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Epithelial–mesenchymal transition (EMT) profoundly impacts prognosis and
immunotherapy of clear cell renal cell carcinoma (ccRCC). However, not every patient is
tested for EMT status because this requires additional genetic studies. In this study, we
developed an EMT gene signature to classify the H&E-stained slides from The Cancer
Genome Atlas (TCGA) into epithelial and mesenchymal subtypes, then we trained a deep
convolutional neural network to classify ccRCC which according to our EMT subtypes
accurately and automatically and to further predict genomic data and prognosis. The
clinical significance and multiomics analysis of the EMT signature was investigated. Patient
cohorts from TCGA (n = 252) and whole slide images were used for training, testing, and
validation using an algorithm to predict the EMT subtype. Our approach can robustly
distinguish features predictive of the EMT subtype in H&E slides. Visualization techniques
also detected EMT-associated histopathological features. Moreover, EMT subtypes were
characterized by distinctive genomes, metabolic states, and immune components. Deep
learning convolutional neural networks could be an extremely useful tool for predicting the
EMT molecular classification of ccRCC tissue. The underlying multiomics information can
be crucial in applying the appropriate and tailored targeted therapy to the patient.

Keywords: clear cell renal cell carcinoma, epithelial-mesenchymal transition, deep learning, histopathology,
immune checkpoint inhibitor
Abbreviations: TCGA, The Cancer Genome Atlas; EMT, Epithelial–mesenchymal transition; ccRCC, clear cell renal cell
carcinoma; Mes, mesenchymal; Epi, epithelial; CAM, class activation mapping; AMPK, AMP-activated protein kinase; CTA,
cancer-testis antigen; HRD, homologous recombination deficiency; ITH, intratumoral heterogeneity; TMB, tumor mutation
burden; ICIs, immune checkpoint inhibitors.
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HIGHLIGHTS

In this study, we trained a deep convolutional neural network
on hematoxylin and eosin (H&E) histology slides obtained
from The Cancer Genome Atlas (TCGA) to classify their EMT
status accurately and automatically and to further predict
genomic data and prognosis. We revealed that Mes cluster
demonstrated truncating mutations in PBRM1, and high
expression of immune checkpoint molecules might lead to
the immune escape of this cluster. Further we suggested that
patients in the Mes subtype might respond better to ICIs
combined with antiangiogenic therapy. Deep learning
convolutional neural networks could be an extremely useful
tool for predicting the EMT molecular classification of ccRCC
tissue. The underlying multiomics information can be crucial
in applying the appropriate and tailored targeted therapy to
the patient.
INTRODUCTION

Clear cell renal cell carcinomas (ccRCC) account for
approximately 80% of all renal cancer cases, with approximately
3.8% of all cancers in United States (1). Metastatic ccRCC are
pharmacologically managed, targeted therapy utilizing tyrosine
kinase inhibitors (TKIs), anti-VEGF antibodies, mammalian
target of rapamycin (mTOR), and/or immune checkpoint
inhibitors are widely used in first and second line treatments,
suggesting that treatment strategy is crucial for ccRCC
treatment (2).

Epithelial–mesenchymal transition (EMT) is a multistep
process in which epithelial cells gain a range of mesenchymal
characteristics (3). EMT molecular stratification can predict
whether patients respond to immunotherapy in several tumor
types (4–6). Thus, we sought to develop an EMT gene signature
that can predict genomic data and prognosis of patients
with ccRCC.

All EMT stratification systems are based on complex
molecular experiments (7, 8). Therefore, there is a
tremendous medical need for simplifying procedures. One
key could be the use of deep neural networks. Recently, Zhang
et al. presented a comprehensive morphological analysis using
computer vision methods including random decision forests
and artificial neural networks to establish the correlation
between cellular morphological features and EMT (9).
Kather et al. predicted microsatellite instability (MSI)
directly from histology in gastrointestinal cancer using
convolutional neural networks (10). Nevertheless, unlike the
typical MSI tumors, there are no standard histological criteria
for EMT molecular subtypes in ccRCC patients. Herein, we
investigated the deep learning neural network to precisely
recognize the ccRCC EMT subtypes from whole-slide
images of hematoxylin and eosin (H&E)–stained tissue from
TCGA (The Cancer Genome Atlas). Additionally, we
compared subtype comprehensive genomic, phenotypic, and
clinical data.
Frontiers in Oncology | www.frontiersin.org 2
MATERIALS AND METHODS

RNA Expression Data and Somatic Exome
Mutation Analysis
The RNA-Seq upper quartile normalized RSEM data was
available for 539 ccRCC; all data is accessible via the NCI
genome data commons and the Gene Expression Omnibus
(https://gdc.cancer.gov/ and https://www.ncbi.nlm.nih.gov/geo/).
GSE150404 has 60 samples wi th di fferent s tages .
Clinicopathologic data for the corresponding patients, including
gender, race, age, tumor location, histology classification,
differentiation grade, tumor stage, and survival information,
were also retrieved from the database. Only patients with both
survival information and expression data available were included
in this study. Analysis of the RNA data was split into miRNA
analysis, mRNA signature analysis, and immune gene signature
analysis. All subsequent analyses were performed in R open-
source programming language. For differential expression
analysis, RPKM values were calculated from RNaseq raw counts
and upper quantile normalized. For hierarchical clustering and
WGCNA, raw count data were processed and normalized using
the variance stabilizing transformation algorithm implemented by
the DESeq2 package.

Somatic exome sequencing data were downloaded for the 255
ccRCC. The tumors with sequencing data are accessible via the
NCI genome data commons (https://gdc.cancer.gov/). The SMG
that had been previously identified by the MutSigCV algorithm
in the previous TCGA KIRC publications were used as the
reference SMG.

DNA Methylation Analysis
All data is available from TCGA data. To minimize the influence
of tumor purity, we dichotomized the methylation data with a
beta value cut off 0.3 and used the Ward method to cluster the
distance matrix computed with the Jaccard Index. Heatmaps
were generated based on row and column orders calculated as
above and colored by dichotomized beta values. All methylation
genes we selected with a beta value of 0.3 or more were
considered evidence for epigenetic silencing and associated
with poor survival.

Development of EMT-Gene Signature
in ccRCC
To find EMT-specific genes in ccRCC, gene expression data were
analyzed from TCGA cohort. The EMT-related gene expression
signature comprised 200 genes obtained from gene set “hallmark
epithelial mesenchymal transition” in The Molecular Signatures
Database (MSigDB, software. broadinstitute.org/gsea/msigdb).
Genes were selected when the mRNA expression levels were
either positively or negatively correlated with at least one of the
well-known EMT markers: E-cadherin (CDH1), vimentin (VIM),
N-cadherin (CDH2), and fibronectin 1 (FN1). Using a gene
feature and its correlated genes, hierarchical clustering analysis
was performed with the centered correlation coefficient as the
measure of similarity (Supplementary Table S1). The patient
clustering result divided the patients into two subtypes
January 2022 | Volume 11 | Article 782515
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(mesenchymal and epithelial). We also calculated EMT scores
based on previous studies and obtained comparable results.

Image Preprocessing
All the slides were tiled in non-overlapping 256×256-pixel
windows at a magnification of 10× using the openslide library.
The tiles with more than 50% background (for which all the
values are below 220 in the RGB color space) were considered to
have insufficient information and were dropped while tiling (11).
For the remaining tiles, we yielded 1150952 tiles, with an average
of 3326 tiles per slide (minimum 174 tiles, maximum 9500 tiles).
We used the Macenko method for color normalization to convert
all images to a reference color space for all these tiles (12).

Tumor Detection and EMT
Subtype Detection
For tumor detection in ccRCC, we selected 1000 tiles of necrosis,
stroma and tumor from the tiles respectively, and randomly split
them into training, validation and testing set at a ratio of
7:1.5:1.5. We trained a convolutional neural network with the
Inception V3 model to classify necrosis, stroma, and tumor tiles
by transfer learning. This network was then used to detect all the
tumor tiles generated from the whole-slide images. This process
resulted in 1031666 tiles, with an average of 2982 tiles per slide
(minimum 170 tiles, maximum 7930 tiles).

For EMT subtype detection, we trained another Inception v3
model using just the tumor tiles detected before. As we already
obtained the EMT subtype for patients’ slides using our gene
signature, we labeled the tiles with Epi or Mes according to the
slides’ EMT subtype. That is, the label of tiles was the EMT
subtype of the slides the tiles generated from. Due to the small
number of Epi slides, training and validation were performed
slide-wise using six-fold cross-validation. That is, the tiles
associated with the same slide were grouped into the same
fold. Because there were different numbers of Epi and Mes
slides (6 Epi and 52 Mes in each fold) and different numbers of
tumor tiles of each slide, there was an imbalance between these
two classes. To minimize such imbalance, while training, we
extracted all the Epi slides and downsampled the Mes slides at a
ratio of 1:2 (Epi : Mes), and then randomly selected 600 tiles per
Epi slide and 300 tiles per Mes slide. However, for slide-wise
validation, all the tumor tiles were used. After getting the
classification of all tumor tiles of a given slide, the mean
prediction value of all these tiles was regarded as the slide’s
final prediction result.

Neural Network and Transfer Learning on
Inception V3
Both the tumor detection and EMT subtype detectionmodels were
based on Inception V3 and trained using transfer learning. All the
convolutional neural networks were pretrained on the ImageNet
(www.image-net.org) database. Only the last softmax layer was
changed and retrained by our dataset. We used Stochastic gradient
descent (SGD) optimization with a learning rate of 0.01 for the
classificationmodel. All codeswere implemented inPython3.7 and
ran on desktop workstations withNvidia graphics-processing units
Frontiers in Oncology | www.frontiersin.org 3
(GPUs; NVIDIA 2080). Performance was scored using accuracy,
AUC, specificity, and sensitivity.

Immune Gene Signature Analysis
Immune gene signatures were derived from previously published
work (13). RSEMupper quartile normalized, log2 transformed, and
mean centered RNA-seq data werematched to predefined immune
gene signature clusters via Entrez IDs. Each gene signature was
included in Supplementary Table S2. Differential expression for
each gene signature was analyzed between subtypes via one-way
ANOVA. These P values were adjusted for multiple tests using the
Benjamini-Hochberg procedure. For hazard ratio forest plots, a
univariateCoxproportional hazards (CoxPH)modelwas usedwith
signature/clinical variable as a continuous variable compared to
patient overall survival.

CIBERSORT
CIBERSORT is an analytical tool that accurately quantifies the
relative levels of distinct immune cell types within a complex
gene expression mixture to characterize and quantify each
immune cell subtype. Here, we applied the original
CIBERSORT gene signature file, LM22, which defined 24
immune cell subtypes, and analyzed datasets from ccRCC.
The data were normalized using the cubic spline algorithm. All
samples were analyzed for immune cell profiles by CIBERSORT,
the number of permutations being set to 100. Twenty-two
immune cell types together with CIBERSORT metrics as
Pearson correlation coefficient, CIBERSORT P value and root
mean squared error (RMSE) were quantified for each sample.
CIBERSORT P value reflects the statistical significance of the
deconvolution results across all cell subsets and was useful for
filtering out deconvolution with less significant fitting accuracy
(https://cibersort.stanford.edu). Immune cell profile was
calculated for each sample, and mean values were calculated.

ESTIMATE
The ESTIMATE algorithm was applied to the normalized
expression matrix for estimating the stromal and immune
scores for each clear cell renal cell carcinoma sample. Access to
the deidentified linked dataset was obtained from TCGA in
accordance with the database policy. For analyses of
deidentified data from TCGA database, Institutional Review
Board approval and informed consent were not required.

Quantification and Statistical Analysis
Student T test, Wilcoxon test, and Kruskal–Wallis test were
utilized to compare continuous variables and ordered categorical
variables, such as mutation load, neoantigen load, HRD score,

CTAs number, and ITH. Permutation test was conducted in the
comparison of genemutation frequencies among clusters. Correlation
matrices were created with Pearson or Spearman correlation. Survival
analysis was performed using the Kaplan–Meier method, and the
survival of the clusters was compared using the log-rank test. For all
analyses, significancewas determined as aP value < 0.05 and corrected
formultiple testingwhere specified.Univariate analysiswasperformed
unless otherwise specified. Survival analyses were performed using
January 2022 | Volume 11 | Article 782515
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GraphPad Prisma (GraphPad Software, Inc.) or by individually
specified methodologies.

Data Availability
Data are available from the authors upon request but may
require data transfer agreements. No personalized health
information will be shared.

Code Availability
The code used during the current study are available from the
corresponding author on reasonable request.
RESULTS

Discovery of EMT-Related Gene Signature
in Patients With ccRCC
An EMT-related gene signature was developed and consisted of 63
genes (Supplementary Table S1) and the flowchart of strategy to
identify EMT-related biomarkers in ccRCC was shown in Figure
1A. Two distinct subtypes of ccRCC, mesenchymal (Mes) and
epithelial (Epi), were identified using hierarchical clustering of
gene expression data. The Kaplan-Meier plots showed that the
patients in the Mes subtype showed worse overall survival than
those in the Epi and Intermediate subtypes (P = 0.009; Figure 1B).

Validation of the EMT‐Related
Molecular Subtype
The independent cohort (GSE150404) was used to validate the
accuracy of the EMT gene signature (P < 0.0001; Supplementary
Figure S1). Furthermore, higher grade (grade 3/grade 4) and
stage (stage III/stage IV) samples were in the Mes group
(Figures 1C, D). Univariate and multivariate analyses were
performed and EMT gene signature was significantly
associated with outcome in the multivariate analysis (Table 1).

According to TCGA Research Network article, unsupervised
clustering methods identified subsets in mRNA (m1-m4) and
miRNA (mi1-mi4) expression datasets. In the mRNA cluster, m3
accounted for roughly 50% of samples in the Mes classification
and was associated with the worst survival outcome (Figure 1E).
Survival differences were also evident in miRNA-based subtypes
(Figure 1F). DNA methylation (me1-me3) expression datasets
were detected (Figure 1G), and almost one-half of the Mes group
was me1 type and associated with significantly poorer survival.

Thorsson et al. identified six immune signature sets (C1-C6)
associated with overall survival and progression-free interval
(14). C3 had the best prognosis and was enriched in most
ccRCC, the more mixed-signature subtypes, C4 and C6, had
the least favorable outcome. In our model, compared with Epi,
Mes had the most significant proportion of C4+C6 (Figure 1H).

Further, we quantified the EMT levels by calculating EMT scores
described by Tan et al (15). Positive EMT scores corresponded to
the mesenchymal phenotype, whereas negative scores reflected the
epithelial phenotype. In general, All Mes subtype was characterized
by positive EMT scores corresponding to their phenotype. In
contrast, Epi phenotype had intermediate and low EMT scores
Frontiers in Oncology | www.frontiersin.org 4
(Figure 1I), reflecting their partial EMT and complete epithelial
states. These results demonstrated the robustness of the prognostic
value of EMT signature.

Deep Learning Can Predict EMT Status
Directly From Histopathology Images
Recently, deep learning has overmatched humans in some
medical data processing, especially the ability to predict some
genetic information efficiently and economically using
histopathology images (16, 17). To facilitate applying the EMT
gene signature, we investigated whether deep learning could
directly predict EMT status which according to our molecular
subtype from H&E-stained slides.

In this study, we used 346 whole-slide images from TCGA
and labeled them with the EMT types which according to our
gene signature (Figure 2). Before classifying the EMT status,
3000 tiles of tumor, necrosis, and stroma were selected and
labeled by a urologist and a pathologist. We trained an Inception
V3 model to recognize tumor from the other two classes by
transfer learning, which yielded an average AUC of 0.99 at the
tile level in five independent experiments. Then we used the
tumor tiles detected by the model with best performance among
the five experiments for EMT subtype classification. For the
slide-wise six-fold validation of the EMT subtype, the AUC value
of the ROC curve for all classes was 0.84 ( ± 0.07). The mean
validation accuracy at slide level was 74.90%, mean specificity
was 72.23%, and mean sensitivity was 75.32% (Figures 3A–C).
The predicted EMT status and the classification probability, were
aggregated to extract the heatmap for visualization by the tiles’
raw position of the slide (Figure 3D).

Histopathological Features Detection
for Stratification
To detect which histopathological features were the most
relevant in our algorithm to identify molecular subtypes, we
used class activation mapping (CAM) (18). For the Epi subtype,
these regions had a looser arrangement, big cell gap, nucleoli
absent or inconspicuous which were mainly in pink, and
granular eosinophilic cytoplasm areas (Figure 4A). Several
studies suggested that granular eosinophilic cytoplasm reflects
the presence of abundant mitochondria, which are required to
supply energy for acid secretion (19, 20). For the Mes subtype,
the regions were densely packed, surrounded by arborizing
vasculature, the large multinucleate cells with empty cytoplasm
(different in shape and size), and were often surrounded by
abundant immune infiltration (Figure 4B).

We further investigated the molecular alterations that could be
correlated with the histopathological features. Notably, the genes
located in the Mes subtype were annotated to various immune
associated pathways and biologic processes (Supplementary
Figure S2). In addition, we noticed that Mes group exhibited
higher artificial intelligence (AI) score (> 0.5 Mes possibility; < 0.5
Epi possibility) and was positively correlated with immune
infiltration (Spearman correlation = 0.275, P < 0.001,
Figure 4B). Moreover, gene set enrichment analysis (GSEA)
validated that abnormality of the mitochondrion and varieties of
January 2022 | Volume 11 | Article 782515
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metabolic process was enriched in the Epi cluster, which was in
accordance with the detection above (Figure 4A).

Our tests showed promising results on tumor EMT
classification from sections that could be predicted from H&E
images. Furthermore, we analyzed the connection between DNA
and RNA-level alternations and histopathological features to
explore the clinical relevance of the classification.
Frontiers in Oncology | www.frontiersin.org 5
Methylation and Metabolism
Heatmapping demonstrated clustering of 89 highly variable DNA
methylation markers that were hypermethylated in the tumor. A b-
value R greater than 0.3 was considered hypermethylated, and the
markers were associated with significantly poorer survival (13). The
methylation Mes subtype had a pronounced increase in
hypermethylation across the selected genome (Figure 5A).
A B

C ED

F H

I

G

FIGURE 1 | Characteristics of TCGA cohort. (A) Text-mining literature abstracts associated with EMT from the PubMed database identified 63 EMT-related genes.
(B) Overall survival analysis for sample clusters. (C, D) General TNM and grade characteristics of patients of the two clusters (left and middle). (E–G) Significant
differences in mRNA-based, miRNA-based, and methylation classification were identified for both the Epi and Mes clusters. (H) The proportion of samples belonging
to each immune subtype in two clusters. (I) Plot of EMT scores (mean ± SEM; y-axis) of in samples. EMT score nearer to +1.0 is more mesenchymal-like (Mes),
whereas EMT score nearer to -1.0 is more epithelial-like (Epi), Epi, blue; Mes, red.
January 2022 | Volume 11 | Article 782515
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Evaluation of metabolic differences was performed by 15
major metabolic processes. Expression of the Krebs cycle and
the electron transport chain genes (complex I – complex IV)
provided a clear distinction between the subtypes (Figure 5B).

AMP-activated protein kinase (AMPK) acts as an intracellular
energy sensor and was significantly lower in Mes subtype compared
to Epi subtype (P < 0.01; Figure 5B), which negatively regulates
fatty acid synthesis and positively regulates mitochondria
production (21). The metabolic shift identified in the Mes group
is reported to contribute to the Warburg metabolic phenotype,
further enhanced malignancy, immune protection of cancer cells
(22). Furthermore, the GSEA and AMPK complex genes expression
validated some of these results (Figures 5C, D).

Mutation and Immune Signature Analysis
The pattern of somatic alterations was determined from the
analysis of 104 samples (24 Epi and 80 Mes). Based on previous
study methodologies, we identified the eight most significantly
mutated genes (P < 0.00001) (23). As shown in Figures 6A, B,
patients with PBRM1 mutation tended to be in the Mes subtype,
while the Epi subtype had higher mTOR mutant rates (P < 0.05).
Frontiers in Oncology | www.frontiersin.org 6
PBRM1 encodes the bromodomain-containing protein BAF180, a
subtype of the switch/sucrose non-fermentable (SWI/SNF)
chromatin remodeling complex (24). Importantly, retrospective
data have shown that patients with metastatic ccRCC harboring
truncating mutations in PBRM1 experienced increased benefit
from immune checkpoint therapy (25, 26). Moreover, the Epi
subtype tended to have a better response to the mTOR inhibitor.

To further investigate the relationship between the EMT-
associated subtype and the immune, we first established a
microenvironment phenotype calculated by ssGSEA
(Supplementary Table S2). Mes subtype was characterized by high
innate and adaptive immune cells infiltration (Figure 6C). The
ESTIMATE algorithm showed that the Mes subtype had the
highest immune and stromal scores for the analyzed cohort (P <
0.01; Figures 6D–G).

To identify whether different clusters of EMT had distinct
tumor extrinsic immune escape mechanisms (27), we focused on
the adaptive immune cells in ccRCC (Figure 6H). Analysis
revealed that the fraction of naïve B cells was higher in Mes
subtype tissue than in Epi tissue. The three main T cell
subpopulations in tissue (CD4+ memory resting T cells, CD8+
A B C D F

E

FIGURE 2 | Deep learning model. Deep learning model. (A)The whole-slide images were tiled into 256×256-pixel tiles and dropped the tiles with low amount of
information while tiling. (B) Tiles before and after color normalization. (C) The convolutional neural network was trained as a tumor detector at tile level. (D) The model
training for EMT subtype classification at tile level. (E) EMT subtype prediction at patient level. (F) Distribution of the number of tiles generated per case.
TABLE 1 | Univariate and multivariate Cox proportional hazard regression analysis of overall survival in the cohorts (n = 252).

Variables Univariate Multivariate

HR (95% CI) P-value HR (95% CI) P-value

EMT signature 1.71 (1.27-2.31) 1.66e-09* 1.22 (1.02-1.54) 7.95e-06*
Age 1.04 (1.02-1.06) 0.00026* 1.03 (1.01-1.05) 0.00091*
Gender 1.14 (0.70-1.83) 0.603 0.904 (0.54-1.5) 0.696
Grade 2.57 (1.90-3.47) 8.13e-10* 1.60 (1.12-2.30) 0.01*
Stage 2.01 (1.65-2.46) 8.56e-12* 1.56 (1.12-2.17) 0.0089*
Metastasis 2.89 (1.96-4.25) 6.87e-08* 0.97 (0.5-1.93) 0.97
Lymph node 3.68 (1.69-8.04) 0.001* 1.86 (0.82-4.23) 0.14
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T cells, and follicular helper T cells) were increased in Mes
compared to Epi. The results also showed that innate immune
components, neutrophils, M2 macrophages and resting NK
fractions increased. In general, Mes had abundant active innate
and adaptive immune cells and immunosuppressive cells.

Consistent with these results (Figure 6I), Mes had a higher
expression of chemokines, including CCL4, CXCL9, and
Frontiers in Oncology | www.frontiersin.org 7
CXCL10, which have been proven to attract dendritic cells and
CD8 T cells (28). Overall, the increase of chemokines might
contribute to the extrinsic immune escape of the Mes clusters.

We further investigated the two aspects of intrinsic immune
escape: tumor immunogenicity and immune checkpoint molecule
expression (29). We first compared the factors that were the
primary source of tumor antigens: mutation load, neoantigen
C

D

BA

FIGURE 3 | Classification performance in an external validation set and class activation maps for morphological features. (A) Confusion matrix of the classification results
of the validation patients. (B) Training and validation on TCGA cohort were performed using six-fold repeated validation with a 90% (training) to 10% (validation) stratified,
random split for each fold. (C) Classifier performance was assessed including accuracy, F1 score, AUC, specificity, and sensitivity separately for each EMT molecular
subtype. (D) Tissue slides of patients with Epi and Mes tumors in TCGA test set show the spatial patterns of predicted MSI score. The top panel shows the H&E input
image. Corresponding predicted Epi and Mes map for the image shown in the bottom panel. Class activation maps for morphological features.
January 2022 | Volume 11 | Article 782515
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A B

FIGURE 4 | Class activation maps for morphological features. (A) Macrograph (top), input image (second from top), CAM (third from top), and corresponding sketch
maps of predominant morphological feature (bottom) for EMT subtypes (from left to right: Epi and Mes). Epi region is a granular eosinophilic cytoplasm area with a
looser arrangement, big cell gap, nucleoli absent. Mes region contained mostly tumor cells with empty cytoplasm and mixed with immune cells. (B) GSEA plot of
abnormality of the mitochondrion in Epi cluster (left) and positive correlation between AI score and immune score (estimated by the ESTIMATE algorithm).
Frontiers in Oncology | www.frontiersin.org January 2022 | Volume 11 | Article 7825158
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load, CTA (cancer-testis antigen) level, HRD (homologous
recombination deficiency), ITH (intratumoral heterogeneity), and
tumor antigen-presenting capability. In general, the difference in the
tumor antigen burden among the clusters was significant between
the two groups (Figures 7A–E). Considering that high tumor
mutation burden (TMB) correlates with a greater probability of
displaying tumor neoantigens, it is rational to hypothesize that the
tumors with Mes subtype are more likely to respond to immune
checkpoint inhibitors (ICIs) as this greater mutation load.

Therefore, we referred to a database of immune checkpoint
molecules among clusters (30) (Figure 7F). In many cancers,
the PD-1 pathway is involved in tumor evasion from immune
activity (31). PD-1 (PDCD1) and CTLA-4 (CTLA4) levels
were significantly elevated in the Mes subtype as compared
with those in the Epi subtype (p < 0.01); Furthermore, we
demonstrated that PD-1, CTLA4, LAG3, TIGIT, CD80, and
CD86 and the expression of most checkpoint molecules were
positively correlated (Figure 7G). In addition, analysis of
overall survival of CTLA4 was positively correlated with
poor patient survival (Supplementary Figure S3).

To further test the clinical relevance, a heatmap of genes
previously defined and representing angiogenesis and immune
biology was investigated (Figure 7H) (32). Our data suggested
the association of Mes subtype with improved response to
antiangiogenic drugs. We further conducted confirmatory studies
to evaluatemolecular subtypes by deep learningmethod in 34 stage
Frontiers in Oncology | www.frontiersin.org 9
IVpatients enrolled in the study from2 January 2020 to2 June2021.
Patients received more than one dose of pazopanib. In our cohort,
only four patients in the pazopanib armwere identified as Epi term,
the average score of the remaining patients was 0.72 (95%CI, 0.54–
0.83) for Mes tiles and 0.28 (95% CI, 0.16–0.40) for Epi tiles
(Supplementary Table S3). In Mes-type patients, the objective
response rates were 47% (10% complete response; 37% partial
response); no Epi-type patients benefitted from the pazopanib. Of
note, we observed a trend for improved efficacy (objective response
rates) with Mes subtype, indicating that our approach can be
beneficial to targeted cancer therapy.
DISCUSSION

Although pathology divides tumors into distinct ccRCC grades,
it is limited in its ability to provide an in-depth analysis (33).
Using deep learning methods, our study revealed EMT subtypes
and their clinical significance.

In the present study, a robust EMT gene signature clinically
significant to patients with ccRCCwas developed. Moreover, further
analysis demonstrated that Mes and Epi ccRCC subtypes were
characterized by distinctive mutations, chromosomal copy number
alterations, and mRNA, miRNA, methylation expression, and
metabolic patterns. The Mes subtype metabolic alterations were in
accordance with the histopathological feature detection. These
A B

C D

FIGURE 5 | Methylation and metabolism patterns. (A) Heatmap representation of the clustering of 89 highly variable DNAmethylation probes. A methylation b-value R greater
than 0.3 was considered hypermethylated. (B) Heatmap representation of the comparison of mRNA expression signatures for the selected metabolic processes between the
different EMT subtypes. (C)GSEA plot of citrate cycle TCA cycle and oxidative phosphorylation. (D) AMPK complex gene expression (**, 0.001 < P < 0.01; ns, P > 0.05).
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FIGURE 6 | Somatic alterations in EMT subtypes. (A) Upper heat map, mutation events per sample; lower heat map, mutation types, and events (left, Epi group;
right, Mes group). (B) Landscape of the microenvironment phenotypes in EMT subtypes, K-means clustering of microenvironment phenotypes based on the
estimated numbers of 24 microenvironment cell subsets calculated by ssGSEA (Epi type, blue; Mes type red). Tumor stage (stage I, light blue; stage II yellow; stage
III, orange; stage IV, red), grade (grade 1, green; grade 2, yellow; grade 3, purple; grade 4, red), gender (male, blue; female, pink), and scores estimated by the
ESTIMATE algorithm. (C–F) Scores of stromal, immune, tumor purity, and ESTIMATE between clusters. In the violin plots, the mean values are plotted as dots, and
the boxplot is drawn inside of the violin plot. (G) Boxplot plot for comparison of the immune cell fraction difference between Epi and Mes tissues. Fractions of each
immune cell type were compared by means of a two-sided Mann–Whitney U test. Blue color indicates Epi type and red indicates Mes type. (H) Log2-fold change in
mRNA expression in the tumor tissues of chemokines, interleukins, interferons, and other important cytokines and their receptors for each cluster. Molecules with
significantly differential expression between the tumor site and the paired normal site (P < 0.01) were illustrated. (***, P < 0.001; **, 0.001 < P < 0.01; *, 0.01 < P <
0.05; ns, P > 0.05).
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FIGURE 7 | Intrinsic immune escape mechanisms of EMT subtypes. Comparison of mutation burden (A), ITH (B), SNV neoantigen (C), HRD scores (D), and CTA
numbers (E) among the two clusters. In the violin plots, the mean values are plotted as red dots, and the boxplot was drawn inside the violin plot. (F) Comparison of the
log2-fold changes in mRNA expression at the tumor sites of the MHC molecules, costimulators, and coinhibitors for each cluster. For costimulators, only molecules
having significantly differential expression between two clusters (except CD274 and CD276, P < 0.01) were illustrated. (G) Correlations between expression of immune
checkpoint molecules. (H) Heatmap showing expression of genes related to angiogenesis (brown), immune and antigen presentation (purple), and myeloid inflammation
(gray) were z-score transformed before visualization.
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findings suggested that treatment with demethylating agents and
targeting the metabolic pathway could benefit patients with
Mes phenotype.

The role of the features in determining the therapeutic
responsiveness of ccRCC will be important in future therapeutic
planning (34, 35). Studies have reported that EMT are related to
immunosuppressive cytokines in several cancer types (36). It has also
been reported that EMT can induce PD-L1 expression in non-small
cell lungcancer (37).Ourstudyhas important implications forclinical
translations. First, our results might facilitate the selection of suitable
patients for ICIs. We revealed that the Mes cluster demonstrated
truncating mutations in PBRM1, and high expression of immune
checkpointmoleculesmight lead to the immuneescapeof this cluster.
Further we suggested that patients in theMes subtypemight respond
better to ICIs combined with antiangiogenic therapy. Notably, the
CheckMate 9ER trial demonstrated improved progression-free
survival and overall survival benefits with the combination of
cabozantinib plus nivolumab (38). A Keynote-426 update
demonstrated ongoing overall survival benefits of pembrolizumab
Frontiers in Oncology | www.frontiersin.org 11
plus axitinib in the intention-to-treat population (38). These
combination therapies are recommended as first-line treatment
for advanced kidney cancer. Therefore, our data suggest that EMT
signature-basedbiomarkersmaybevaluable for identifyingpatients
who can benefit from immune checkpoint blockade and
antiangiogenesis agents.

However, the EMT molecular subtype analysis in ccRCC
specimens is far from being implemented in routine pathology
due to the high costs. We demonstrated how the EMT gene
signature could further benefit from deep learning by presenting a
strategy based on convolutional neural networks. The development
of inexpensive and more powerful technologies has made the
training of larger and more complex neural networks possible.
CONCLUSIONS

In conclusion, our analysis showed that the EMT molecular
subtype of ccRCC specimens via deep-learning convolutional
January 2022 | Volume 11 | Article 782515
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neural networks could be an extremely useful tool for patient-
tailored therapy strategies.
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