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Abstract
Neolamarckia cadamba is a fast-growing tropical hardwood tree that is used extensively for

plywood and pulp production, light furniture fabrication, building materials, and as a raw

material for the preparation of certain indigenous medicines. Lack of genomic resources

hampers progress in the molecular breeding and genetic improvement of this multipurpose

tree species. In this study, transcriptome profiling of differentiating stems was performed to

understand N. cadamba xylogenesis. The N. cadamba transcriptome was sequenced using

Illumina paired-end sequencing technology. This generated 42.49 G of raw data that was

then de novo assembled into 55,432 UniGenes with a mean length of 803.2bp. Approxi-

mately 47.8% of the UniGenes (26,487) were annotated against publically available protein

databases, among which 21,699 and 7,754 UniGenes were assigned to Gene Ontology cat-

egories (GO) and Clusters of Orthologous Groups (COG), respectively. 5,589 UniGenes

could be mapped onto 116 pathways using the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway database. Among 6,202 UniGenes exhibiting differential expression dur-

ing xylogenesis, 1,634 showed significantly higher levels of expression in the basal and

middle stem segments compared to the apical stem segment. These genes included NAC
andMYB transcription factors related to secondary cell wall biosynthesis, genes related to

most metabolic steps of lignin biosynthesis, and CesA genes involved in cellulose biosyn-

thesis. This study lays the foundation for further screening of key genes associated with

xylogenesis in N. cadamba as well as enhancing our understanding of the mechanism of

xylogenesis in fast-growing trees.
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Introduction
Wood is the most abundant biological resource on earth. It is an important raw material for
lumber and paper manufacturing, and is increasingly being exploited as an environmentally
cost-effective, renewable source for energy production [1]. Wood formation is an important
plant developmental event resulting from the accumulation of secondary cell walls in the
xylem. Wood formation or xylogenesis involves a sequence of developmental events at the cel-
lular level including cell division, cell expansion, deposition of secondary cell walls, lignification
and programmed cell death [2]. Secondary cell wall formation and lignification are critical
steps in the maturation of xylem tracheary elements and fibre cells. The secondary cell wall is
mainly composed of cellulose (40–50%), hemicellulose (~25%), and lignin (25–35%) as well as
small amounts of pectin and protein [2].

Biofuel production has recently stimulated interest in understanding the biosynthesis of sec-
ondary cell walls, including its transcriptional regulation. For cellulose biosynthesis, both direct
(sucrose synthase, SuSY) and indirect (invertase, INV) pathways produce UDP-glucose, which
is the direct substrate for cellulose biosynthesis [3]. In Arabidopsis thaliana, cellulose synthases
(CesA) form a complex in which AtCesA4, AtCesA7 and AtCesA8 are essential for secondary
cell wall formation [4], whereas AtCesA1, AtCesA3 and AtCesA6 are involved in primary cell
wall synthesis [5]. The biosynthesis of xylan, a major hemicellulose in the secondary cell wall,
involves numerous glycosyltransferases (GTs). GT43 family members IRX9, IRX9L, IRX14 and
IRX14L, GT47 family members IRX10, IRX10L, FRA8/IRX7 and F8H, and GT8 family mem-
bers IRX8, PARVUS, GUX1, GUX2 and GUX4, are all involved in xylan backbone elongation,
synthesis of the reducing end tetrasaccharide sequence and addition of glucuronic acid or a
4-O-methylglucuronic acid branch to the xylan backbone [6–9]. Lignin is synthesized from the
cinnamyl alcohol monomers p-coumaryl, coniferyl, and sinapyl, and these three monolignols
are synthesized in the cytoplasm from phenylalanine using different biosynthetic enzymes [10,
11]. Additionally, caffeoyl shikimate esterase (CSE) hydrolyzes caffeoyl shikimate into caffeate
and together with 4-coumarate: CoA ligase (4CL) in the lignin biosynthetic pathway, bypasses
the second hydroxycinnamoyl-CoA: shikimate/quinate hydroxycinnamoyltransferase (HCT)
reaction [12]. Also, there are several transcription factors that have been shown to regulate sec-
ondary cell wall biosynthesis in A. thaliana [13]. Some transcription factors, for example
MYB103, are not only able to activate genes involved in cellulose biosynthesis, such as CesA8,
but also lignin or xylan biosynthesis genes, such as F5H, especially in S lignin biosynthesis [14].

Neolamarckia cadamba (syn. Anthocephalus chinensis), a member of the Rubiaceae family,
is widely distributed in South Asia and South China due to its high economic value [15]. To
date, N. cadamba research has mainly focused on its medicinal value in the treatment of vari-
ous ailments and extraction of bioactive compounds [16]. Among these, triterpenoid saponins
are documented as important active components and their biosynthesis requires the mevalo-
nate (MVA) pathway in the cytosol and the non-mevalonate or 2-C-methyl-D-erythritol4-
phosphate/1-deoxy-D-xylulose 5-phosphate (MEP/DOXP) plastid pathway for backbone for-
mation [17]. Subsequently, the backbone undergoes various oxidation, substitution, and glyco-
sylation steps mediated by a series of enzymes including geranyl diphosphate synthase(GPPS),
farnesyl diphosphate synthase (FPS), squalene synthase (SQS), squalene epoxidase (SQE), β-
amyrin synthase (β-AS), cytochrome P450-dependent monooxygenases (CYP 450s) and glyco-
syltransferases (UGTs) [18]. However, there have been no studies to date that dissect the
molecular mechanisms underlying the biosynthesis of these bioactive compounds in N.
cadamba. Apart from medicinal utilization, N. cadamba wood is also a suitable alternative
material for building, furniture, pulp production and biomass utilization in tropical and
subtropical regions [19]. We recently studied N. cadamba as a model system to analyze
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heteroxylan formation at the biochemical and molecular level during wood formation. Micro-
somes isolated from the middle and basal stem region exhibited higher UDP-Xyl synthase and
xylosyltransferase enzyme activity and higher gene expression related to heteroxylan biosyn-
thesis compared to the apical part of the stem [20]. Despite this investigation, little is known
about cell wall biosynthesis pathways and transcriptional regulatory networks involved in N.
cadamba xylogenesis.

RNA sequencing (RNA-Seq) is a high throughput technology based on next-generation
sequencing (NGS) that enables genetic studies of species without the requirement of corre-
sponding sequenced reference genome information [21]. RNA-Seq has evolved in to a power-
ful method for transcriptome profiling due to its accuracy, high throughput nature and
reproducibility [22]. Subsequently, it has dramatically improved the efficiency and cost effec-
tiveness of gene discovery [23]. To better understand the molecular basis of wood formation
in N. cadamba, we initiated a RNA-seq project (http://www.ncbi.nlm.nih.gov/bioproject/
PRJNA232616) to analyze and characterize the transcriptomes of several classes of genes
involved in wood formation. We hope this profiling study will help initiate a systematic breed-
ing program geared towards genetically improving the quality and productivity of this multi-
purpose timber-yielding tree.

Materials and Methods

Plant materials
N.cadamba was grown as described previously [20]. Clones were proliferated and rooted as
described previously [24] and grown in a greenhouse at 28/24°C, 14/10 h(day/night) and
330 μmol m2 s1 light. Peeled apical (just under apical bud, A), middle (M) and basal (just on
soil surface, B) stem segments (1 cm in length) were sampled from a one-year-old plant, repre-
senting three different stages from primary to secondary growth, respectively (Fig 1). Each tis-
sue was collected from two individual plants representing two biological replicates. All samples
were quickly cut into pieces and immediately frozen in liquid nitrogen for RNA extraction.

Sectioning of stems
Tissues from the three stem regions were fixed in FAA [5% (v/v) formalin, 5% (v/v) glacial ace-
tic acid, 65% (v/v) ethylalcohol]. Next, tissues were embedded in 3% (w/v) agarose and sections
of 40μm thickness cut using a Leica VT1000S vibratome fitted with a razor blade. Histochemi-
cal analysis using Wiesner and Maűle staining in Phloroglucinol-HCl was performed as previ-
ously described [25]. Stained stem sections were observed under an Olympus BX43F light
microscope.

RNA extraction, library construction and RNA-Seq
Total RNA from each sample was isolated using CTAB plus the OMEGA Plant RNA isolation
kit as described previously [26]. Three libraries labeled A, M and B were constructed from
RNA extracted from the apical, middle and basal stem segments, respectively. The RNA sam-
ples were checked for integrity on a 1.2% agarose gel and quantified using a Nanodrop 1000
spectrophotometer. RIN (RNA integrity number) values (> 8.0) of the samples were evaluated
using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Construction
of the six libraries and RNA-Seq analysis were performed by Biomarker Biotechnology Corpo-
ration (Beijing, China). The mRNA enrichment and library construction were carried out
according to protocol of NEB kit (E7490, E6110, E7500). Finally, the six libraries were
sequenced using Illumina HiSeq™ 2000.
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De novo assembly
Clean reads were filtered from the raw reads by removing the adapter sequences and low qual-
ity sequences including reads with unknown nucleotides> 5% and more than 10% bases with
a quality score (Q value) of< 20. The clean reads were then de novo assembled using the Trin-
ity platform (http://trinityrnaseq.sourceforge.net/) with the parameters ‘K-mer = 25, group
pairs distance = 300’ [21]. The reads obtained for the three stem samples and their two biologi-
cal replicates were assembled together. Short reads were first assembled into longer contigs and
then joined into transcripts based on the paired-end information and similarity between con-
tigs. Finally, the longest transcript was taken as the sample UniGene. To facilitate access and
utilization of the N. cadamba transcriptome sequencing data, all UniGene sequences have been
uploaded to the Transcriptome Shotgun Assembly Sequence Database (TSA) at NCBI with
accession numbers GASC01000001 to GASC01055370.

Functional annotation
Putative functions of the UniGenes were annotated by carrying out a BLASTx analysis [27]
with an E-value threshold of 10−5 against protein databases including the NCBI non-redundant
(nr) database [27], the Swiss-Prot protein database [28], the Gene Ontology (GO) database
[29], the Clusters of Orthologous Groups of Proteins (COG) database [30], and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways database [31].

Expression annotation
For each sample, the SOAPaligner (http://soap.genomics.org.cn/soapaligner.html) platform
was used to map back reads to each UniGene. The number of mapped clean reads for each
UniGene was counted and normalized into an RPKM value (reads per kb per million reads)
[32]. The mean RPKM value for each UniGene from the biological replicates for each tissue
was applied for downstream analysis. After that, differentially expressed genes (DEG) between

Fig 1. Tissues of N. cadamba used in deep sequencing. (A) The whole plant of greenhouse-grownN. cadamba. (B) The apical, middle and basal
stem segments with bark from N. cadamba. (C) Phloroglucinol staining of transverse stem section. (D) Magnified view of red box region in C. Scale bar:
A = 10 cm, B = 1 cm, C = 1 mm and D = 200 μm.

doi:10.1371/journal.pone.0159407.g001
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samples were detected using DESeq software with a general chi-square test based on RPKM
values. FDR (false discovery rate) was used to identify the P-value threshold in multiple tests in
order to compute the significance of differences in each UniGene expression between two sam-
ples [33]. Genes were regarded as differentially expressed by the FDR< 0.01 and the absolute
value of log2Ratio� 1. In our study, DEGs between two samples were screened and used to
compare GO classifications. Then, detailed expression profiles, I (up-regulation), II (irregularly
regulated), III (irregularly regulated), IV (down-regulation) were distinguished for DEGs by
using log10 RPKMA, log10 RPKMM and log10 RPKMB values, where I = (log10 RPKMA � log10
RPKMM � log10 RPKMB), II = (log10 RPKMA � log10 RPKMM � log10 RPKMB), III = (log10
RPKMA� log10 RPKMM � log10 RPKMB), and IV = (log10 RPKMA� log10 RPKMM � log10
RPKMB). UniGenes that were more abundantly expressed in libraries M and B compared to A
were identified.

Identification and regulation pathways analysis of cell wall-related
transcription factors
A total of 82 transcription factors and transcriptional regulatory families of A. thaliana were
downloaded from the PlnTFDB database [34]. UniGenes were searched against this database
using the local NCBI-2.2.30+ BLASTx algorithm (E-value�1E-10). Thetranscription factor
KNAT7 was searched using local TBLASTN with the A. thaliana KNAT7 amino acid sequence
(E-value�1E-10) against the transcriptome library. UniGene sequences were double-checked
by BLASTx searches against protein databases including the NCBI non-redundant (nr) data-
base and the A. thaliana TAIR10 database.

According to the cell wall-related transcription factor regulatory network described by
Schuetz et al [13] and Ohman et al [14], transcription factors involved in regulating lignin, cel-
lulose and hemicellulose biosynthesis were identified in N. cadamba as described above. Rela-
tive (yellow—blue scale) and absolute (white—red scale) expression profiles of these genes
were implicated in three different lignification processes represented by the A, M and B stem
segments.

Discovery of cellulose, mannan and monolignol biosyntheticgenes
Sequences of cellulose biosynthesis-related, mannan biosynthesis-related and monolignol bio-
synthesis-related proteins from A. thaliana were downloaded from the TAIR database (www.
arabidopsis.org; shown in S1 File). The cellulose, mannan and monolignol biosynthesis-related
structural genes were searched using TBLASTN with the amino acid sequences of the proteins
(E-value�1E-10) against the transcriptomic library [27]. Then, these enzymes were identified
in N. cadamba as previously described for KNAT7. According to the known cellulose [3], man-
nan [35, 36] and lignin [10–12] biosynthesis pathways, the UniGenes were ascribed to meta-
bolic pathways.

Discovery of cadambine, triterpenoidsaponin and phytosterol
biosynthesis-related genes
Cadambine, triterpenoid saponin and phytosterol biosynthesis-related protein tryptophan
synthase (TSA1-2: At3g54640, At4g02610; TSB1-2: At5g54810, At4g27070), tryptophan decar-
boxylase (TDC: X67662.1), geranyl diphosphate synthase (GPPS: AT2G34630), geraniol
synthase (GES: JN882024.1), geraniol10-hydroxylase (G10H: KF561461.1), secologanin
synthase (SLS: KF415117.1), strictosidine synthase (STR1-3: At1g74020, AT1G74020,
At1g74000), farnesyl diphosphate synthase (FPS1-2: AT5G47770, AT4G17190), squalene
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synthase (SQS1-2:AT4G34640, AT4G34650), squalene epoxidase (SQE1-3: AT1G58440,
AT2G22830, AT4G37760), β-amyrin synthase (β-AS: AT1G78950), and cycloartenolcyclase
(CAS1: AT2G07050) from A. thaliana or Catharanthus roseus were downloaded from the
TAIR database or Uniprot database [28]. The cadambine, triterpenoid saponin and phytosterol
biosynthesis-related structural genes in N. cadamba were subsequently identified, allowing
them to be assigned to metabolic pathways [18, 37].

Real-time quantitative PCR analysis (RT-qPCR)
For RT-qPCR analysis, RNA samples were reverse transcribed into first-strand cDNA using
PrimeScript1 RTMaster Mix (Takara, China) according to the manufacturer’s protocol. The
cDNA was diluted fifteen-fold and used as the template for RT-qPCR. Amplifications were car-
ried out in triplicate in a total volume of 20μL containing 10μL of 2×SYBR1 Premix Ex Taq™ II
(Takara, China), 2 μl of each primer (5 μM), 2 μl of cDNA, and 4 μl of ddH2O. Thermocycling
conditions were as follows: an initial denaturation at 95°C for 30 s, followed by 40 cycles of
95°C for 5 s, 58°C annealing for 30 s and 72°C extension for 15 s, and an infinite hold at 10°C.
The specificity of the PCR amplicon was checked using a heat dissociation protocol (from 65 to
95°C) after the final PCR cycle. The primers used in the RT-qPCR are shown in S2 File and the
cyclophilin (JX902587) gene was used as the internal reference.

Results

Determination of cell wall components during xylogenesis
Previously, we analyzed N. cadamba cell wall composition during xylogenesis [20] and found
that the levels of both lignin and non-cellulosic polysaccharides increased with stem maturity,
exhibiting highest levels in the basal stem segment and lowest in the apical stem segment. The
major non-cellulosic polysaccharide in the stem segments was heteroxylan with a substantially
lower level of heteromannan. We also found that the proportion of cellulose decreased with
stem maturity, with the highest level observed in the apical stem segment and the lowest in the
middle segment, increasing in the basal stem segment. However, the proportion of lignin in
both the middle and basal segments was significantly higher than in the apical stem segment
[20]. As shown in histochemical analysis, lignin deposition was found only in vessel elements
of the apical stem segments in contrast to the middle and basal stem segments that show lignin
deposition in tracheary elements and fibers (Fig 1C and 1D).

RNA-Seq and de novo assembly
To obtain a global overview of the N. cadamba transcriptome and gene expression during pro-
gression of xylogenesis in the stem, RNA was extracted from 1-year-old greenhouse grown
plants initially raised from tissue culture. Three libraries (A, M, B) were constructed and
RNA-Seq was performed using two biological replicates. RNA-Seq analysis generated 42.49G
of raw data, and Q30 percentages (percentage of sequences with sequencing error
rates< 0.1%) were found to be over 80% (Table 1). Based on the de novo assembly using Trin-
ity [32], all clean short reads from the six libraries were assembled together into 5,870,723 con-
tigs based on their overlap regions. The contigs were joined into 111,864 transcripts, and
finally, a total of 55,432 UniGenes were identified with a mean length of 803.2bp and an N50
length of 1,501bp, among which 13,280 UniGenes (23.96%) were greater than 1 kb. The length
distributions of contigs, transcripts and UniGenes are shown in Table 2. The data shows that
the throughput and sequencing quality was high enough for further downstream analyses.
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Functional annotation
Approximately 47.8% of the UniGenes (26,487) were annotated by BLASTx, with a threshold
of 10−5, using five public databases (NCBI non-redundant (nr) database, Swiss-Prot protein
database, Gene Ontology (GO) database, Clusters of Orthologous Groups of Proteins (COG)
database and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database). One half
(12,293) of the UniGenes had a length of> 1000 bp. The functional annotation distributions
of UniGenes are shown in Table 3.

Based on nr annotation and the E-value distribution, 57.9% of UniGenes showed a very
strong homology (E-value < 10−50) to available plant sequences (Fig 2A). The 17 top-hit spe-
cies based on nr annotation are shown in Fig 2B. Nearly 73% of UniGenes could be annotated
with sequences from the 5 top-hit species (Fig 2B, S3 File), which were Solanum lycopersicum,
Vitis vinifera, Theobroma cacao, Populus trichocarpa and Prunus persica.

Generally, Gene Ontology (GO) analysis was carried out to classify the functions of the
assembled UniGenes in terms of their associated biological processes, cellular components,
and molecular functions [29]. To better understand functional categories, GO analysis was
employed to annotate UniGenes by known proteins using the Blast2GO program [38], after
which the GO functional classifications of these UniGenes were performed using WEGO soft-
ware [39]. A total of 21,699 UniGenes were classified according to the three GO categories.
Under the biological process category, large numbers of UniGenes were categorized as
cellular process (17,099, 78.8%) and metabolic process (16,414, 75.6%). Within the cellular
component category, large numbers of UniGenes were categorized as cell part, cell and

Table 1. RNA-Seq data summary for all samples.

Samples BMK-ID Total reads Total bases (nt) GC% Q30%

Apical stem A1a 25,085,358 5,066,725,234 46.03% 81.51%

segment A2 32,126,330 6,489,002,687 44.08% 81.48%

Middle stem M1 38,555,036 7,787,264,195 44.64% 82.13%

segment M2 31,421,956 6,346,729,891 44.06% 81.26%

Basal stem B1 47,999,394 9,695,200,117 44.29% 82.53%

segment B2 35,170,009 7,103,808,681 43.95% 82.14%

Total 210.39M 42.49G

a biological replicates

doi:10.1371/journal.pone.0159407.t001

Table 2. Length distribution of assembled contigs, transcripts, UniGenes and predicted ORFs of UniGenes.

Length range Contigs Transcripts UniGenes ORF

200–300 5,820,454(99.14%) 21,414(19.14%) 17,894(32.28%) 38,179(69.20%)a

300–500 21,669(0.37%) 19,663(17.58%) 14,433(26.04%) 4,556(8.26%)

500–1000 14,456(0.25%) 21,046(18.81%) 9,825(17.72%) 5,443(9.87%)

1000–2000 9,122(0.16%) 27,098(24.22%) 7,816(14.10%) 5,177(9.38%)

2000+ 5,022(0.09%) 22,643(20.24%) 5,464(9.86%) 1,816(3.29%)

Total number 5,870,723 111,864 55,432 55,171

Total length 269,782,291 137,157,312 44,522,744 23,683,593

N50 length 44 2,023 1,501 1,086

Mean length 45.95 1226.11 803.20 429.28

a The length range is <300 bp

doi:10.1371/journal.pone.0159407.t002
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organelle component categories. As for the molecular function category, binding (13,353,
61.5%) and catalytic activity (11,293, 52.0%) were the most highly represented categories (S1
Fig, S4 File). Furthermore, a total of 205, 165, 337, 61and 19 UniGenes were annotated within
the cellulose biosynthetic process (GO:0030244), lignin biosynthetic process (GO:0009809),
xylan biosynthetic process (GO:0045492), glucuronoxylan biosynthetic process (GO:0010417)
and mannan synthase activity (GO:0051753), respectively (S5 File).

Table 3. Summary for UniGene functional annotation.

Annotated databases All sequence > = 300 bp > = 1000 bp

COG 7,754 7,093 5,255

GO 21,699 18,499 11,022

KEGG 5,589 4,780 3,042

Swissprot 19,590 16,967 10,559

nr 26,404 22,213 12,290

All 26,487 22,267 12,293

doi:10.1371/journal.pone.0159407.t003

Fig 2. Characteristics of the homology search of N. cadambaUniGenes in the nr database. (A) E-value distribution of the top BLASTx hits
against the nr database for each UniGene. (B) Number and percentage of UniGenes matching the 17 top species using BLASTx in the nr database.

doi:10.1371/journal.pone.0159407.g002

Transcriptomic Analysis ofNeolamarckia cadamba

PLOSONE | DOI:10.1371/journal.pone.0159407 July 20, 2016 8 / 22



The COG protein database is an attempt on phylogenetic classification of the proteins
encoded in complete genomes of species [40]. All UniGenes were subjected to a search against
the COG database for functional prediction and classification resulting in the assignment of
7,754 UniGenes. The COG database represented major phylogenetic lineages of N. cadamba,
as shown in S2 Fig and S6 File. According to the COG annotation, these UniGenes were classi-
fied into 25 different functional classes, with the largest cluster being general function predic-
tion only (group R, 2,177, 28.1%) followed by replication, recombination and repair (group L,
1,154, 14.9%). However, no UniGene was assigned to extracellular structures (group W). It was
noteworthy that there were 618, 375 and 263 UniGenes sharing homology with carbohydrate
transport and metabolism (group G), secondary metabolites biosynthesis, transport and catab-
olism (group Q) and cell wall/membrane/envelope biogenesis (group M), respectively, includ-
ing UniGenes related to cell wall biosynthesis. This data will be useful in exploring protein
classification and evolution rates [41].

By mapping to the KEGG reference pathways, 5,589 UniGenes were assigned to116 path-
ways (S7 File) in the KEGG database [31]. Ribosome pathways (Ko03010) were the most
enriched (201), followed by plant hormone signal transduction (Ko04075, 190). Moreover, 79
UniGenes were mapped to phenylpropanoid biosynthesis pathways (Ko00940), with a majority
of genes participating in lignin biosynthesis, and 146 UniGenes were mapped to starch and
sucrose metabolism (ko00500), with a majority of genes participating in cellulose, mannan and
heteroxylan biosynthesis (S8 File).

Differentially expressed genes in different stem segments
Differentially expressed genes (DEGs) among the three different stem segments were identified
by DESeq software [33]. Based on this analysis, a total of 6,202 UniGenes were identified as
DEGs in at least two libraries (Fig 3A, S9 File). Among these UniGenes, 3,293, 3,614 and 2,963
showed differential expression between A and M, A and B, M and B, respectively (Fig 3A, S1
Table). GO and COG classification is shown in S1 and S3 Figs respectively. Amongst the
DEGs, 4 groups were defined according to their variations in expression profiles, containing
1,119, 1,436, 1,588 and 2,059 UniGenes, respectively. Group I was defined as being up-

Fig 3. DEGs Venn diagram and expression profile. (A) Venn diagram of DEGs. A, apical stem segment; M, middle stem segment; B, basal stem
segment. (B) Four expression profiles of DEGs. I and IV indicate UniGenes which are up-regulated and down-regulated, respectively, and II and III
indicate those with irregular expression. Twenty-five UniGenes were selected for the diagram for each expression profile.

doi:10.1371/journal.pone.0159407.g003
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regulated, group IV as down-regulated, and groups II and III had irregular expression patterns
(Fig 3B). Each of these four groups is shown in S10 File. Moreover, there were 1,634 UniGenes
with a higher expression profile in the M and B libraries compared to the A library, and these
UniGenes are shown in S9 File.

Among the DEGs and 1,634 UniGenes, there were 25 and 10 UniGenes annotated in the
cellulose biosynthetic process (GO:0030244) category, 42 and 23 in the lignin biosynthetic pro-
cess (GO:0009809), 74 and 31 in the xylan biosynthetic process (GO:0045492), 11 and 5 in the
glucuronoxylan biosynthetic process (GO:0010417), and 10 and 0 in the mannan synthase
activity (GO:0051753) category, respectively (S11 File).

Transcription factors related to cell wall component biosynthesis
A total of 1,782 N. cadamba UniGenes with high sequence identity (E-value� 1E-10) corre-
sponding to 80 out of 82 A. thaliana transcription factor families downloaded from PlnTFDB
were found in the stem libraries. The five most abundant transcription factor gene families
were bHLH, C3H, C2H2, MYB and the HB group (S12 File). These are mainly associated with
plant growth, development, stress responses, cell differentiation, morphogenesis, RNAmetabo-
lism, secondary cell wall formation and secondary metabolism [42–46].

Secondary cell wall formation is a critical step in the maturation of tracheary elements and
fibre cells in the xylem [6, 47] and regulated by MYB [14, 48–54] and NAC [55–64] transcrip-
tion factor families. In this study, 77 and 45 UniGenes were found with high sequence identity
(E-value� 1E-10) corresponding to the A.thalianaMYB and NAC transcription factor fami-
lies, respectively (S12 File). Of 77 MYB transcription factor UniGenes, 28 UniGenes belonged
to DEGs among the A, M and B libraries, including 12 UniGenes with an expression profile
where the abundance in the M and B libraries was higher than in the A library. Of the 45 NAC
transcription factor UniGenes, 19 UniGenes, including 12 UniGenes with the same expression
profile as above, were identified as DEGs.

A network of transcription factors involved in the biosynthesis of the secondary cell wall has
been identified in A. thaliana [13, 14, 47, 52, 57, 58]. Based on this network, UniGene transcrip-
tion factor sequences identified in this study were double-checked by BLAST searches against
protein databases including the NCBI nr database and the A. thaliana TAIR10 database. Candi-
date genes corresponding to most of the known transcription factors involved in regulatory net-
works in A. thaliana have been found inN. cadamba (Fig 4). Moreover, most of them were
identified as DEGs and had an expression profile with higher expression abundance in the M
and B libraries than in the A library (Fig 4, S12 File), including UniGenes comp51781_c0
(MYB46), comp77367_c0 (MYB83), comp67889_c0 (MYB103), comp81359_c0 (MYB56/63)
and comp85324_c0 (SND2/3), despite no significant differences observed.

Genes involved in the cellulose and mannan biosynthetic pathways
Sucrose catabolism produces both direct and indirect substrates for cellulose biosynthesis, and
indirect substrates for mannan biosynthesis in planta, which means that cellulose and mannan
biosynthetic pathways converge on sucrose [3, 36]. Most of the UniGenes encoding enzymes
participating in cellulose or mannan biosynthetic pathways were not identified as DEGs. How-
ever, the majority of these UniGenes had a higher expression abundance in apical stem seg-
ments compared to the middle and basal stem segments, including UniGenes comp86965_c0
showing 82% identity with AtCesA1, and comp52742_c0, comp86567_c0 and comp86567_c1
showing high identity with AtCesA2/6/9 by BLASTx. In contrast, the UniGenes comp86337_c0
(82% identity with AtCesA7 by BLASTx) and comp78663_c0 (73% identity with AtCesA4 by
BLASTx) exhibited opposite expression pattern (Fig 5, S13 File).
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Genes involved in the monolignol biosynthetic pathway
The main monolignols of lignin are coumaryl, coniferyl and sinapyl alcohols, which are finally
incorporated into the lignin polymer as p-hydroxyphenyl (H), guaiacyl (G) andsyringyl (S)
units, respectively [11]. In this study, a total of 69 UniGenes were found in N. cadamba tran-
scriptomes with an E-value� 1E-10 corresponding to all eleven monolignol biosynthesis
enzymes in A. thaliana (Fig 6). The expression of 1–3 members of each gene family (PAL, 4CL,
HCT, C3H, CSE, CCoAOMT, F5H and CAD) increased in both M and B libraries as compared
to the A library (Fig 6, S14 File). Additionally, compared with the number of genes that encode
each one of the eleven key enzymes involved in the lignin biosynthesis pathway in the A. thali-
ana TAIR database, there are more UniGenes in N. cadamba and genes in the Populus tricho-
carpa [65] and Eucalyptus grandis [3] genomes (Table 4).

Genes involved in the cadambine, triterpenoid saponin and phytosterol
biosynthetic pathways
Medicinal ingredients isolated from N. cadamba plants have traditionally been used in the
treatment of various human ailments, such as diabetes mellitus, wounds and fever, as well as
for their antimicrobial activity and antitumor properties [16]. Medicinal properties of N.

Fig 4. N. cadambaUniGenes in the transcriptional network regulating secondary cell wall (SCW)
biosynthesis according to A. thaliana. Light grey boxes indicate major transcription factors of the
Arabidopsis transcriptional network leading to biosynthesis of the three major SCW constituents. Light blue
boxes indicateN. cadamba putative UniGenes encoding orthologues. * indicates the DEGs. Yellow-blue
scale and white-red scale indicate relative and absolute expression profiles, respectively. A, apical stem
segment; M, middle stem segment; B, basal stem segment. Absolute expression level (RPKM) is only shown
for the basal stem segment.

doi:10.1371/journal.pone.0159407.g004
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cadamabamight be due to the presence of bioactive compounds such as alkaloids, triterpe-
noids and iridoids in plant tissues [66–68]. In the present study, a total of 54 UniGenes were
found in the N. cadamba transcriptomes with E-values� 1E-10 corresponding to all eleven
enzymes in A. thaliana or C. roseus (Materials and methods), except for the UniGene
comp51787_c0, which was found in the transcriptomes from the other tissues sample (Fig 7,
S15 File).

Expression analysis by RT-qPCR
DEGs related to cell wall biosynthesis, including transcription factors and structural genes with
expression levels higher in both basal and middle stem segments compared to apical stem seg-
ments, were examined for their expression patterns in the three stem segments representing
different stages of xylogenesis. Genes for which no primers could be designed were excluded
(Fig 8). Additionally, genes involved in cadambine, triterpenoid saponin or phytosterol biosyn-
thetic pathways were also examined for their expression in roots, middle stem segments, young
leaves, mature leaves, flowers, bark and cambium, with the exception of a few genes for which
no primers could be selected (S4 Fig). As shown in Fig 8, all genes were expressed at a higher
level in both middle and basal stem regions compared to the apical part of the stem, demon-
strating a high correlation between RNA-seq and RT-qPCR data.

Fig 5. UniGenes involved in cellulose andmannan biosynthesis in wood-forming tissues of N.
cadamba. Sugar and polymer intermediates are shown in black, whereas the proteins (enzymes) involved in
each step are shown in blue. Detailed protein names, annotation and RNA-Seq expression data are provided
in S12 File. * indicates the DEGs. Yellow-blue scale and white-red scale indicate relative and absolute
expression profiles, respectively. A, apical stem segment; M, middle stem segment; B, basal stem segment.
Absolute expression level (RPKM) is only shown for basal stem segment. CESA, cellulose synthase; CSLA,
cellulose synthase like A; FRK, fructokinase; GMP, GDP-D-mannose pyrophosphorylase; HEX, hexokinase;
INV, invertase; PGI, phosphoglucose isomerase; PGM, phosphoglucomutase; PMI, phosphomannose
isomerase; PMM, phosphomannomutase; SUSY, sucrose synthase; UGP, UDP-glucosepyrophosphorylase.

doi:10.1371/journal.pone.0159407.g005
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Fig 6. UniGenes involved in lignin biosynthesis in wood forming tissues ofN. cadamba.
Phenylalanine, intermediates and monolignols are shown in black, while the proteins (enzymes) involved in
each step are shown in blue. Detailed protein names, annotation and RNA-Seq expression data are provided
in S13 File. * indicates the DEGs. Yellow-blue scale and white-red scale indicate relative and absolute
expression profiles, respectively. A, apical stem segment; M, middle stem segment; B, basal stem segment.
Absolute expression level (RPKM) is only shown for basal stem segment. 4CL, 4-coumarate: CoA ligase;
C3H, p-coumarate 3-hydroxylase; C4H, cinnamate 4-hydroxylase; CAD, cinnamyl alcohol dehydrogenase;
CCoAOMT, caffeoyl-CoA O-methyltransferase; CCR, cinnamoyl-CoA reductase; COMT, caffeic acid O-
methyltransferase; CSE, Caffeoylshikimate esterase; F5H, ferulate 5-hydroxylase; HCT, p-
hydroxycinnamoyl-CoA: quinate shikimate p-hydroxycinnamoyltransferase; PAL, phenylalanine ammonia-
lyase.

doi:10.1371/journal.pone.0159407.g006

Table 4. Comparison in number of genes that encode eleven key enzymes in the monolignol biosynthesis pathway among A. thaliana,N.
cadamba, P. trichocarpa and E. grandis.

Enzymes A. thaliana N. cadamba P. trichocarpa E. grandis

PAL 4 13 5 9

C4H 1 2 3 2

4CL 4 6 17 13

CCR 2 7 9 9

CAD 9 9 16 46

HCT 1 7 7 5

C3H 1 6 4 4

CSE 1 12 2 4

CCoAOMT 1 3 6 17

COMT 1 3 25 67

F5H 1 1 3 2

doi:10.1371/journal.pone.0159407.t004
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Discussion

N. cadamba transcriptome database by Illumina HiSeqTM 2000
sequence
It is easier to clone and characterize target genes in model plants such as Arabidopsis, rice, and
poplar that have a fully sequenced genome and other available tools for genetic manipulation.
However, to carry out similar work or any genetic improvement research, it is difficult to clone
genes of interest in plants such as N. cadamba for which no genomic information is available.
Despite the fact that the N.cadamba genome is not sequenced, RNA-Seq has been used to pro-
vide the sequences of expressed genes. In this report, 55,171 UniGenes with intact ORFs were
predicted using the Getorf software (http://emboss.sourceforge.net/apps/cvs/emboss/apps/
getorf.html, Table 2). Thus, genes of interest from N. cadamba can directly be cloned through
the database and/or together with 5’ or 3’RACE.

Among the 55,432 unique sequences, 28,945 UniGenes (52.2%) had no functional annota-
tion in the present study (Table 2, S9 File). Thus, half of the UniGenes did not match known
protein families in the five public protein databases. Therefore, we consider them to represent
unknown protein families, indicating that novel information was discovered in our Illumina
data sets, in particular the 1,649 UniGenes without functional annotation among the DEGs.

Fig 7. UniGenes involved incadambine, triterpenoid saponin and phytosterol biosynthesis.
Intermediates, cadambine, triterpenoid saponins and phytosterols are shown in black, whereas the proteins
(enzymes) involved in each step are shown in blue. Detailed protein names, annotation and RNA-Seq
expression data are provided in S15 File. * indicates the DEGs. Yellow-blue scale and white-red scale
indicate relative and absolute expression profiles, respectively. A, apical stem segment; M, middle stem
segment; B, basal stem segment. Absolute expression level (RPKM) is only shown for basal stem segment.
CAS, Cycloartenol cyclase; FPS, farnesyl diphosphate synthase; G10H, geraniol 10-hydroxylase; GES,
geraniol synthase; GPPS, geranyl diphosphate synthase; SLS, secologanin synthase; SQE, squalene
epoxidase; SQS, Squalene synthase; STR, strictosidinesynthase; TDC, tryptophan decarboxylase; TS,
tryptophan synthase; β-AS, β-amyrin synthase.

doi:10.1371/journal.pone.0159407.g007
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There were 49,230 UniGenes (88.8%) that comprise a group that did not show differential
expression between the three stem segments (S9 File). The large number of genes with com-
mon expression levels in the three stem region transcriptomes suggests that the majority of the
transcripts are involved in basal cellular metabolism processes and that the distinctive charac-
teristics of each xylem region are derived from differences in the expression levels of a relatively
small number of genes.

Regulation of secondary metabolism during xylogenesis
The major goal of the present study was to carry out a preliminary screen for key genes
involved in N. cadamba xylogenesis. Several studies in Arabidopsis have identified a network
of transcription factors regulating the expression of numerous genes directly involved in the
biosynthesis of secondary cell walls [13, 14]. The master switches for fibre (SND1, NST1,
NST2) [47, 57, 69], protoxylem (VND7) and metaxylem (VND6) [58] differentiation are
thought to initiate the transcriptional network for secondary cell wall formation by binding to
SNBE (Secondary wall NAC-Binding Element) regulatory regions in the promoters of target
genes. These include the two core transcription factors, MYB46 and MYB83, whose promoters
each contain several SNBE promoter elements and are thought to be direct targets of secondary
cell wall NAC genes [48, 49, 53, 64]. The MYB46/83 node activates the expression of numerous
other transcription factors, whose activity amplifies the transcriptional network and thereby
promotes lignin, cellulose and/or hemicelluloses biosynthesis [48, 49, 53, 54]. In this study,
most of these transcription factor genes were up-regulated during xylogenesis in N. cadamba

Fig 8. Expression of UniGenes related to transcription factors regulating SCW biosynthesis, lignin, or
cellulose biosynthesis. Error bars on each column indicate SEs from three replicates. A, apical stem
segment; M, middle stem segment; B, basal stem segment.

doi:10.1371/journal.pone.0159407.g008
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(Figs 4 and 8). These data indicate that these transcription factors are involved in secondary
cell wall biosynthesis during xylogenesis in N. cadamba.

UniGenes in several metabolic pathways involved in secondary wall formation and/or
maintenance showed differential expression between different regions of the stem (Figs 5 and
6). Transcription factors MYB58, MYB63, or MYB85 specifically regulate lignin biosynthesis/
deposition, with the MYB58 and MYB63 directly activating expression of nearly all the genes
involved in the lignin biosynthetic pathway. Both MYBs are thought to bind at conserved AC
regulatory elements found upstream of the majority of lignin biosynthetic genes [50, 52, 54],
with the exception that MYB103 is required for F5H expression and syringyl lignin biosynthe-
sis [14]. Transcription factors SND2, SND3, and MYB103 are able to activate the promoters of
genes involved in cellulose biosynthesis, such as CesA8, while MYB52 andMYB54 activate
gene promoters involved in cellulose and xylan biosynthesis. In this study, the expression levels
of these downstream transcription factors and some UniGenes in most metabolic steps in lig-
nin and cellulose biosynthesis were similar to those of the upstream transcription factors.
Expression levels of these transcription factors were significantly higher in both middle and
basal stem segments of N. cadamba, compared to the apical stem segment (Figs 4–6, S12–S14
Files). Our previous study has found that microsomes isolated from the middle and basal stem
segments exhibit the highest activity of UDP-xylsynthase and xylosyltransferase, and higher
expression of genes related to heteroxylan biosynthesis compared to the apical segment of N.
cadamba stem [20]. Overall, these data will be beneficial to further understanding the regula-
tory networks involved in secondary cell wall formation.

Genes involved in the cellulose/monolignol biosynthetic pathway
The UniGenes comp86965_c0 (82% identity with AtCesA1 by BLASTx), and comp52742_c0,
comp86567_c0 and comp86567_c1 (high identity with AtCesA2/6/9 by BLASTx) exhibited
higher expression levels in apical stem segments compared to the middle and basal stem seg-
ments (Fig 5, S13 File). Vascular bundles in the apical stem segment are formed from procam-
bial cells and consist of primary xylem tissues [20], consistent with expression of these CesAs,
which are proposed to be involved in primary cell wall synthesis based on their homologies
with A. thaliana CesAs [5]. However, the differentially expressed UniGenes, comp86337_c0
(82% identity with AtCesA7 by BLASTx) and comp78663_c0 (73% identity with AtCesA4 by
BLASTx) exhibited higher expression in both middle and basal stem segments compared to
apical stem segments (Fig 5, S13 File). Furthermore, the amount of secondary xylem increased
in both middle and basal stem segments [20]. This was primarily due to the activity of CesAs
involved in secondary cell wall biosynthesis as reported in the case of A. thaliana, where CesA
complex enzymes CesA4, CesA7 and CesA8 are required for cellulose synthesis [4]. All these
observations indicate that the differentially expressed UniGenes are required for primary or
second cell wall cellulose biosynthesis during stem development in N. cadamba.

In the monolignol biosynthetic pathway, the expression of 1–3 members of gene families
(PAL, 4CL, HCT, C3H, CSE, CCoAOMT, F5H and CAD) increased in both the M and B
libraries as compared to the A library (Fig 6, S14 File). The expression of these genes corre-
sponded with our earlier cell wall component analysis of apical, middle and basal stem seg-
ments in N. cadamba showing that lignin levels were higher in the middle and basal stem
segments compared to the apical segment [20]. These observations indicate that these genes
are the main transcripts and strongest candidates for involvement in lignin biosynthesis in N.
cadamaba. Furthermore, the number of N. cadambaUniGenes and the number of genes found
in the P. trichocarpa [65] and E. grandis [3] genomes that encode each one of the eleven key
enzymes involved in the lignin biosynthesis pathway were more than the number found in the
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A. thaliana TAIR database (Table 4). These comparisons suggest that lignin biosynthesis in
trees is more complex and requires more genes.

The new genetic model tree for xylogenesis
Unlike the model plant Arabidopsis, tree species such as N. cadamaba accumulate higher
amounts of secondary xylem. There are many more genes related to lignin biosynthesis in
trees, compared to Arabidopsis (Table 4), which forms relatively little lignin rich in G units
[70]. In contrast, trees typically have roughly equal amounts of G and S units comprising their
lignin. This suggests that although Arabidopsis has been considered an excellent genetic model
for the study of lignin biosynthesis in trees [71], there are a number of disadvantages. These
include fewer xylem cell types, small plant size, and an annual growth habit, which means that
studies into seasonal variation of xylem differentiation, dormancy, and cambial aging process
cannot be carried out [72]. N. cadamba is a fast-growing tree for which a highly efficient in
vitro regeneration system has been successfully established [24]. Furthermore, the CRISPR-
Cas9 system for genome engineering has been established and applied widely to elucidate the
functional organization of the genome at the systems level, and establish causal linkages
between genetic variations and biological phenotypes [73]. These factors suggest that N.
Cadambamight be established as a model plant for cell wall biosynthesis and wood develop-
ment studies in the future by adopting new genetic technologies.

Conclusions
In this study, we have conducted the first large-scale analysis of the N. cadamba transcriptome
and identified several genes responsible for N. cadamba xylogenesis using Illumina paired-end
sequencing technology. With DEG profiling, our results have provided a vast amount of infor-
mation about genes that are differentially expressed during xylogenesis. 1,634 UniGenes exhib-
ited significantly higher expression levels in the basal and middle stem segments compared to
the apical stem segment. They included NAC andMYB transcription factors related to second-
ary cell wall biosynthesis, genes related to most metabolic steps of lignin biosynthesis and CesA
genes involved in cellulose biosynthesis. Further analysis of the generated transcriptome data-
set will provide new insights into molecular mechanisms of wood formation in fast-growing
trees.
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S1 Fig. GO categories of the UniGenes and DEGs.
(TIF)

S2 Fig. COG categories of the UniGenes.
(TIF)

S3 Fig. COG categories of the DEGs.
(TIF)

S4 Fig. Expression of UniGenes related to cadambine, triterpenoid saponin and phytosterol
biosynthesis. Error bars on each column indicate SEs from three replicates. R, root; S, middle
stem segment; L, young leaf; ML, mature leaf; F, flower; B, bark; C, cambium.
(TIF)
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biosynthetic process (GO:0045492), glucuronoxylan biosynthetic process (GO:0010417) and
mannan synthase activity(GO:0051753), respectively. The color red and green indicate the Uni-
Genes from DEGs and UniGenes with the expression profile showing that the expression abun-
dance in the M and B libraries was higher than in the A library in DEGs, respectively.
(XLSX)

S12 File. Summary for transcription factors, MYB and NAC UniGenes in N. cadamba. The
color red and blue indicate the UniGenes identified as DEGs and UniGenes with expression
profiles where the expression abundance in the M and B libraries was higher than in the A
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(XLSX)
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