells overexpressing ALDHA1A1 can

meet rapid growth of tumor cells or respond to drug stress

through the Warburg effect (58). High expression of ALDH1

can be achieved by activating the MEK/ERK signaling

pathway (59). S100A9 upregulates ALDH1A1 expression and

activates the RA signaling pathway in lung cancer cells (60).

Regulation and expression of ALDH1 in lung cancer are

mainly related to TSPYL5 (61), STAT3 (62), SOX9 (63),

b-catenin (64), MiR-34a/IL-629 (54), miR-326/GNB1 (65),

RNAMACC1-AS143 (66), PFKFB346 (67) and other signals

and pathways.

Several studies on the treatment of lung cancer have shown

that treatment strategies that reduce ALDH1 or target ALDH1

can reduce chemotherapeutic drug resistance and malignant

proliferation of lung cancer. The vitamin A/retinoic acid axis

depletes ALDH1 positive CSCs and resensitizes drug resistant

lung cancer cells to cisplatin (53). Targeting the s100A9-

ALDH1A1-retinoic acid signaling pathway inhibits brain

recurrence in EGFR-mutant lung cancer (60). Standard drugs

for lung cancer treatment, cisplatin/gemcitabine,and menadione,

reduced ALDH1 expression (68), while the elimination of

ALDH1A1 significantly increased apoptosis and decreased

resistance to cisplatin (69). Fat1 overexpression (70), aerobic

exercise (71), nilotinib, erlotinib (72), all-trans retinoic acid

(73), itraconazole (74), cryptotanshinone (55), CFTR31 (75),

fluorescent interleukin (76), pomegranate (77), ginsenoside Rg3

(78), puerarin 6″-O-xyloside (79), glycolysis inhibitor PFK158

(67), globulin (80) can reduce expression of ALDH1 and drug

resistance in lung cancer, mainly involved NF-kB pathway, Wnt

pathway, Src-STAT3 signaling axis, Wnt/b-catenin/STAT3 axis,
Akt/c-Myc signaling pathway. Therefore, in the treatment of

lung cancer, targeting ALDH1 has broad prospects and should

be further studied and explored.
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ALDH1 and colorectal cancer

Colorectal cancer (CRC) is the third most common cancer

worldwide and the second leading cause of cancer-related death

worldwide (81). Most CRC patients die from recurrence, distant

metastasis, and chemotherapy resistance (82, 83), mainly due to

a small subpopulation of cells within the tumor called CSCs.

Increased expression of ALDH1 is associated with tumor

progression and poorer outcomes in CRC patients (11).

ALDH1 is abundant in tumor samples from patients with

CRC (21, 84), which can be used as a particular marker for

CSCs of colorectal cancer (85), mainly including ALDH1A1,

ALDH1B1, and ALDH1A3, are associated with poor prognosis

and resistance to chemotherapy in colorectal cancer (86–88).

ALDH1 plays a vital role in CRC and promotes the

metastasis and proliferation of CRC stem cells through various

classical pathways. Studies have suggested that the high

expression of ALDH1 in CRC is related to the Wnt/b-catenin
pathway (82, 89, 90), hsa_circ_0001806/miR-193a-5p/, COL1A1

axis (89), PI3K/AKT/mTOR signaling pathway (91), CXCL2/

CXCR2 axis (92), miR-200-ZEB1/SANI2 axis (88). Additionally,

ALDH1B1 may maintain the CSC phenotype and promote

cancer cell growth by protecting cells from DNA damage (87).

Its presence is closely related to the activation of Wnt/b-catenin
(93). LncRNA NEAT1 increases H3K27ac by affecting

chromatin remodeling, leading to increased levels of

acetylation in the ALDH1 and c-Myc promoter regions to

improve the stemness of colorectal cancer cells (83). p53 (94),

P2X7R (95), and lncRNA B4GALT1-AS1 (96) can up-regulate

ALDH1 expression in CRC.

In an effort to address the abnormal expression and related

pathways of ALDH1 in colorectal cancer, targeting or inhibiting

ALDH1 has become a new direction for treating colorectal

cancer. The study proposes that physciosporin inhibits the

stemness of colon cancer cells and the expression of ALDH1

through the Sonic Hedgehog and Notch signaling pathways (97).

Similarly, silibinin down-regulates the cancer stemness marker

ALDH1 by modulating the E-Cadherin/b-Catenin pathway (98).

Furthermore, tumidulin reduces ALDH1 in CRC cells by

inhibiting The Hh signaling pathway (99). Inhibiting of

ALDH1A1 expression can down-regulate oxidative

phosphorylation, mitochondrial function, the sirtuin signaling

pathway, cholesterol biosynthesis, and the vitamin A (retinol)

metabolism pathway (93). Numerous studies point to inhibition

of DCLK1 (100), down-regulation of MUC1-C (101), down-

regulation of ALDH1B1 (102), down-regulation of KDM2B

(103), down-regulation of NEAT1 (83), polymethoxylated

flavones (104), resveratrol (105), ALDH1A3 inhibitor (88), 5-

fluorouracil (106), grape pomace (107), montelukast (108),

celecoxib targeted therapy (109), puerarin (110), can both
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down-regulate the expression of ALDH1 in CRC and reduce cell

migration, invasion, and chemotherapy resistance. Therefore,

the potential value of targeting ALDH1 to improve the efficacy

of standard treatment and thus prevent recurrence of colorectal

cancer remains to be further investigated.
ALDH1 and liver cancer

Liver cancer is the third largest cancer in the world and the

leading cause of cancer-related death (111). Liver cancer has a

high degree of malignancy and is easy to metastasize, and most

patients are in the middle and late stages when diagnosed (112).

Most patients with advanced liver cancer are treated with

chemotherapy, but are, incredibly prone to drug resistance,

leading to failure of treatment, mainly related to liver CSCs

(113). ALDH1 is considered a marker of liver cancer stem cells,

and the high expression of ALDH1A1 is closely related to

recurrence of liver cancer (114). Studies have found that PFKP

can promote reverse transcriptional activation of b-catenin,
leading to the expression of ALDH1 in liver cancer stem (115).

Abnormally expressed PDK1 can covalently bind to the inactive

ALDH1A1 apoenzyme (apoALDH1A1), forming the

catalytically active ALDH1A1 holoenzyme (holoALDH1A1),

thus activating ALDH1, leading to desensitization of liver

cancer to radiation therapy (116). LncRNASNHG5 promotes

hepatocellular carcinoma proliferation and tumor stem cell-like

ALDH1 properties by regulating the UPF1 and Wnt signaling

pathways (117). LncRNA LINC00460 regulates liver cancer cell

proliferation by targeting the miR-503-5p/miR-654-3p/TCP1

axis (118). Long noncoding RNA MACC1-AS1 promotes

ALDH1 in stem cells from hepatocellular carcinoma by

antagonizing miR-145 (119). Carboxypeptidase A4 upregulates

ALDH1 expression and promotes proliferation of hepatocellular

carcinoma (120).

Studies have found that inhibiting or targeting ALDH1 liver

cancer stem cells can reduce cancer proliferation and resistance

to treatment. Silencing PFKP can inhibit the liver cancer

stemness marker ALDH1 (121). Silencing shRNA-mediated

MALAT1 significantly inhibited ALDH1 activity, partly due to

the inhibition of the MALAT1/Wnt/b-Catenin pathway (122).

STARD13 overexpression can reduce ALDH1 activity and

improve 5-FU sensitivity in liver cancer, which is positively

correlated with a good prognosis (123). Limonin reduces cell

quiescence and reduces ALDH1 stem in liver cancer cells by

activating PI3K/Akt signaling (124). UTI, inhibits Wnt/b-
catenin signaling and attenuates the ALDH1-sensitivity of the

liver cancer stem to FU (113). The box protein FBXO11 reduces

ALDH1 activity and hepatocellular carcinoma stemness by

promoting ubiquitin-mediated inhibition of snail degradation

(125). Overexpression of TRPV2 minimizes the liver

cancer stem cell marker ALDH1 (126). Therefore, targeting or

inhibiting ALDH1 in liver cancer can enhance chemosensitivity,
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and provide potential novel therapeutic strategies and

new insights for developing new therapeutic targets for

liver cancer.
ALDH1 and gastric cancer

Gastric cancer (GC) ranks fifth in incidence (5) and is one of

the leading causes of cancer-related deaths. GC is usually

diagnosed at an advanced stage when the tumor is inoperable

and only chemotherapy may be a helpful method (127).

Although traditional chemotherapy can significantly improve

the survival rate of gastric cancer patients, chemotherapy alone is

still very limited and has reached a bottleneck (128). Therefore, it

is urgent to find new targets for molecularly targeted therapy of

GC. GCs with histological diversity show a poor prognosis and

characteristic expression of the cancer stem cell-associated

molecule ALDH1 (129). High ALDH1 expression is associated

with poor prognosis in gastric neuroendocrine carcinoma (130,

131). The presentation of ALDH1 in gastric cancer tissue was

significantly higher than in normal tissue, The manifestation of

ALDH1 was significantly correlated with tumor grade, tumor

stage, lymph node metastasis, tumor metastasis stage, and

overall survival of patients (132).

The present results suggest that ALDH1 overexpression may

be involved in the occurrence, invasion, and metastasis of GAC,

leading to a poor prognosis (132). High expression of ALDH1 in

GC cells improves stem cell properties and antagonizes the

action of macrophages, thus affecting cell viability, anti-

apoptosis, invasion, migration, and cloning ability. ALDH1 is

positively correlated with helicobacter pylori infection. When

ALDH1 is overexpressed, it mainly restores the reduction of

drug resistance caused by miR-625 overexpression. It is involved

in the regulation of various genes and proteins in the process of

GC occurrence and development (5). Furthermore, GC cells

with high expression of ALDH1 can evade the deadly effect of

macrophages by antagonizing tumor necrosis factor a and other

effector molecules secreted by macrophages and increase tumor

proliferation and invasion ability (133). Studies have shown that

overexpression of TAZ (134), upregulation of A1 in cancer-

testes (135), and knockdown of HMGA2 (136) can promote the

high expression of ALDH1 in the GC and tumor growth.

With extensive research on ALDH1 in recent years, it has

been found that targeting drugs can inhibit the growth of GC

and reverse drug resistance by inhibiting ALDH1expression. All-

trans retinoic acid appears to inhibit tumor growth, target gastric

CSCs, and reduce ALDH1 expression (137). ALDH1A1

silencing inhibits cell viability by modulating Wnt signaling in

the migration and invasion of MKN-45 cells. Small interference

RNA, high expression of Ror b, salinomycin, and FoxM1 siRNA

transfection inhibited the expression and invasive capacity of

ALDH1 in GC (5). Silencing miR-95 or overexpressing a miR-95

inhibitor (dual specificity phosphatase 5) inhibited ALDH1
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expression in GC cells (138). BRD4 promotes the stemness of

gastric cancer cells and reduces ALDH1 activity by attenuating

the mir-216a-3p-mediated inhibition of the Wnt/b-catenin
signaling pathway (134). Therefore, ALDH1 may be a new

target for related tumor suppressors and stem cells.
ALDH1 and cervical cancer

Cervical cancer is the fourth most common cancer and the

most common gynecological malignancy (139), of which

squamous cell carcinoma (SCC) is the most common type,

accounting for approximately 80% of all cervical cancers (140).

Treatment of advanced cervical cancer includes surgery,

chemotherapy, and radiation therapy, but cervical cancer

mortality remains high (141), mainly related to CSCs (142).

Studies have suggested that ALDH1 can be used as a cervical

CSC marker (143, 144), which can lead to resistance to

chemotherapy and is closely related to a poor prognosis (145).

Studies have shown that ALDH1 is the target of miR-222,

and miR-222 can bind to the 3’untranslated seed region of

ALDH1 mRNA to regulate its expression, resulting in an

elevated expression level of ALDH1 in cervical cancer (146).

At the same time, studies have indicated that ALDH1 expression

in cervical cancer is closely related to the Erk1/2 and Akt

signaling pathways (147). Hypoxia promotes ALDH-1

expression in radioresistant cells, and ALDH-1-positive cells

promote radioresistance in cervical cancer by preferentially

activating DNA damage checkpoint responses and increasing

DNA repair capacity (143). ALDH1 expression is associated

with higher cell proliferation, spheroid formation, migration,

and tumor incidence in cervical cancer cells, which exhibit

chemo and radioresistance (148).

In recent years, some achievements have been made in

inhibitory drugs or targeted therapy for ALDH1. For example,

PM01183 (149), zoledronic acid (147), and limonin (150) can

inhibit the activity of the cervical CSC marker ALDH1, weaken

the stemness of cervical cancer cells, and waste their

chemoresistance. Therefore, ALDH1 may be a new target for

cervical cancer, which may provide a new and promising

strategy for anticancer therapy, which is worthy of

further exploration.
ALDH1 and esophageal cancer

Esophageal cancer is the sixth most common cause of cancer

death worldwide (151), and 90% of esophageal cancers are

esophageal squamous cell carcinoma (ESCC), which has an

inferior, an abysmal prognosis and high mortality (152).

Esophageal cancer has a low 5-year survival rate and lacks

effective therapeutic targets (153). In ESCC, ALDH1 is a more

reliable CSC marker, and high expression of ALDH1 is
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associated with poor differentiation from ESCC and poor

prognosis (154, 155).

Studies have shown that ALDH1A1 can activate AKT,

interact with b-catenin, and start the wnt/b-catenin signaling

pathway to maintain the CSC properties of ESCC (23). The

study suggested that the high expression of ALDH1A1 is also

associated with the promoting EMT in ESCC (156). ALDH1

plays a vita role in tumor aggressiveness and is associated with

the pro-tumor microenvironment of esophageal cancer, mainly

involving the IL-6/STAT3 pathway and factors such as p-

STAT3, MDSC2 (12). Similarly, ALDH1A1 knockdown or the

use of the small molecule inhibitor NCT-501 reduced the level of

AKT phosphorylationin in A549/DDP cells and inhibited the

AKT-b-catenin signaling pathway (23). Animal experiments

demonstrated that COX-2 inhibition reduced ALDH1 and IL-

6 expression levels, attenuated MDSC recruitment, and

subsequently slowed esophageal tumors (12). Tranilast

significantly reduced the strong expression of ALDH1A1 in

TE8 cells (157). Additionally, CA3 and LEE011 can jointly

inhibit the YAP1 and CDK6 pathways, significantly reduce the

growth of esophageal cancer cells and cancer stem cell ALDH1,

sensitize cells to radiation, and show strong antitumor effects in

vivo (158). Therefore, ALDH1 is expected to become a new

direction for esophageal cancer stem cell research.
ALDH1 and ovarian cancer

Ovarian cancer (OC) is the most lethal gynecological

malignancy and ranks first in cancer mortality among female

malignancies (159). Epithelial ovarian cancer (EOC) accounts

for 95% of ovarian malignancies, and is the most common OC

(160). The prognosis of OC treatment is unsatisfactory mainly,

probably due to the presence of ovarian cancer stem cells

(OCSC) and chemoresistance (7, 160). In OC, high ALDH1 is

a hallmark of OCSC (161–163) and is strongly associated with

poor prognosis, and resistance to chemotherapy (164–166).

Studies support that OC patients with high expression of the

ALDH1A1 stemness gene have an attenuated response to

platinum-containing chemotherapy (167) and that ALDH1A1

may be involved in acquired resistance to cisplatin through

upregulation of NEK-2 in OC (166). Platinum-induced secretion

of IL-6 from cancer-associated fibroblasts in the tumor

microenvironment promotes the enrichment of OCSC in

residual tumors after chemotherapy through activation of

STAT3 and up-regulation of ALDH1A1 expression (45).

ALDH1 activity has also been reported to be positively

regulated by the BET family protein BRD4, which is capable of

to up-regulate ALDH1A1 transcription through super-enhancer

elements (168). AhR can also mediate OC progression, a stem

ALDH1 signature, by activating PI3K/Akt, Wnt/b-catenin, and
EMT (169). Furthermore, the expression and activity of

ALDH1A1 can be regulated by b-Catenin, the EZH2 enhancer,
frontiersin.org

https://doi.org/10.3389/fonc.2022.1026278
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wei et al. 10.3389/fonc.2022.1026278
and the bromodomain and extra terminal (BET) protein

family (170).

Recent studies have suggested that customized therapy

targeting ALDH1 can reduce resistance to chemotherapy and

improve the survival rate of OC. ALDH1A1 knockdown can

reverse the resistance to OC chemotherapy (168). Dual inhibition

of Src and MEK reduces OC growth and targets ALDH1

(171). Consistent with these, ALDH1 inhibition effectively

blocks the proliferation and survival of OC spheroids (167), and

aldehyde dehydrogenase inhibitors promote OC DNA damage

(172). IL-6-Nab combined with HMA completely eradicated

OCSCs, and this combination blocked IL-6/IL6-R/pSTAT3-

mediated ALDH1A1 expression, providing a strategy for tumor

recurrence after chemotherapy (173). NAMPT inhibitors and 4-

MU treatment reduce ALDH1 protein expression, which reduces

chemoresistance and OC cell growth (174, 175). BET inhibitors

inhibit ALDH activity by abrogating BRD4-mediated expression

of ALDH1A (176). DDB2 inhibits OC cell dedifferentiation by

inhibiting ALDH1A1 (170). A selective inhibitor of the ALDH1A

family (ALDH1Ai) reduces tumor-initiating capacity and

chemoresistance (177). With the continuous in-depth

understanding of ALDH1 and drug resistance mechanisms in

OC, the development of drugs targeting ALDH1 is expected to

become a new direction for treating OC.
ALDH1 and head and neck carcinomas

Head and neck carcinomas (HNCs) are the sixth most

common cancer worldwide (178), which are characterized by

the unregulated growth of tumor cells in various parts of the

head and neck, such as the buccal mucosa, floor of the mouth,

tongue, oropharynx, hypopharynx, esophagus, nasopharynx,

and salivary glands (179), and more than 90% of HNCs are

squamous cell carcinomas (HNSCC) (180). HNCs have poor

survival, and poor prognosis (181), and CSCs have been

attributed to poor treatment outcomes and survival in HNSCC

(13). ALDH1 is associated with tumor malignancy and self-

renewal properties of stem cells in HNCs (182) and has been

as soc ia t ed wi th poorer prognos i s and fa i lu re o f

chemoradiotherapy in HNCs (13, 183). ALDH1 acts as a stem

cell marker for HNCs such as oral cancer (184), eyelid sebaceous

gland carcinoma (185), benign epithelial odontogenic lesions

(186), salivary gland tumor (187, 188), lip cancer (189),

sublingual adenoma (190).

Studies have shown that in HNCs, ALDH1 is mainly

regulated by retinoic acid compounds and other oncogenic

pathways such as MUC1-C/ERK and WNT/b-catenin (191),

but also by the AKT signaling pathway (192, 193). ALDH1A1

increases TUBB3 expression, which down-regulates PTEN and

promotes cell proliferation, migration, and invasion (194).
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Inhibition of miR-30a and miR-379 upregulates DNMT3B

expression, which leading to hypermethylation of the

ALDH1A gene, and promotes oncogenic activity (195, 196).

Expression of ATAD2 (154), VIM, or ZEB2 (197) promotes

ALDH1 expression. Similarly, the ovatodiolide can inhibit

ALDH1 activity and stemness properties by inhibiting JAK2/

STAT3/JARID1B signaling (198). The soy isoflavone genistein

hinders stem cells in HNCs by activating the miR-34a/RTCB

axis and reducing ALDH1 activity (199). Butylene phthalide

(200), honokiol (201), elimination of long noncoding RNA

MACC1-AS1 (202), resveratrol (203), can reduce ALDH1

activity and inhibit the stemness of HNCs. Therefore, ALDH1

is a possible drug target in HNCs.
ALDH1 and other cancer

In recent years, a large number of studies have shown that

ALDH1 is also closely related to other solid tumors.The

overexpression of ALDH1 is associated with a poor prognosis

and malignant tumor development, such as melanoma (204),

glioma (205), prostate cancer (206, 207), endometrial cancer (6,

208), bladder cancer (209), Osteosarcoma (210), pancreatic

cancer (211, 212), kidney cancer (213), etc. ALDH1,

overexpressed in melanoma, promotes tumor angiogenesis

mainly by activating IL-8/Notch signaling (214). Additionally,

ALDH1A1 can metabolize retinal RA, thus activating RAR-

mediated transcription of downstream targets, such as TUBB3,

in bladder cancer cells (209). ALDH1A3 promotes pancreatic

cancer metastasis through its metabolic effects on glucose

metabolism, and PPARg and its downstream PI3K/AKT/

mTOR signaling pathway may be involved in this process

(215). Furthermore, the expression of ALDH1 in these solid

tumors is also affected by Notch1 signaling (216), ILK signaling

(217), Hippo signaling (218), miR-761 (219), ARID1A

deficiency (220), IL17 (221), etc.

Similarly, inhibition or targeting of ALDH1 can alleviate the

progression of these solid tumors, such as acid sensor ASIC1a

(222), depletion of TP73-AS1 (223), eprinomectin (224),

silencing of YAP (218), MicroRNA-487b-3p (225), miR-199

(226), CTSB knockdown (227). Therefore, ALDH1 is expected

to become a corresponding therapeutic target for the solid

tumors mentioned above.
Prospective

By combing all articles on ALDH1 and solid tumors in the

last five years, it is found that ALDH1 can be used as a marker of

tumor stem cells, expressed in a variety of malignant tumor

tissues; the expression level of ALDH1 is a marker that

distinguishes normal stem cells from cancer stem cells.
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ALDH1 can maintain stem cell characteristics and lead to drug

resistance, which is the key to tumor recurrence and is difficult to

cure. Preclinical studies have shown that ALDH1plays an essential

role in the occurrence, invasion, andmetastasis of different cancers

through various pathways (20) (220) (22) (23). In recent years,

many scholars have studied ALDH1 inhibitors and targeting

ALDH1, but there is no clinical evidence on the efficacy and

safety of their inhibition in solid tumors. Although none of these

newer compounds has entered clinical trials and are still in the early

stages of ALDH1-targeted therapy development, they have shown

promising effects and have an encouraging future for ALDH1-

targeted drugs. Therefore, further research will be crucial to make

ALDH1 a therapeutic target.
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