
ORIGINAL RESEARCH
published: 30 October 2020

doi: 10.3389/fbioe.2020.534592

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 1 October 2020 | Volume 8 | Article 534592

Edited by:

Concetto Spampinato,

University of Catania, Italy

Reviewed by:

Amit Alexander,

National Institute of Pharmaceutical

Education and Research, India

Carmelo Pino,

University of Catania, Italy

*Correspondence:

Guilherme Folego

gfolego@gmail.com

†Some data used in preparation of

this article were obtained from the

Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database (https://adni.

loni.usc.edu). As such, the

investigators within the ADNI

contributed to the design and

implementation of ADNI and/or

provided data but did not participate

in analysis or writing of this report

‡Some data used in the preparation of

this article were obtained from the

Australian Imaging Biomarkers and

Lifestyle flagship study of aging (AIBL)

funded by the Commonwealth

Scientific and Industrial Research

Organization (CSIRO) which was

made available at the ADNI database

Specialty section:

This article was submitted to

Biomaterials,

a section of the journal

Frontiers in Bioengineering and

Biotechnology

Received: 13 February 2020

Accepted: 18 September 2020

Published: 30 October 2020

Alzheimer’s Disease Detection
Through Whole-Brain 3D-CNN MRI

Guilherme Folego 1,2*, Marina Weiler 3, Raphael F. Casseb 4, Ramon Pires 1 and

Anderson Rocha 1 for the Alzheimer’s Disease Neuroimaging Initiative † and

the Australian Imaging Biomarkers and Lifestyle flagship study of aging ‡

1 Institute of Computing, University of Campinas, Campinas, Brazil, 2CPQD, Campinas, Brazil, 3 Laboratory of Behavioral

Neuroscience, National Institute on Aging, National Institutes of Health, Intramural Research Program (NIA/NIH/IRP),

Baltimore, MD, United States, 4 Seaman Family MR Research Center, Cumming School of Medicine, University of Calgary,

Calgary, AB, Canada

The projected burden of dementia by Alzheimer’s disease (AD) represents a looming

healthcare crisis as the population of most countries grows older. Although there

is currently no cure, it is possible to treat symptoms of dementia. Early diagnosis

is paramount to the development and success of interventions, and neuroimaging

represents one of the most promising areas for early detection of AD. We aimed to

deploy advanced deep learning methods to determine whether they can extract useful

AD biomarkers from structural magnetic resonance imaging (sMRI) and classify brain

images into AD, mild cognitive impairment (MCI), and cognitively normal (CN) groups. We

tailored and trained Convolutional Neural Networks (CNNs) on sMRIs of the brain from

datasets available in online databases. Our proposed method, ADNet, was evaluated on

the CADDementia challenge and outperformed several approaches in the prior art. The

method’s configuration with machine-learning domain adaptation, ADNet-DA, reached

52.3% accuracy. Contributions of our study include devising a deep learning system that

is entirely automatic and comparatively fast, presenting competitive results without using

any patient’s domain-specific knowledge about the disease. We were able to implement

an end-to-end CNN system to classify subjects into AD, MCI, or CN groups, reflecting

the identification of distinctive elements in brain images. In this context, our system

represents a promising tool in finding biomarkers to help with the diagnosis of AD and,

eventually, many other diseases.

Keywords: Alzheimer’s disease, computer aided diagnosis, artificial intelligence, computer vision, deep learning,

convolutional neural networks, image classification, magnetic resonance imaging

1. INTRODUCTION

Dementia by Alzheimer’s disease (AD) is characterized by multiple cognitive problems, including
difficulties in memory, executive functions, language, and visuospatial skills. The most significant
risk for AD is aging—there is almost a 15-fold increase in the prevalence of dementia between the
ages of 60 and 85 years (Evans et al., 1989). The projected burden of the disease represents a looming
healthcare crisis as the population of most industrialized countries continues to grow older.
Although there is still no cure, it is possible to treat both cognitive and behavioral symptoms of AD.

The early diagnosis of the disease is paramount for interventions, and clinical trials in AD tend
to enroll subjects at earlier time-points before neuronal degeneration has achieved a particular stage
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and treatment is often more effective. In this context,
neuroimaging is one of the most promising areas of research
for early detection of AD, as the progressive degeneration of
brain structures can be seen as a dramatic cerebral shrinkage in
structural magnetic resonance imaging (sMRI).

Thus far, works in this area have recurrently considered only a
small number of subjects and images, often with curated data (i.e.,
reviewed, prepared, and organized by experts), such as ADNI’s
Standardized MRI Data Sets (Wyman et al., 2013). Additionally,
with the lack of a standard evaluation protocol, each study
employed its criteria, with its own random data split. The lack of
standardization limits the comparison between differentmethods
and usually overestimates performance in a real-world scenario.
When data is not readily preprocessed and comes from different
sources, this situation is even more problematic.

A recent and extensive review (Wen et al., 2020) indicated
that a reasonable number of studies using convolutional neural
networks (CNNs) for AD either present evident data leakage
problems, or offer scarce explanation for the validation method
to ensure that data leakage has not occurred. Data leakage
possibilities only emphasize the need for an independent set of
images for evaluation. In addition to this review, Wen et al.
(2020) proposed a standard framework for rigorous performance
assessment, using data from ADNI, AIBL (Ellis et al., 2009), and
OASIS (Marcus et al., 2007, 2009).

For fair comparisons between different methods, a few
challenges with standard protocols and hidden test labels were
launched, such as the CADDementia challenge (Bron et al.,
2015). Although presenting a good classifier—63.0% accuracy
in classifying MRI images into cognitively normal (CN), mild
cognitive impairment (MCI), and AD patients—, the winning
method (Sørensen et al., 2017) used transductive inference to
calculate hippocampal shape scores, requiring the CADDementia
test data to be calculated, which deviates from the original
proposal of applying the algorithm in the clinical setting.
Additionally, their pipeline failed to process three scans from
the CADDementia test set, requiring manual intervention. The
analysis of each subject took 19 h of computation time. The
second-best team (Wachinger and Reuter, 2016) employed a
domain-adaptation approach, and optimization was done on the
union of ADNI and CADDementia training sets, with equal
weights for each sample. The analysis of each subject took 17.4
h of computation time.

Among the available machine learning methods, CNNs
have been increasingly used in the Alzheimer’s biomarker
identification task, given its power to learn discriminative
representations hierarchically in an automated fashion. Most
studies employing CNNs in the context of AD used 2D
inputs, whereas studies that used 3D inputs focused basically
on binary classifications. The few works that trained a 3D
CNN for the multiclass CN/MCI/AD classification evaluated
their performances with cross-validation on ADNI data and
considered only networks comparable to our smallest proposed
architecture. All of this context highlights the novelty in our
research, as we optimized very deep 3D CNNs, with up to
22 layers, for the multiclass diagnosis task, and evaluated our
performance on the CADDementia challenge, with unknown

labels, making our results much more reliably applicable in a
real-world setting.

A previous work that employed the deep learning approach in
the context of AD (Korolev et al., 2017) designed 3D CNNs based
on smaller versions of VGG (Simonyan and Zisserman, 2014)
and ResNet (He et al., 2016) architectures. However, only binary
classification tasks were considered, which were evaluated using
cross-validation onADNI. The first group to successfully propose
a deep-learning approach to the CADDementia challenge (Dolph
et al., 2017) extracted features such as cortical thickness, surface
area, volumetric measurements, and texture. These values were
used to greedily layer-wise train a stacked auto-encoder with
three hidden layers, achieving competitive results. Using the
whole brain as input, Hosseini-Asl et al. (2018) employed a
small stack of unsupervised 3D convolutional auto-encoders
(3D-CAE), evaluating with cross-validation on ADNI. One of the
works more closely related to ours (Esmaeilzadeh et al., 2018)
optimized small 3D CNNs, similar to our most basic model,
and considered the multiclass classification task. However,
the performance was measured using ADNI cross-validation,
hindering better comparisons with ourmethod. It is worth noting
that they reported a classification accuracy of 61.1%, but observed
overfitting in training data.

In more recent work, Abrol et al. (2020) developed 3D CNNs
based on the ResNet architecture and experimented with several
binary and multiclass tasks. They used the ADNI data to create a
training set, used for cross-validation, and a small test set. Even
though their results were promising, no further comparisons with
different datasets or standardized evaluation frameworks were
made. Interestingly, their experiments also presented overfitting
in training data. Also recently,Mehmood et al. (2020) adapted the
VGG architecture to create a 2D siamese CNN. They evaluated
their model using training and test split in the OASIS dataset,
presenting compelling results. However, given their proposed
data flow chart, it is possible that their data augmentation
technique also introduced data leakage.

In our research, we relied upon a 3D CNNwith data primarily
provided by ADNI (Mueller et al., 2005) and evaluated on the
CADDementia challenge (Bron et al., 2015). Our solution also
includes an accountable mechanism to allow us to understand its
decisions. Our experiments were conducted in a scenario similar
to real-world conditions, in which a CAD system is used on a
dataset that is different from the one used for training.

The main challenges and contributions of our research
included devising a deep-learning solution completely automatic
and comparatively fast, while also presenting competitive
results without using any domain-specific knowledge. Our
method, named ADNet, yields considerable gains in accuracy,
outperforming several other systems in the prior art, all of which
require prior knowledge of the disease, such as specific regions
of interest from input images. Alternatively, our system does
not require any manual intervention, clinical information, or
a priori selected brain regions. The main reason for not using
any information from the disease is to empower the system to
automatically learn and extract relevant patterns from regions of
the brain, and eventually enable it to support current diagnosis
standards for known or new diseases. In addition, it runs 80
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FIGURE 1 | Overview of our proposed pipeline, with brain extraction and normalization (A), 3D CNN processing (B), and domain adaptation (C) steps, in this order.

times faster than the state of the art (Sørensen et al., 2017),
on average.

Our generated ADNet and ADNet-DA models, as well as
supporting code, are publicly available1 to be used or trained
on new data. With this work, we are releasing one of the first
models ready to use, encouraging open science and reproducible
research, while also setting a starting point for researchers
working with 3D MRIs.

2. METHODOLOGY

In this work, we propose an end-to-end deep 3D CNN for
the multiclass AD biomarker identification task, using the
whole image volume as input. Our pipeline, displayed in
Figure 1, is composed of three main steps: brain extraction and
normalization (Figure 1A), 3D CNN processing (Figure 1B),
and domain adaptation (Figure 1C). This section provides
details of our pipeline, including image preprocessing, CNN
architectures, and optimization techniques.

2.1. Brain Extraction and Normalization
Optimizing deep-learning systems using sMRIs in their original
space requires the systems to learn discriminative patterns
invariant to several transformations, demanding larger models
and an even larger number of samples, with all expected
variations. By registering our images to a standard template, we
can expect similar structures to be roughly in the same spatial
location, allowing us to handle the entire image at once and
automatically determine the most important regions of interest.

We used the Advanced Normalization Tools (ANTs; Avants
et al., 2009) to extract and normalize brain images. Our

1https://github.com/gfolego/alzheimers

pipeline was based on previously defined scripts2 (Avants et al.,
2011; Tustison and Avants, 2013), and we made use of the
provided default parameters, including transformation types,
sequence, and metrics. Essentially, our brain extraction and
normalization pipeline comprised the following steps: image
intensity winsorizing, bias field correction, another winsorizing
step, translation alignment, rigid transform, affine transform,
deformable symmetric normalization (SyN), application of brain
mask from the atlas, and range normalization.

As we used registered brains in our research, we opted for
a less rigid and less linear atlas, allowing for some degree of
variation during the registration process. This atlas also had a
high spatial resolution, so finer details would not be lost in the
process. As such, the Montreal Neurological Institute (MNI)
152 International Consortium for Brain Mapping (ICBM) 2009c
Nonlinear Asymmetric 1×1×1mm3 (Collins et al., 1999; Fonov
et al., 2009, 2011) atlas was chosen.

After the brain extraction and normalization process, the
output image has the same dimensions as the atlas (i.e., 193 ×
229 × 193). From all of these 8, 530, 021 voxels, only 1, 886, 574
(22%) of them are not zero. Since the brain is enclosed in
a smaller region inside the image, we removed the border
dimensions that contained no information, resulting in a final
image of 145× 182× 155. This new space represents 48% of the
original volume, reducing sparsity from 78 to 54%. Finally, we
used the training set to compute mean and variance, then used
them across all sets to normalize the data to zero mean and unit
variance. Given that the used datasets did not fit inmainmemory,
we adopted a single-pass online mean and estimated variance
algorithm (Welford, 1962).

2Specifically, scripts antsBrainExtraction.sh and antsRegistrationSyNQuick.sh of
version 2.1.0.
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TABLE 1 | CNN architectures evaluated in this study.

Architecture Layers
Parameters
(in millions)

LeNet-5 7 0.3

VGG 2048 11 89.8

VGG 512 11 26.8

GoogLeNet 22 14.6

ResNet A 18 33.0

ResNet B 18 33.2

Our main challenge was putting together a registration
pipeline, including the adopted atlas, that provided useful and
meaningful results in a reasonable time, while maintaining high
resolution images.

2.2. Convolutional Neural Network
We describe here the convolutional neural network architectures
we adopted and the modifications we performed to each. These
networks were initially designed for 2D color images, and we
are dealing with 3D grayscale MRIs. Thus, the most natural
adaptation was to convert all 2D operations, such as convolution
or pooling, to 3D. Given these adaptations, we were unable to
employ a transfer learning approach (Sharif Razavian et al., 2014)
with the original networks directly.

A common attribute to all considered architectures is that
spatial dimension is reduced as information flows to deeper
layers. Spatial dimensionality reduction is usually achieved
with max-pooling layers, or with more substantial strides in
convolutional layers. To accommodate different data shapes
that were not necessarily divisible by two, we adopted an ad-
hoc approach by zero-padding each layer as needed, so no
information was lost. We also added batch normalization (Ioffe
and Szegedy, 2015) to every convolutional and fully-connected
layers. All activation functions were rectified linear units
(ReLU; Nair and Hinton, 2010), except for the classification
output, which was a softmax function. Finally, the number of
layers varied according to the adopted network standard. Table 1
shows the CNN architectures evaluated, taking into account the
original approach for layer counting in each network.

We started with a small network, based on the LeNet-5
architecture (LeCun et al., 1989; Lecun et al., 1998). Because
this network is significantly older than the others, it required
the largest modifications. This network was composed of
the following layers: convolution, subsampling, convolution,
subsampling, fully connected (originally implemented as
convolutional), fully connected, and output. As subsampling
layers had learnable parameters, we converted them to
convolutions, with filter (kernel) size and stride equal to 2×2×2,
thus keeping the subsampling behavior. The main difference
was in the connection between the first subsampling and second
convolutional layers, for which the particular arrangement in the
original work was converted to a dropout layer with a probability
of 40%. Similar to the original architecture, if we had adapted
the last convolutional layer to match the previous layer’s output

size, it would have had 120 feature maps with a kernel size of
34 × 43 × 36, seriously increasing the number of parameters.
To mitigate these issues, we adapted those kernels to 5 × 5 × 5
and added a global average pooling layer immediately following,
similar to GoogLeNet (Szegedy et al., 2015) and ResNet (He
et al., 2016). Naturally, the last layer contained three units (one
for each class), with a softmax function activation.

The Visual Geometry Group (VGG) proposed deep CNN
architectures, achieving second place in the classification task at
ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
2014 (Simonyan and Zisserman, 2014). They designed very
uniform architectures ranging from 11 (configuration A) to
19 (configuration E) weight layers, i.e., considering only
convolutional and fully-connected layers. Due to its uniformity,
mostly with filters of size 3 × 3, the VGG architecture is
considerably large. The first layers, with the original input
dimensions, consumed a large GPU memory, while the last
layers, with dense connections, generated several parameters.
Since our input data were already quite large when compared
to traditional 2D images, we adapted the VGG network
configuration A by halving all numbers of filters in convolutional
layers, and all numbers of units in fully-connected layers, while
keeping filters sizes of 3 × 3 × 3 and dropout rate at 50%. Even
after reducing the network size, the first fully-connected layer of
our adapted VGG-A, with 2,048 units, accounted for 78, 643, 200
(88%) parameters. For comparison, Table 1 also includes our
VGG-A with 512 units in the fully-connected layers.

While VGG achieved second place in ILSVRC-2014,
GoogLeNet secured first place in the classification task (Szegedy
et al., 2015), proposing an architecture named Inception. The
basic idea was to increase both depth and width while keeping
computational requirements constrained. This approach led to
a deeper model with fewer parameters and better performance.
We adapted directly from their GoogLeNet architecture, i.e.,
only discarding the local response normalization (Krizhevsky
et al., 2012) layer and the auxiliary networks. We also adjusted
the last average pooling layer, following the output shape of
the previous layer, and kept the dropout rate at 40%. In this
architecture, the number of layers came from depth, where single
convolutional or fully-connected layers counted as one, while
inception modules counted as two. However, each inception
module had six individual internal convolutional layers.

In ILSVRC-2015, Residual Network (He et al., 2016) won
first place in classification, localization, and detection tasks.
These researchers wanted to understand whether learning
better networks meant simply stacking more layers. With this
study, they found the degradation problem, where traditional
models similar to VGG stopped improving performance after
a certain number of layers, and even started getting worse
afterwards. To overcome this problem, they proposed the
residual function, which is the basic building block of a
Residual Network (ResNet). We adapted ResNet directly from
the non-bottleneck 18-layer architecture, in which shortcuts with
increasing dimensions were either (A) identity shortcuts, i.e.,
padding with zero, or (B) projection shortcuts, i.e., convolutions
with 1 × 1 × 1 filter (kernel) size. Similarly to VGG, the
number of layers came from convolutional and fully-connected
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layers, with projection convolutions not considered in the
layer count.

In summary, we adopted four CNN architecture designs,
namely, LeNet-5, VGG, GoogLeNet, and ResNet. LeNet-5
is considerably older and smaller, so it shall have a lower
probability of overfitting. The VGG network is known for its
uniformity, which makes it relatively simple to adapt, inspect,
and use for many different tasks; however, this characteristic
also makes it significant in the number of parameters and in
hardware requirements. These drawbacks were addressed in
both GoogLeNet and ResNet architectures, which also adopted
very specific building blocks, making it possible to extract more
complex patterns from data, while also increasing the number of
layers and reducing the number of parameters. The idea was to
explore different architectures and understand how they would
behave in the AD task.

To avoid overfitting, we adopted regularization with L1 and
L2 norms. In L1, this effect is achieved by minimizing the
absolute values of the weights, while in L2 this is done with their
squared values. In principle, L2 norm tends to produce diffuse
and small numbers, while L1 tends to produce sparse numbers.
This property makes L1 particularly well-suited to handle noisy
data, acting as a feature selection algorithm, which could help us
better visualize and explain what the CNN has learned. However,
in general, L2 can be expected to provide superior results over L1.

All network architectures and their optimization were
implemented using upstream (i.e., the latest version from the
code repository) Lasagne (Dieleman et al., 2015), which is a deep
learning framework based on Theano (Al-Rfou et al., 2016). At
the time this research was carried out, we used a development
version of Lasagne 0.2, and a development version of Theano
0.9.0, with Python 2.7.6, CUDA 7.5, and CuDNN 5. Additionally,
we used SciKit-learn 0.18.1 (Pedregosa et al., 2011) and NumPy
1.11.3 (van der Walt et al., 2011).

2.3. Domain Adaptation
In addition to brain processing and CNN pipelines, we
considered a domain adaptation approach. In our method,
we trained a system using one dataset and evaluated it on a
different dataset (i.e., CADDementia). Even though they are
related, such differences mean that the source data distribution
could be different from the target data distribution. Thus, it
should be possible to further improve the results by adapting the
previously-trained system to the new dataset, even if using only a
small number of samples from this target domain. This scenario,
also known as cross dataset validation, is more closely related to
a real-world scenario, in which data sources will most likely be
different between training and actual usage. Additionally, this is
a more reliable way of assessing generalization capabilities of a
machine learning algorithm.

In our domain adaptation approach, we started by using our
previously-optimized CNN to extract features from the complete
target dataset (i.e., CADDementia), in one of the last CNN
layers. After, we normalized these features to zero mean and
unit variance, using only the target training set to compute the
parameters. With the normalized data, we optimized a one-vs.-
rest logistic regression (McCullagh, 1984) on the complete target

TABLE 2 | Datasets considered in this study.

Dataset Number of MRI

images

References

ADNI
18,303

Mueller et al., 2005;

(ADNI1, ADNIGO, ADNI2) Beckett et al., 2015

AIBL 1,098 Ellis et al., 2009

CADDementia 384 Bron et al., 2015

MIRIAD 708 Malone et al., 2013

OASIS 3,056 Marcus et al., 2007, 2009

training set. In order to find the best parameters for this classifier,
we used grid search with leave-one-out cross-validation. Then,
we finally had a system that was enhanced for the target domain,
making it possible to output improved classification probabilities
for each sample in the target domain. This pipeline is similar to a
transfer-learning approach (Sharif Razavian et al., 2014).

3. EXPERIMENTAL SETUP

Given that training a CNN from scratch usually requires massive
amounts of data, we gathered as many different imaging sources
as possible. We collected an AD sMRI dataset comprising 23,165
images. Below, we describe our optimization approach, including
associated parameters.

3.1. Data
In our data collection process, we considered the datasets
indicated in Table 2. ADNI1 originally included three participant
groups: CN, MCI, and AD. Starting in ADNIGO, the MCI stage
was split into early MCI (eMCI) and late MCI (lMCI). Later,
in ADNI2, a subjective memory complaint (SMC) group was
added (Beckett et al., 2015). Similarly to ADNI1, both AIBL
and CADDementia sets were composed of CN, MCI, and AD
stages, whereas both MIRIAD and OASIS sets contained only
CN and AD.

Since one of our main goals for this research was achieving
a good result in the CADDementia challenge, we adopted only
equivalent diagnoses. As such, eMCI and lMCI stages were
grouped along with MCI, and SMC was not considered. From
these datasets, we downloaded all available raw T1-weighted
sMRI scans associated with Alzheimer’s, i.e., we did not consider
any pre- or post-processed image.

To isolate possible confounding factors, we made a distinction
between MP-RAGE and IR-SPGR/IR-FSPGR sequences (Lin
et al., 2006; Jack et al., 2008), and aggregated different data
sources and sequence techniques in steps. While all ADNI
sets had both MP-RAGE and IR-SPGR/IR-FSPGR, AIBL and
OASIS had only MP-RAGE, and MIRIAD had only IR-FSPGR.
The resulting datasets are described in Table 3, and detailed
in Table 4.

For each dataset, we created training, validation, and test
splits. In Dataset 1, we randomly split the corresponding subjects,
trying to keep the original age, sex, and diagnostic stratification
across each set, with 70% of subjects for training, 10% for
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TABLE 3 | Datasets assembled in this study.

Resulting

dataset

Overarching

sets

MP-RAGE only Final number of

MRI images

Dataset 1 ADNI1 Yes 9,149

Dataset 2 All ADNI Yes 15,885

Dataset 3 All ADNI No 18,303

Dataset 4 All No 23,165

validation, and 20% for testing. In each subsequent dataset, we
first assigned images from previous subjects to the respective set,
then we proceeded with the stratified random split considering
only new subjects.

3.2. Metrics and Optimization
The primary evaluation measure we considered herein was
classification accuracy, which is the number of correctly classified
samples divided by the number of all samples. Even though
this performance value does not take into account class priors,
the challenge organization deemed class sizes insignificantly
different, therefore regarding this metric as a better approach
for overall classification accuracy. Additionally, the receiver
operating characteristic (ROC) curve and the respective area
under the curve (AUC) were also considered, as they provide
metrics that are independent of the threshold chosen for
classification. Also, since AUC does not traditionally depend on
class sizes, we adopted an AUC measure that does not rely on
class priors. Finally, the true positive fraction (TPF), the number
of correctly classified samples of a given class divided by the
number of all samples from that class, was calculated for each
class. According to the authors, TPFs for diseases (AD and MCI)
can be interpreted as the two-class sensitivity, while TPF for CN
corresponds to the two-class specificity.

As we optimized and trained our networks, we compared
them and selected the best ones using the average of TPFs, since
it more closely relates to the accuracy and does not depend on
class priors. To perform the training process, we used Adam
optimizer (Kingma and Ba, 2014) with default parameters (i.e.,
β1 = 0.9, β2 = 0.999, and ǫ = 10−8). With a small sample
of images, we empirically decided to begin with a learning rate
of α = 10−4, and settled to a batch size of three (for VGG
architectures) or nine (for all the others), mainly due to GPU
memory limitations, even though we only used GPUs with 12
GB of dedicated memory. Finally, we adopted Glorot uniform
initialization (Glorot and Bengio, 2010) with scaling factor of

√
2.

4. RESULTS AND DISCUSSIONS

Fairness, accountability, and transparency (FAT) have become
increasingly essential aspects of machine learning (Goodman
and Flaxman, 2016). For example, laudable efforts include
explaining algorithmic decisions, making an effort to understand
sources of error and uncertainty, and creating auditable
systems (Diakopoulos et al., 2017).

Given the expectations described above, we will now discuss
further details of our study. We better describe our optimization
process, specifying the steps to handle overfitting problems.
Then, we report performance results, including previously
described metrics, along with efficiency measurements. Finally,
we discuss our best CNN model, providing further insights into
its functionality, and how it processes data to make predictions.

4.1. Optimization
As stated earlier, we determined the initial learning rate of α =
10−4, and varied some configurations in each architecture to
achieve the best accuracy in the CADDementia training set.
These options included regularization with L1 and L2 norms,
regularization strength λ, number of units in fully-connected
layers, dropout rates, batch size, and multi-class hinge loss
(instead of the traditional categorical cross-entropy loss).

The parameters for regularization strength, number of units,
and dropout rates were also used for regularization, acting as
trade-offs between model complexity and bias, thus managing
the probability to overfit. Overfitting was a significant concern
for us due to the large size of our networks and a relatively small
amount of data. The different batch size was an experiment to
compare the behavior of all networks with the same batch size
of three. Given that support vector machine (SVM; Cortes and
Vapnik, 1995) classifiers usually present reasonable results, and
have successfully been used to identify Alzheimer’s biomarker
previously (Magnin et al., 2009), we also experimented with the
multi-class hinge loss.

In general, we varied regularization strength λ in powers of
10, between 10−5 and 102, number of units in fully-connected
layers in powers of 2, between 32 and 2, 048, and dropout
rate with steps of 10 percentage points, between 40 and 90%,
including 95, 99, and 99.9%. Note that some networks had
specific parameters, i.e., these variations did not apply to all
evaluated architectures. We followed a greedy approach, by first
tuning regularization strength with L2 norm, followed by several
units, and then dropout rates. Next, we evaluated batches of
size three for all networks, L1 norm, multi-class hinge loss, and,
finally, larger datasets.

To form a balanced batch, the same number of samples was
consistently selected from each class. In each epoch, we randomly
sampled each class, limited by the class with fewer images. We
worked with a total batch size of either three or nine samples,
depending on the network architecture.

We observed that, at some point, most networks underfit or
overfit, presenting erratic metrics, with high variations between
epochs. To overcome this issue, we applied the early stopping
to interrupt the optimization before the model began to overfit.
After 50 epochs without further improvement in average TPF
over the validation set, the training was stopped. The model was
optimized for up to 200 epochs.

4.2. Performance
We first analyzed the efficiency of our processing pipeline,
divided into brain image, CNN, and domain adaptation stages.

Figure 2 shows a histogram and a kernel density estimation
of the execution time of brain extraction and normalization steps
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TABLE 4 | Datasets summaries: number of subjects, number of images, descriptive age statistics, image-wise percentage of females (vs. males) and image-wise

percentage of 1.5 T field strength (vs. 3.0 T).

Dataset Subjs. Group Images
Age (years)

Female (%) 1.5 T (%)

Med Avg ± Std Min Max

Dset.
1 845

All 9,149 76.6 76.3± 6.9 54.6 93.0 42.2 82.2

CN 2,701 76.7 77.2± 5.1 60.0 92.8 50.2 80.5

MCI 4,845 76.5 76.0± 7.4 54.6 90.9 35.3 83.0

AD 1,603 76.5 76.1± 7.9 55.2 93.0 49.5 82.5

Dset.
1

Train.
591

All 6,314 76.5 76.2± 6.9 54.6 93.0 43.4 82.6

CN 1,809 77.2 77.3± 4.9 60.0 90.8 49.5 81.3

MCI 3,399 76.1 75.7± 7.3 54.6 90.9 36.3 83.0

AD 1,106 75.9 76.1± 7.9 55.2 93.0 55.3 83.5

Dset.
1
Val.

84

All 951 76.4 75.8± 6.8 56.2 89.2 40.5 82.8

CN 301 75.7 76.5± 4.8 65.2 88.6 58.5 79.7

MCI 501 78.2 76.7± 6.7 56.2 89.2 28.5 83.8

AD 149 72.0 71.2± 8.6 56.5 85.0 44.3 85.2

Dset.
1

Test
170

All 1,884 77.2 77.0± 6.9 56.7 92.8 38.7 80.4

CN 591 76.2 77.2± 5.6 63.3 92.8 47.9 78.5

MCI 945 77.7 76.5± 7.8 56.7 90.9 35.1 82.4

AD 348 79.7 78.0± 6.3 63.1 87.7 33.0 78.2

Dset.
2 1 503

All 15,885 75.8 75.4± 7.3 54.6 95.8 44.0 53.3

CN 4,646 76.8 76.9± 5.8 56.3 95.8 50.0 56.5

MCI 8,940 75.0 74.6± 7.7 54.6 93.5 40.0 50.5

AD 2,299 76.4 75.8± 7.8 55.2 93.0 47.5 57.5

Dset.
3 1 715

All 18,303 75.8 75.5± 7.4 54.6 95.8 43.5 48.2

CN 5,361 76.7 76.9± 6.0 56.3 95.8 50.0 52.5

MCI 10,306 75.0 74.6± 7.7 54.6 93.6 39.5 45.5

AD 2,636 76.2 75.8± 7.9 55.2 93.0 45.9 50.2

Dset.
4 2 984

All 23,165 75.0 73.5± 11.7 18.0 98.0 46.5 55.5

CN 8,462 75.0 71.3± 16.1 18.0 97.0 53.9 62.8

MCI 10,460 75.0 74.7± 7.7 54.6 96.0 39.6 45.1

AD 4,243 75.4 75.3± 7.9 55.0 98.0 48.4 66.3

CADD.
Train. 30

All 30 65.0 65.2± 6.9 54.0 80.0 43.3 0.0

CN 12 62.0 62.3± 6.1 55.0 79.0 25.0 0.0

MCI 9 68.0 68.0± 8.2 54.0 80.0 44.4 0.0

AD 9 67.0 66.1± 5.0 57.0 75.0 66.7 0.0

CADD.
Test 354 All 354 65.0 65.1± 7.8 46.0 88.0 39.8 0.0

AD, Alzheimer’s disease; Avg, average; CADD., CADDementia; CN, cognitively normal; Dset., dataset; Max, maximum; Med, median; MCI, mild cognitive impairment; Min, minimum;

Std, standard deviation; Subjs., subjects; Train., training; Val., validation.

for Dataset 4, which is our largest, containing 23,165 volumes.
Interestingly, only 151 images (0.7%) took longer than 25 min
to process. Each process used two cores in a shared cluster of
commodity hardware, such as Intel R© Xeon R© CPU E5645 at 2.40
GHz, and around 2 GB of RAM.

To train our CNNs, we used three differentmodels of NVIDIA
GPUs: GeForce GTX TITAN X (Maxwell microarchitecture),

Tesla K40c, and Tesla K80. Training usually lasted for about
100 epochs, taking around 4 days to complete. We performed
a total of 121 experiments. Inference time for our best network
(VGG 512) was <1 s. The grid search for domain adaptation
was completed in under one minute, and the classification of all
354 samples from CADDementia test set was accomplished in
about 1 ms.
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FIGURE 2 | Histogram and kernel density estimation plots of brain extraction

and normalization times for Dataset 4, in minutes. Dataset 4 is our largest,

composed of ADNI1, ADNIGO, ADNI2, AIBL, MIRIAD, and OASIS datasets,

with a total of 23,165 volumes. These plots show that the processing times

ranged mostly between 7 and 15 min, with an average of about 12 min,

indicating that our method is fast.

TABLE 5 | Performance results (average true positive fraction, labeled avgTPF) of

our best CNN architectures and respective configurations found in

optimization experiments.

Architecture avgTPF (%) Norm λ Dropout (%)

LeNet-5 56.5 L2 10−2 40

VGG 512 75.9 L2 10−4 50

GoogLeNet 58.3 L1 10−3 80

ResNet B 60.2 L2 10−2 −

In summary, our method is expected to provide a response
in <15 min, with extreme cases taking a little longer than
2 h. This processing time contrasts with the current best
method in CADDementia challenge, which requires 19 h of
computation (Sørensen et al., 2017). In other words, our method
is nearly 10× faster, considering the worst-case scenario, or
almost 80× faster, on average.

Regarding performance metrics in terms of results, we
present our best configuration for each network architecture in
Table 5. The best VGG had 512 units in each fully-connected
layer, and the best ResNet used the projection shortcut (B).
We also included our main optimization metric—average TPF
(avgTPF)—for the training set of CADDementia, in which the
top value was 75.9%, translating to 76.7% in accuracy. All of these
results were found while optimizing the networks with Dataset 1.

As initially expected, L2 norm provided the best results for
almost all architectures. The best GoogLeNet using L2 achieved
57.4% average TPF, close to the one using L1 (58.3%), while the
L1 norm performed considerably worse for the other networks.
ResNet with identity shortcuts (A) achieved 57.4%, which is
slightly inferior to the projection shortcut (B), with 60.2%, a
similar difference found in the original work (He et al., 2016). We
hypothesize that deeper architectures did not achieve the highest
scores because they tend to do better in more massive datasets,
which we did not have.

A batch size of three (instead of nine) only produced
significantly worse results, indicating that our best VGG model
could potentially achieve even better results if we used GPUs

TABLE 6 | Multiple performance results of our best CNN, in percentage.

Model Dataset Split Accuracy
TPF AUC

CN MCI AD All CN MCI AD

ADNet
Dataset

1

Train. 60.6 89.6 36.7 86.8 87.9 90.3 80.6 88.8

Val. 44.1 71.1 22.4 62.4 68.9 72.2 56.9 72.5

Test 43.6 67.3 21.1 64.7 68.0 73.9 57.0 68.9

ADNet CADD
Train. 76.7 83.3 55.6 88.9 90.3 92.1 83.1 96.3

Test 51.4 77.5 27.9 46.6 68.5 70.5 61.2 73.6

ADNet
-DA CADD

Train.* 76.7 75.0 55.6 100.0 88.5 90.7 79.4 95.8

Train. 90.0 83.3 88.9 100.0 98.0 95.8 97.9 100.0

Test 52.3 68.2 37.7 49.5 70.9 72.8 60.5 79.0

AD, Alzheimer’s disease; AUC, area under the receiver operating characteristic curve; CN,

cognitively normal; CADD, CADDementia; CNN, convolutional neural network; MCI, mild

cognitive impairment; Train., training; TPF, true-positive fraction; Val., validation; Train.*,

leave-one-out cross-validation results.

with larger memory or a multi-GPU framework implementation.
Similarly, multi-class hinge loss did not improve our results.
Most surprisingly, Dataset 1, our smallest, presented the best
performances, and Dataset 2 achieved an average TPF as high
as 72.2%. We hypothesize that this happened due to the higher
diversity of data sources and conditions in more massive sets,
indicating that a smaller but more cohesive dataset should be
sufficient for optimization.

VGG 512 was our best network model, and the respective
performance metrics are shown in Table 6. We named our
CNN approach ADNet (Alzheimer’s Disease Network), with
the domain adaptation method ADNet-DA, and submitted our
prediction scores to the CADDementia challenge. Currently,
there are 48 different submissions, ours included3. Similar to
previous results (Esmaeilzadeh et al., 2018; Abrol et al., 2020),
we also observed some overfitting in the training data. However,
the performance differences in Dataset 1 between validation and
test sets were small, indicating that we appropriately mitigated
this problem.

In general, ADNet presented promising results in the
CADDementia training set. The low TPF in the MCI group was
expected, since classifying MCI subjects solely on their sMRI
represents a challenge (Albert et al., 2011), also observed in a
number results of CADDementia submissions (Bron et al., 2015).
However, the decrease in MCI and AD TPFs between training
and test sets was higher than expected. As such, this method
achieved an interesting two-class specificity, with a modest two-
class sensitivity, meaning it is better suited for determining
healthy patients. Regarding accuracy in the test set, ADNet
ranked 25th, tied with two other systems, outperforming 22
submissions. Besides, this result was only statistically different,
with a 95% confidence interval from the first and the last
three systems. Considering that we were the first group that
did not use any domain-specific information for this task, we

3https://caddementia.grand-challenge.org/results_all/ [Online; accessed
2020-05-14].
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FIGURE 3 | Receiver operating characteristic (ROC) curve for ADNet-DA,

provided by CADDementia. AD, Alzheimer’s disease; AUC, area under the

receiver operating characteristic curve; CN, cognitively normal; MCI, mild

cognitive impairment.

can claim that our CNN method was able to learn meaningful
patterns automatically.

As for the domain adaptation approach, we extracted 512
features from the second-to-last layer of ADNet, and then we
performed a grid search on the parameters of a logistic regression
classifier. Using the best parameters found (most importantly,
C = 0.001), we optimized this classifier on the complete
training set and applied it to output classification probabilities
for each sample from the challenge. We also submitted these
predictions to CADDementia, naming it ADNet-DA (ADNet
with domain adaption). The corresponding results are also
indicated in Table 6. This method ranked 21st, outperforming 27
submissions, with a statistical difference from the first and the last
four systems.

Considering this approach, we reported the leave-one-out
cross-validation results in the training set while performing a
grid search, and also the results in this same set after the last
optimization with all training samples. As expected, developing
and evaluating a system on the same data overestimated its
generalization performance; however, even our cross-validation
attempt did not significantly improve our estimations for the
test set. In comparison with ADNet, ADNet-DA improved both
MCI and AD TPFs, while decreasing CN TPF, with an overall
improvement of almost one percentage point in accuracy. These
results indicate that domain adaptation was indeed an important
technique. The corresponding ROC for CADDementia test set
is displayed in Figure 3, and the respective confusion matrix is
in Table 7.

Though Dolph et al. (2017) pioneered deep learning on
this challenge, we are the first (to our knowledge) to propose
an end-to-end training deep 3D CNN for the multiclass AD
biomarker identification task in CADDementia. One of their
systems ranked 7th, with 56.8% accuracy, while the other
ranked 25th, tied with ADNet on 51.4%. Our ADNet-DA
method was able to outperform a deep-learning system that

TABLE 7 | Confusion matrix (in percentage) for ADNet-DA, provided by

CADDementia.

Prediction

CN MCI AD

A
c
tu
a
l CN 68.2 25.6 6.2

MCI 51.6 37.7 10.7

AD 29.1 21.4 49.5

Values are adjusted relative to the actual class, i.e., divided by the row sum. This way, the

main diagonal represents the true positive fraction (TPF) for each class. AD, Alzheimer’s

disease; CN, cognitively normal; MCI, mild cognitive impairment.

uses domain-specific information, which demonstrates the
effectiveness of the approach proposed in this work.

4.3. Accountability
Understanding the decision-making process of a machine-
learning algorithm has become crucial lately, especially in
medicine. For practical application, an algorithm must present
good performance results and also demonstrate how predictions
are generated. The explicability requirement has become even
more critical in recent years with rules such as the General Data
Protection Regulation (GDPR), which also brought explainable
artificial intelligence (XAI) to the spotlight (Goodman and
Flaxman, 2016).

Explaining what and how a neural network has learned is
an open problem, with a rapidly evolving research field. In
order to better understand what our model is analyzing in brain
images and how it is done, we experimented with a number of
visualization approaches, considering the most used techniques
in accountable machine learning for neural networks. Some of
these approaches were also recently explored by Rieke et al.
(2018).

Similarly to Krizhevsky et al. (2012), we analyzed the filters
from our first convolutional layer. While their kernels were of
size 11×11×3, presenting some interesting smooth and colorful
patterns, our kernels are 3 × 3 × 3 in grayscale, producing less
than ideal images for visualization.

Another traditional approach for visualization is to show
outputs of activation functions from the network, after
processing an input. Activation is simply the result of a
mathematical function. These outputs represent some of the
initial patterns that the network learned to be the most
relevant for this task. These outputs are then non-linearly
combined with additional and more complex patterns before the
final classification.

Occlusion is a technique to visualize how and where the input
image affects the result of the network. The basic idea is to
systematically hide (occlude) some regions of the input image,
preventing the network from becoming activated in these specific
regions, and then storing the probabilities output. Given a class of
interest, for instance AD, it is possible to create a heatmap with
the corresponding prediction for each occluded region, where
most important regions will present highest impact (with low
probability), due to the occlusion. This technique was initially
proposed by Zeiler and Fergus (2014).
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There are different ways to hide a region of the input image
and avoid activations in a network. The most straightforward
and most direct would be to set input values to their respective
averages, which, in our case, is zero. Considering images in a
range from zero to 255, it is possible to occlude with the average
value (gray), with zero (black), with 255 (white), and even more
sophisticated approaches, such as different forms of noise.

Finally, we investigated an approach that more closely related
to the actual output decision of the network. For that, we
calculated the gradient of the network concerning the input,
which is used to update the network’s internal parameters. These
gradients may also be plotted and interpreted as how much
the output is affected by changes in input values; however,
this simple approach produces rather noisy visualizations.
An improvement to this technique, called deconvolution, was
proposed (Zeiler and Fergus, 2014) and can be interpreted as
reversing the operations performed by the network. Even though
this is an interesting approach, the guided backpropagation
method (Springenberg et al., 2014) produces even sharper
visualizations. Interestingly, guided backpropagation combines
calculations from both backpropagation and deconvolution,
resulting in more detailed images.

Figure 4 illustrates activated areas for each group, where
brighter regions mean a larger effect on the prediction output.
For the CN group, we can see activations distributed in a
diffuse pattern, but mainly restricted to the cortex in the right
temporal lobe (predominantly in the medial temporal gyrus and
the parahippocampal gyrus), the central portion of the occipital
lobe, the posterior cingulum, and the posterior parietal cortex.
ForMCI, activations occurredmainly in the left posterior parietal
cortex, the right anterior cingulum, and the right dorsolateral
prefrontal cortex. For AD, more significant activations were
detected in the left posterior parietal cortex, right temporal pole,
cerebellum, and more diffusively in the spherical surface of
the brain.

The diffuse pattern of activations in all groups (mainly in
temporal and posterior regions of the brain) can be interpreted
in the context of neuroimaging findings in the field of AD.
Although no single structure can differentiate AD patients
from CN subjects, atrophy in temporal regions seems to be
an inevitable process in the disease. The medial temporal
lobe regions might be the first affected in the course of the
disease, presenting very early signs of neurodegeneration (Karas
et al., 2004), which correlate with clinical symptoms even in
the prodromal stage, i.e., MCI (Frisoni et al., 2010). As in
pathophysiological aspects, the temporal regions mainly present
intracellular aggregates of hyperphosphorylated tau protein,
which are associated with reduced graymatter density (Thomann
et al., 2009). Another signature of AD, extracellular amyloid
β-protein (Aβ) deposition in the form of plaques, is mainly
observed in the midline regions (posterior cingulate and medial
prefrontal cortices), and parietal areas. Longitudinal studies
have shown that these areas not only atrophy at the mild
stage of AD (Weiler et al., 2015), but they continue to
degenerate at a rate of about 2–4% per year (Thompson et al.,
2003; Leow et al., 2009). Thus, we were not surprised to
find larger activations in those regions classically affected by
the disease.

For our last visualization technique, our motivation was to
understand how our data samples were spatially distributed
within internal feature representations of our network, in order
to determine whether these representations were really helpful to
discriminate between each class. To plot our data from this high-
dimensional space, we first projected them into two dimensions
using the t-distributed stochastic neighbor embedding (t-
SNE; Maaten and Hinton, 2008), with principal component
analysis (PCA) initialization. Considering the outputs from a
specific layer of our network, we generated an embedding
with all training and test data in CADDementia, and then
colored training samples according to each respective class. It
is important to remark that this projection did not use label
information from training data, which was used solely to color
our plots.

First, we extracted features from the second-to-last layer of
our network, traditionally used to transfer learning and domain
adaptation, with 512 dimensions. Then, we considered the
final layer from ADNet that outputs classification probabilities,
with 3 dimensions, and the probability outputs from ADNet-
DA. Resulting embeddings are present in Figure 5. Considering
ADNet, even though t-SNE (Maaten and Hinton, 2008) did
not use any label information, training data points were better
grouped in an internal feature representation space rather than in
the probability output space, indicating that the softmax classifier
used in the network did not perform as well as it could. From
these plots, we can also see that probabilities from ADNet-DA
are better distributed in comparison with ADNet, especially for
the AD group, while there was a smaller confusion for MCI.

5. CONCLUSIONS

Using data from ADNI, we optimized a 3D CNN with the whole
brain image as input and achieved the best accuracy with a
network architecture based on VGG (Simonyan and Zisserman,
2014). Our method, named ADNet, outperformed several other
systems in the prior art. Additionally, our method with domain
adaptation, called ADNet-DA, reached 52.3% in accuracy on
the CADDementia challenge test set, outperforming most of
the submissions to this challenge. Our approach is completely
automatic (i.e., does not require additional information input and
manual intervention), and is considerably fast (around 80 times
faster than CADDementia winning methods).

Importantly, whereas all other submissions used prior
information from the disease (e.g., hippocampal volume,
demographic information), our method did not use any domain-
specific knowledge from AD. For that reason, we believe it
could be applied to other disorders that could benefit from
the CAD system using sMRI as input data. We understand
that our approach can be used to find meaningful patterns
within data, corroborate previous findings by specialists, assist
in diagnosis scenarios, and eventually help identify patterns
for diseases other than AD. Our conclusions are supported by
our explainable artificial intelligence (XAI) techniques, including
accountability visualizations.

Future work could investigate XAI techniques to understand
brain regions involved in the decision-making process, and cross-
match highlighted regions with specialists knowledge, to see how
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FIGURE 4 | Activated regions from the guided backpropagation method for each group. Activations are displayed in hot colormap overlaid onto the MNI template.

Hotter regions mean a more significant effect on the prediction output. Colors only represent the relative importance of each voxel, having no direct meaning

associated to their absolute values.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 11 October 2020 | Volume 8 | Article 534592

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Folego et al. AD Detection Through 3D-CNN MRI

FIGURE 5 | Features and probabilities visualizations with 2D t-SNE projections. AD, Alzheimer’s disease; CN, cognitively normal; MCI, mild cognitive impairment; Unk,

unknown. (A) Visualization with 2D t-SNE projections using 512-dimensional features extracted from the second-to-last layer. (B) Visualization with 2D t-SNE

projections using the 3-dimensional ADNet probabilities. (C) Visualization with 2D t-SNE projections using the 3-dimensional ADNet-DA probabilities.

one can complement the other in refining the technique. Finally,
it would be interesting to incorporate patients’ history data to
enrich the information present in MRIs, to drive the decision
process and to tie it with patients’ backgrounds.
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