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Abstract 

Background: In recent years there is increasing interest in modeling the effect of early longitudinal biomarker data 
on future time-to-event or other outcomes. Sometimes investigators are also interested in knowing whether the vari-
ability of biomarkers is independently predictive of clinical outcomes. This question in most applications is addressed 
via a two-stage approach where summary statistics such as variance are calculated in the first stage and then used 
in models as covariates to predict clinical outcome in the second stage. The objective of this study is to compare the 
relative performance of various methods in estimating the effect of biomarker variability.

Methods: A joint model and 4 different two-stage approaches (naïve, landmark analysis, time-dependent Cox 
model, and regression calibration) were illustrated using data from a large multi-center randomized phase III trial, the 
Ocular Hypertension Treatment Study (OHTS), regarding the association between the variability of intraocular pres-
sure (IOP) and the development of primary open-angle glaucoma (POAG). The model performance was also evalu-
ated in terms of bias using simulated data from the joint model of longitudinal IOP and time to POAG. The parameters 
for simulation were chosen after OHTS data, and the association between longitudinal and survival data was intro-
duced via underlying, unobserved, and error-free parameters including subject-specific variance.

Results: In the OHTS data, joint modeling and two-stage methods reached consistent conclusion that IOP variabil-
ity showed no significant association with the risk of POAG. In the simulated data with no association between IOP 
variability and time-to-POAG, all the two-stage methods (except the naïve approach) provided a reliable estimation. 
When a moderate effect of IOP variability on POAG was imposed, all the two-stage methods underestimated the true 
association as compared with the joint modeling while the model-based two-stage method (regression calibration) 
resulted in the least bias.

Conclusion: Regression calibration and joint modelling are the preferred methods in assessing the effect of bio-
marker variability. Two-stage methods with sample-based measures should be used with caution unless there exists a 
relatively long series of longitudinal measurements and/or strong effect size (NCT00000125).
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Background
As the field of precision medicine continues to advance, 
methodologies that utilize individual patient information 
over time are becoming increasingly valuable to provide 
more accurate prognosis as early as possible. In many 
clinical trials and epidemiologic studies, information is 
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gathered on both repeated measures of biomarkers (lon-
gitudinal data) and clinical outcomes. There is increasing 
interest in modeling the longitudinal data and assess-
ing its association with future outcomes. Various meth-
ods have been proposed for this goal. The most popular 
ones in medical reports are two-stage methods where 
sample-based descriptive statistics such as mean are first 
calculated for each individual and subsequently used as 
covariates (i.e., assumed known and free of measurement 
error) into conventional models such as linear regres-
sion or Cox proportional hazard model for a clinical out-
come. Several studies have compared different statistical 
methods that relate the characteristics derived from early 
longitudinal data to future clinical outcomes. For exam-
ple, Tu et  al. [1] examined various approaches (tracing 
the z-scores, life-course plots and models, life-course 
path analysis, conditional body size analysis, multilevel 
analysis, latent growth curve models and growth mixture 
models) for the repeated measurements of weights from 
early ages to assess its relationship with blood pressure at 
age 19. Sayers et al. [2] using simulated data compared 4 
different two-stage methods with a joint model in relat-
ing childhood growth to adult blood pressure. They con-
cluded that sample-based summary measures tend to 
result in biased estimation for the association, while mul-
tilevel growth model (model-based two-stage or regres-
sion calibration) and joint modeling lead to unbiased 
result. Sweeting et al. [3] assessed the predictive ability of 
repeated blood pressure for the time-to-cardiovascular 
disease outcome. They compared various naive methods 
(baseline-only model, last observation carry-over for-
ward, and cumulative mean) against more complex mod-
els (regression calibration (RC), risk-set RC, and joint 
modeling), but only observed a modest improvement in 
terms of discrimination and calibration as compared to 
the baseline-only model. Crozier et al. [4] also discussed 
recent development in methods to characterize the pre-
natal and early growth and its impact on whole body 
bone mass at age 6, though they focused more on com-
plex model-based approaches.

All the above studies focus on the mean level or trajec-
tory of the longitudinal measurements. In some studies, 
however, it is also of interest to know whether the vari-
ability (or stability) of a biomarker is predictive of out-
comes. In an ophthalmology study based on subjects 
with at least 3-year follow-up, for example, Caprioli and 
Colman [5] found that long-term IOP fluctuation (meas-
ured as standard deviation of each individual’s longitu-
dinal IOP) is associated with visual field progression in 
patients with POAG. Segar et al. [6] revealed that the var-
iability in kidney function and serum electrolyte indices 
is independently associated with worse clinical outcomes 
in patients with chronic stable heart failure. Muntner 

et  al. [7] and Whittle et  al. [8] assessed data from the 
ALLHAT Pragmatic Trial and found that the visit-to-visit 
variability of blood pressure is an independent predic-
tor for cardiovascular disease and chronic renal disease 
outcomes, respectively. Recently, it was also reported 
that cognitive variability predicts the onset of Alzheimer 
disease dementia [9]. Despite the recent development of 
joint models [10, 11], two-stage approach remains the 
mainstream in medical applications for assessing the 
effect of within-subject biomarker variability on clini-
cal outcomes. To the best of our knowledge, however, no 
papers have yet compared the relative performance of 
various methods under this setting.

In this paper, several two-stage methods and a joint 
model were illustrated using data from a large multi-
center randomized phase III trial, the Ocular Hyperten-
sion Treatment Study (OHTS), regarding the association 
between the variability of intraocular pressure (IOP) 
and the development of primary open-angle glaucoma 
(POAG). We also compared the relative performance 
of two-stage methods using simulated data where the 
association between longitudinal and survival data was 
introduced via underlying, unobserved, and error-free 
parameters including subject-specific variance [10, 11]. 
The model parameters for simulation were selected based 
on the analysis of OHTS data. This paper is organized as 
follows. Section 2 describes the OHTS data, model con-
structions, and computational implementation. Section 3 
presents the results to illustrate various models using 
OHTS data and compares their performance by simula-
tions. Finally, Sect. 4 concludes with a discussion.

Methods
Motivating example: Ocular Hypertension Treatment Study 
(OHTS)
OHTS is a large multi-center randomized phase III 
trial to evaluate the safety and efficacy of topical ocu-
lar hypotensive medication in delaying the onset of pri-
mary open-angle glaucoma (POAG) which is among the 
leading causes of blindness in US and worldwide. 1636 
subjects were randomized to either observation or treat-
ment with ocular hypotensive medication and followed 
for a median of 78 months. A prediction model to iden-
tify ocular hypertensive subjects who are at high risk 
for developing POAG has been developed from OHTS 
data and been widely used in the ophthalmology com-
munity [12]. The prediction model includes 5 baseline 
factors—age, intraocular pressure (IOP), central corneal 
thickness (CCT), pattern standard deviation (PSD), and 
vertical cup to disc ratio (VCDR). Among these factors, 
IOP is the only factor that can be modified by current 
treatment. As of today, many studies have confirmed 
that a decrease in mean IOP level can reduce the risk of 
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developing POAG. There is still controversy about the 
impact of IOP variability on POAG.

The analysis cohort for the current study consisted of 
709 participants who were randomized to the observa-
tion arm, had completed at least two post-randomiza-
tion visits (i.e., with at least 3 IOP measurements), and 
had complete baseline data for age, IOP, CCT, PSD, and 
VCDR. The eye-specific predictors (IOP, CCT, PSD, 
VCDR) were based on the first eye with POAG or a 
randomly selected eye in participants without POAG. 
The primary endpoint was time from randomiza-
tion to the POAG onset. Those subjects who did not 
develop POAG were censored at the date of study clo-
seout. These baseline predictors were standardized to 
have mean 0 and variance 1 and the coefficients from 
the regression models represented the effect per 1-SD 
change. The objective of current study is to compare 
the performance of different statistical methods, and 
a detailed interpretation on the effect of IOP variabil-
ity for the risk of POAG has been described in Gordon 

et  al. [13]. An exploratory analysis was performed by 
fitting a simple linear regression model of IOPs against 
measurement times to each subject to estimate inter-
cept, slope and (logarithm transformed) variance of 
residuals. Figure  1 explored the relationship between 
these IOP-derived characteristics (which were further 
categorized into quartiles) and the risk of develop-
ing POAG. There was a dramatically increased risk of 
developing POAG in the  4th quartile of IOP intercept 
(Fig. 1B). Similar trend was shown in IOP slope though 
the relationship may not be linear (Fig.  1C), while a 
substantial overlap was noted across quartiles of the 
within-subject IOP variability (Fig. 1D).

Models for data analysis and simulation
Data were analyzed by a joint model of longitudinal and 
survival data, as well as 4 different two-stage models to 
assess the association between longitudinal and sur-
vival outcomes, especially for the effect of biomarker 
variability.

Fig. 1 An exploratory analysis to assess the association between IOP-derived subject-specific characteristics (i.e., intercept, slope, and variance of 
residuals from the OLS model of IOPs against measurement times) and the risk of developing POAG using the OHTS data. A raw data of longitudinal 
IOP over follow-up time; B risk of developing POAG by the quartiles of IOP intercept; C risk of developing POAG by the quartiles of IOP slope; D risk 
of POAG by the quartiles of within-subject IOP variability
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Notations
Suppose there were N subjects. Let  Ti = min(Di,  Ci) be 
the observed survival time for the  ith subject, where  Di 
was the potential failure time and  Ci was the potential 
censoring time independent of  Di. Let Δi be the corre-
sponding censoring indicator, with Δi = 1 if  Ti =  Di and 
Δi = 0 otherwise. Let  Yij denote the longitudinal data for 
 ith individual at time  tij, and the longitudinal data only 
included those measurements taken prior to the time 
of event or censoring. Finally, we denoted the baseline 
covariates predictive of longitudinal and survival pro-
cesses as  Xi and  Zi respectively, which may or may not be 
the same.

Joint model assessing biomarker variability on survival 
outcome
The joint model consists of two sub-models, a measure-
ment model for longitudinal data and an intensity model 
for survival data, and the two sub-models are associated 
via shared latent random effects including subject-spe-
cific variance [14]. Specifically,

• the measurement sub-model describes the trajectory 
of longitudinal data using a linear mixed model,

• where β0 and β1 represents intercept and slope, 
respectively, and β2 is a vector of parameters for 
other baseline covariates.  Ii and  Si are the subject-
specific random intercept and slope as in a conven-
tional linear mixed model [15]. eij is the error for 
subject i at time j, independently following a normal 
distribution with a mean zero and variance σ 2

vi . We 
assume a log-linear relationship between the overall 
variance, µV  , and the subject-specific random vari-
ance, Ui . { Ii, Si,Ui } is the vector of random effects 
with its distribution defined as i.i.d. multivariate nor-
mal with a mean vector {0, 0, 0} and a symmetric and 
positive-definite variance–covariance ∑. { σ 2

I , σ
2
S , σ

2
V  } 

is the vector of variance parameters of Ii, Si, andUi . 
{ ρ12, ρ13, ρ23 } is the vector of correlation parameters 
among the random effects. That is, unlike the con-
ventional linear mixed models, model (1) explicitly 
allowed subject-specific variance. The above model is 

(1)Yij = β0 + β1tij + β2Xi + Ii + Sitij + eij

eij ∼ N 0, σ 2
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similar to our previous joint model [10] except that 
its variance–covariance matrix has been extended 
following Leckie et al. [16] to allow exploring the full 
correlation among all subject-specific random effects.

• the intensity sub-model is a semi-parametric piece-
wise exponential distribution,

• where λ0(t) is the baseline hazard when all covari-
ates are 0. The subject-specific random effects 
Ii, Si, and Ui are from model (1) and thus induced 
association between the longitudinal and the survival 
process, with γ3 specifically for the effect of wthin-
subject biomarker variability. α0 denotes intercept 
and α1 is a vector of parameters for other baseline 
covariates. To obtain a flexible estimate to λ0(t), we 
split the survival time into K subintervals (with a 
known value for K) and assume λ0(t) being a step-
function with height �k at each interval (tk , tk+1) , for 
k = 1, 2, …, K.

The full joint distribution is specified in the form of,

with θ = {β, α, γ, µV ,�k , σ 2
I  , σ 2

S  , σ 2
V  , ρ12 , ρ13,ρ23 } the 

unknown parameters as given in models (1) and (2), and 
estimated under a Bayesian framework using Markov 
Chain Monte Carlo (MCMC) method [17]. The follow-
ing prior distributions are specified for the unknown 
parameters,

where N (a, b) denoted a Normal distribution with 
mean a and variance b, G(a, b) represented a Gamma 
distribution with mean a/b and variance a/b2, and IW 
represented an inverse-Wishart distribution which is an 
inverse of 3-dimension Gamma distribution. The result-
ant posterior distributions are a multivariate normal dis-
tribution for the measurement sub-model and a Poisson 
distribution for the intensity sub-model at the  kth interval 
(tk , tk+1).

Two‑stage models assessing biomarker variability on survival 
outcome
In a two-stage analysis, only longitudinal data are ana-
lyzed in the first stage to estimate summary statistics 
for each individual, and these summary statistics are 

(2)
�i(t) = �0(t)exp(α0 + α1Zi + γ1Ii + γ2Si + γ3Ui)

f(Y, T, θ) = f(Y|θ)f(T|Y, θ)f(θ)

α,β , γ ,µv ∼ N(0, 100),

�k ∼ G(0.1, 1), and
�

∼ IW
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then used as covariates in the regression models in the 
second stage. In this study, 4 different two-stage models 
are considered.

1. Simple approach (Naïve): In the first stage, a simple 
ordinary least square (OLS) regression model is fit-
ted to each subject separately and includes measure-
ments from all available visits to estimate intercept 
( Ii ), slope ( Si) , and the variance of residuals ( Ui) for 
 ith subject. In the second stage, the above estimates 
are used as covariates in a Cox proportional hazards 
model to assess their prognostic effects on the time 
to POAG, where the hazard function for  ith subject is 
defined as,

2. Landmark analysis (LMA): A set of visits are first 
selected as landmark points. In the first stage, a 
series of OLS models are fitted to each individual. 
Each OLS model includes longitudinal measure-
ments accumulated up to the given landmark point 
to estimate intercept ( Iil ), slope ( Sil) , and the vari-
ance of residuals ( Uil) for  ith subject at  lth landmark 
point. In the second stage, these estimates are used 
as fixed covariates in a series of conventional Cox 
models and each model is fitted at a given landmark 
point onwards (i.e., including participants still at risk 
of developing an endpoint). The hazard function for 
 ith subject at  lth landmark point is defined as, 

where �0l represents the unspecified baseline haz-
ard function at  lth landmark point and { γ1,γ2,γ3}is the 
vector of average effects across landmark points. { γ1
,γ2,γ3 } is estimated similar to that of Van Houwelin-
gen [18] by stacking the datasets across all landmark 
points and using robust sandwich variance for the 
precision of estimation. One main difference is that 
we fitted a stratified (stratified by landmark points) 
Cox model and left the baseline hazard �0l(t) totally 
unspecified, while Van Houwelingen [18] adapted a 
delayed entry to ensure a uniform time scale across 
all models and thus to estimate baseline hazard 
function.

3. Cox model with time-dependent covariates (td-Cox): 
In the first stage, a series of OLS models are fitted in 
a similar way as the above LMA to estimate intercept 
( Iil ), slope ( Sil) , and the variance of residuals ( Uil) for 
 ith subject at  lth visit. In the second stage, their effects 
on POAG are assessed using a Cox proportional haz-
ards model with time-dependent covariates, and the 
hazard function for  ith subject is defined as, 

�i(t) = �0(t) exp (α1Zi + γ1Ii + γ2Si + γ3Ui).

�il(t) = �0l(t)exp(α1Zi + γ1Iil + γ2Sil + γ3Uil)

where {Ii(t), Si(t),Ui(t)} represents time-varying 
covariates incorporated via a counting process style 
[19] for { Iil , Sil ,Uil } at different visits.

4. Regression Calibration (RC): this approach has been 
widely used in the measurement error framework 
where model-based (rather than sample-based) esti-
mates are used as covariates in the regression analysis 
in the second stage to assess the association between 
biomarker-derived characteristics and clinical out-
come [2, 3]. Specifically, RC is essentially a two-stage 
implementation of the joint model as specified in 
Sect. 2.2.1. In the first stage, Model (1) is fitted to all 
subjects to estimate the subject-specific intercept ( Ii ), 
slope ( Si) , and the variance of residuals ( Ui). In the 
second stage, these model-based estimates are used 
as covariates into a Cox model, where the hazard 
function for  ith subject is defined as, 

For comparison with the joint model (the true model 
used for data simulating later on), logarithm trans-
formed variance of residuals from OLS was actually 
used as the measure of within-subject variability 
throughout this paper. Note that at least 3 repeated 
measurements are needed in order to fit an OLS 
model in a given subject. In the analysis of OHTS 
data, only those subjects who had at least 3 measure-
ments were included in fitting these models, even 
though this restriction was not required for the joint 
model and RC for a fair comparison. In the simula-
tion studies, for each subject we set a minimum lead-
in time (i.e., 1 year) where we started to collect longi-
tudinal measurements prior to the time-0 of survival 
model and thus avoided excluding any simulated sub-
jects from analysis.

Computational implementation
The unknown parameters θ = {β, α, γ, µV  , �k , σ 2

I  , σ 2
S  , σ 2

V  , 
ρ12 , ρ13,ρ23 } in the joint model and RC were fitted using 
the Gibbs sampling built into the software WinBUGS 
(http:// www. mrc- bsu. cam. ac. uk/ bugs/). The parameter 
estimates and standard errors were calculated as the 
mean and standard deviation of the posterior samples 
from Gibb’s sampling. The estimation procedure was 
implemented using the R2WinBUGS library in the sta-
tistical package R [20]. We used three parallel MCMC 
sampling chains with different starting values. The con-
vergence of each chain was monitored by the trace 
plots and the diagnostic statistics of Gelman et  al. [17]. 
Following recommendations by Goldstein et  al. [21] 

�i(t) = �0(t)exp(α1Zi + γ1Ii(t)+ γ2Si(t)+ γ3Ui(t))

�i(t) = �0(t)exp(α1Zi + γ1Ii + γ2Si + γ3Ui)

http://www.mrc-bsu.cam.ac.uk/bugs/


Page 6 of 12Gao et al. BMC Medical Research Methodology          (2022) 22:201 

for hierarchical  models with random effect in level-1 
variance, we took a relatively long adaptation period 
for MCMC. In the analysis of OHTS data, the posterior 
mean of the parameters were based on 25,000 itera-
tions following a 25,000-iteration of burn-in period. In 
the simulated data, we used 15,000 iterations following 
a 15,000-iteration of burn-in period to reduce computa-
tional time. All the other two-stage models were fitted 
using the survival library in the statistical package R.

Results
Ocular Hypertension Treatment Study (OHTS)
The OHTS analysis cohort included 709 participants 
with a median of 14 IOP measurements (range 3–17) 
and a median follow–up of 6.9  years (range 1.0–8.1). 
A total of 97 participants developed POAG endpoints 
during follow-up. The OHTS data were analyzed by 
joint model and two-stage methods, adjusting base-
line factors (age, CCT, and VCDR) in both longitudi-
nal (IOP) and survival (POAG) sub-models (R codes 

for RC and joint model listed in the Supplementary 
Materials). In LMA, a total of 9 visits, semi-annually 
at time = {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}, were selected 
as the landmark points. Table  1 showed the estimated 
parameters ( ̂θ  ) and standard error (SE) from the joint 
model and the two-stage methods. Means and stand-
ard deviations for the sample-based estimates {Ii,  Si, 
 Ui} from the Naïve, LMA, and tdCox models were also 
included in Table  1. Because each subject had series 
of estimates across different landmark points (visits) 
in LMA and tdCox, the estimates at 3-year (i.e., the 
median landmark point) were presented for illustration. 
As expected, the estimates from the sample-based two-
stage models showed relatively large SDs especially in 
the IOP slope and within-subject IOP variability.

• In the longitudinal sub-model of joint model, we 
observed significant between-subject variation in 
the random intercepts, slopes, as well as the within-
subject fluctuation. There was a weak but significant 

Table 1 Estimated parameters ( ̂θ  ) and its standard error (SE) for the association between the longitudinal intraocular pressure (IOP) 
and the risk of developing primary open-angle glaucoma (POAG) based on the OHTS data

* P < 0.05; RC Regression calibration; Naïve: simple OLS; LMA Landmark analysis, td-Cox: time-dependent Cox model
a Based on the subject-specific intercept, slope, and logarithm transformed variance of residuals estimated at the 3-year landmark point

Parameters Joint Model RC Naive LMAa tdCoxa

θ̂ SE θ̂ SE θ̂ SE θ̂ SE θ̂ SE

Longitudinal model:
 Fixed effects
  Intercept ( β0) 24.55* 0.108 24.57* 0.109 24.60 24.65 24.65

  Slope ( β1) -0.169* 0.021 -0.179* 0.021 -0.037 -0.180 -0.180

  Age (decades)(β2) 0.244* 0.106 0.235* 0.112 – – –

  CCT (β3) 0.045 0.108 0.031 0.103 – – –

  VCD (β4) -0.063 0.110 -0.071 0.110 – – –

 Random effects
  SD of Intercept ( σI) 2.514* 0.088 2.518* 0.088 3.098 3.031 3.031

  SD of slope ( σS) 0.412* 0.021 0.410* 0.021 1.393 1.664 1.664

  SD of variation ( σV ) 0.668* 0.027 0.668* 0.027 0.905 1.012 1.012

  Mean of variation ( µV ) 1.641* 0.031 1.639* 0.030 2.185 1.090 1.090

  Correlation ( ρ12) 0.131* 0.060 0.113* 0.059 – – –

  Correlation ( ρ13) 0.183* 0.051 0.181* 0.050 – – –

  Correlation ( ρ23) 0.235* 0.059 0.228* 0.060 – – –

Survival model:
 Baseline factor
   Age (decades)(α1) 0.216 0.125 0.182 0.110 0.082 0.107 0.114 0.109 0.102 0.107

   CCT (α2) -0.639* 0.129 -0.644* 0.113 -0.672* 0.110 -0.643* 0.129 -0.662* 0.112

   VCD (α3) 0.543* 0.142 0.526* 0.116 0.549* 0.111 0.425* 0.112 0.517* 0.112

 Effects of follow-up IOP
  Intercept ( γ1) 0.226* 0.056 0.275* 0.047 0.212* 0.034 0.161* 0.038 0.203* 0.034

  Slope ( γ2) 1.190* 0.514 0.852* 0.348 0.038 0.054 0.017 0.048 0.026 0.051

  Variation ( γ3) 0.121 0.228 0.103 0.183 -0.052 0.094 0.108 0.084 0.071 0.084
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decrease of IOP over time (with slope β1 = −0.17 
mmHg/year), and the change varied considerably 
between participants, i.e., with a standard deviation 
of random slope σS = 0.41 as comparing to its aver-
age trajectory ( β1 = −0.17). The random intercept 
and within-subject variation also varied significantly 
across participants, but the magnitude of stand-
ard deviations ( σI = 2.51 for random intercept and 
σV = 0.67 for within-subject variability) were not so 
big as comparing to the corresponding mean levels 
( β0 = 24.55andµV = 1.64). The analysis revealed 
only weak correlation between intercept and slope 
(ρ12 = 0.13) , intercept and variation (ρ13 = 0.18) , as 
well as between slope and variation ( ρ23 = 0.24).

• The survival sub-model of joint model showed 
baseline hazards function of λ0(t) = {0.001 ± 0.001, 
0.003 ± 0.002, 0.006 ± 0.002, 0.014 ± 0.004, 
0.017 ± 0.005, 0.011 ± 0.004, 0.043 ± 0.015} at time 
intervals t = {0, 2, 3, 4, 5, 6, 7, ∞}, respectively. The 
model indicated that those subjects with high mean 
IOP or large slope had a significantly increased risk 
to develop POAG (γ1 = 0.23, 95% credit interval (CI): 
0.12, 0.34; γ2 = 1.19, 95% CI: 0.23, 2.24), and there 
was no significant association between IOP variabil-
ity and POAG ( γ3=0.12, 95% CI: -0.32, 0.57).

• Among these two-stage methods, RC reached exactly 
the same conclusion as the joint model, while all 
other 3 methods showed that only IOP intercept 
was significantly associated with POAG. One rea-
son for the inconsistent results is that sample-based 
two-stage models are more sensitive to the number 
of data points in the longitudinal IOPs when calcu-
lating subject-specific estimates, especially for slope 
 (Si) and variability  (Ui). For a subject with very short 
IOP series, for example, one may end up with low  Si 
(and/or  Ui) because a short IOP series does not allow 
enough room for fluctuation. On the other hand, one 
may end up with high  Si (and/or  Ui) because a short 
IOP series is more sensitive to potential outliers. 
Consequently, this could result in non-linear rela-
tionship (as shown in Fig. 1) and decreased statistical 
power. In contrast, a model-based two-stage meth-
ods such as RC allows borrowing information from 
similar subjects and leads to more reliable subject-
specific estimates. An exploratory analysis similar to 
that of Fig.  1 was performed using subject-specific 
estimates from RC and the assumption of linearity 
was well satisfied in all estimates (Supplementary 
Fig.  1). An exploratory analysis was also performed 
regarding the precision of estimation and it revealed 
that a relatively long series of IOPs is needed in order 
to reliably estimate the within-subject variability 
(Supplementary Materials).

• Two sensitivity analyses were further performed 
using the OHTS data. The first sensitivity analysis 
compared a joint model with an exponential survival 
sub-model to the one with a piecewise exponen-
tial survival. The estimated parameters were listed 
side by side for an easy comparison and very small 
differences were found (Supplementary Table  1). In 
the second sensitivity analysis, the two-stage models 
were defined using both Bayesian and non-Bayes-
ian paradigm, and the estimated parameters were 
very close under both framework (Supplementary 
Table 2). Therefore, to reduce computational time in 
the subsequent simulation study, the data were gen-
erated from a joint model with exponential survival 
and all the sample-based two-stage models were ana-
lyzed using standard software under non-Bayesian 
framework.

Simulation study
Two sets of simulations were conducted to assess the 
relative performance of the two-stage methods. The first 
simulation was designed to assess the impact of the num-
ber of longitudinal measurements on detecting the asso-
ciation between within-subject variability and survival 
outcome. The second simulation assessed the influence 
of random effects on estimation. Data were generated 
from the joint model with an exponential survival dis-
tribution, and censoring times were introduced from 
a uniform distribution U [1, 8] that was independent of 
survival time. Model parameters θ = {β, α, γ, µV  , σ 2

I  , σ 2
S  , 

ρ12, ρ13, ρ23} were modified after the OHTS joint model. 
The model performance was summarized as the bias of 
the estimated parameters relative to the true values. Each 
simulated scenario included 100 samples (mainly due to 
intensive computation in the joint model and the regres-
sion calibration model) and each sample included 500 
subjects with approximately 80% censoring rate.

Impact of frequency and number of longitudinal 
measurements
The data were simulated under a total of 16 scenarios 
based on the combinations of 4 conditions (see Table 2): 
the frequency of measurements (semi-annually vs. quar-
terly), the minimum lead-in times (1-year vs. 3-year), the 
average IOP change over time (β1 = 0 vs. β1 = -0.5), and 
the strength of association between within-subject IOP 
variability and POAG (γ3 = 0 vs. γ3 = 0.5). Specifically,

• The number of longitudinal measurements were 
determined by the frequency of visits and lead-in 
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time. For a trial with semi-annual frequency, for 
example, the longitudinal data were generated at 
times t = {-1, -0.5, 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 
4.5, 5.0} given 1-year lead-in time and at times t = {-3, 
-2.5, -2, -1.5, -1, -0.5, 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 
4.0, 4.5, 5.0} given 3-year lead-in time. For simplicity, 
in the simulation we assume all subjects with equal-
spaced measurements, but this is not necessary in 
general as a linear regression has been used to esti-
mate subject-specific summary statistics.

• A baseline covariate (X) was generated from a stand-
ard normal distribution N(0,1), and the covariate was 
assumed to have effect on both survival time (α1 = 0.5) 
and longitudinal data (β2 = 1.0). All other parameters 
remained constant across all simulated scenarios, with 
β0 = 25, γ1 = 0.2, γ2 = 1.0, σI=2.5, σS=0.4,µV =1.5, σV
=0.7, ρ12=0.1, ρ13=0.2, and ρ23=0.2.

The simulated data were analyzed by the joint model 
and two-stage methods. The visits at time = {0, 1, 2, 3, 
4, 5} were selected as landmark points in LMA and also 
used as the time intervals to calculate time-dependent 
covariates in td-Cox. The average estimated effect of bio-
marker variability ( ̂γ3 ) and its standard error (SE) were 
presented in Table  2 and summarized below. All other 
estimated parameters were presented in the Supplemen-
tary Table 4.

• Naïve showed the worst performance among all 
comparison models, especially under scenarios with 
short lead-in time or low measurement frequency. 
Given 1-year lead-in time, for example, it showed a 
significant negative association ( ̂γ3 < 0 ) when there 
was actually no association (γ3 = 0), and it led to 
severe underestimation when there existed a moder-
ate association (γ3 = 0.5).

• LMA had a better performance as comparing to 
Naïve. It resulted in a reliable estimation when there 
was no association (γ3 = 0). When there existed an 
association (γ3 = 0.5), however, LMA also suffered 
from severe underestimation under scenarios with 
short lead-in time and/or low measurement fre-
quency.

• td-Cox had almost identical performance as LMA 
under all simulated scenarios. This was consistent to 
what was reported in Putter and Van Houwelingen 
[22]. They studied the relationship between regres-
sion coefficients obtained in time-dependent Cox 
model and landmark analysis, and found that the two 
models are well agreed when there is no rapid change 
over time in the time-varying effects.

• RC had the best performance among all two-stage 
methods. This observation was consistent to the 
findings in Sayers et  al. [2] that model-based two-
stage methods have a much better performance than 

Table 2 Average of estimated effect of biomarker variability ( ̂γ3 ) on survival outcome and its standard error (SE) from the joint model 
and two-stage methods based on the first simulation

RC Regression calibration; Naïve: simple OLS; LMA Landmark analysis, td-Cox Time-dependent Cox model

Simulated scenarios naive LMA td-Cox RC Joint model

Frequency of visits Min #visits 
(lead-in time)

β1 γ3 Scenario# γ̂3 SE γ̂3 SE γ̂3 SE γ̂3 SE γ̂3 SE

Semi-annually 3 (1-yr) 0.0 0.0 1 -0.353 0.053 0.002 0.034 0.001 0.042 0.039 0.129 0.011 0.150

0.5 2 -0.238 0.060 0.067 0.038 0.076 0.046 0.372 0.128 0.507 0.154

-0.5 0.0 3 -0.355 0.054 0.002 0.035 0.003 0.042 0.018 0.127 -0.017 0.149

0.5 4 -0.226 0.060 0.074 0.039 0.088 0.045 0.419 0.126 0.528 0.161

7 (3-yr) 0.0 0.0 5 -0.129 0.081 -0.019 0.081 -0.018 0.075 0.044 0.117 0.002 0.129

0.5 6 0.197 0.084 0.243 0.085 0.259 0.078 0.483 0.115 0.499 0.132

-0.5 0.0 7 -0.121 0.081 -0.014 0.080 -0.005 0.075 0.003 0.117 -0.010 0.127

0.5 8 0.191 0.084 0.243 0.083 0.258 0.077 0.452 0.121 0.521 0.136

Quarterly 5 (1-yr) 0.0 0.0 9 -0.214 0.083 -0.006 0.068 -0.012 0.069 0.002 0.114 -0.015 0.124

0.5 10 0.122 0.086 0.218 0.073 0.232 0.072 0.452 0.115 0.489 0.129

-0.5 0.0 11 -0.222 0.084 0.004 0.068 -0.013 0.069 0.017 0.112 0.011 0.124

0.5 12 0.102 0.086 0.205 0.073 0.222 0.072 0.413 0.113 0.524 0.131

13 (3-yr) 0.0 0.0 13 -0.080 0.090 -0.014 0.097 -0.025 0.087 0.008 0.107 0.005 0.113

0.5 14 0.299 0.092 0.313 0.098 0.321 0.088 0.474 0.109 0.515 0.115

-0.5 0.0 15 -0.074 0.091 -0.024 0.096 -0.023 0.087 0.001 0.108 -0.005 0.111

0.5 16 0.302 0.091 0.314 0.098 0.321 0.088 0.462 0.108 0.519 0.119
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sample-based ones. The results also showed that a 
relatively long series of longitudinal biomarkers are 
needed when the effect of within-subject biomarker 
variability is of interest. For example, at least 7 meas-
urements were needed in order to produce an esti-
mation with less than 10% bias using RC.

Impact of the random effects from longitudinal data
Data in the second simulation were generated using the 
same models as the first simulation, except that the inter-
est is to explore model performance under different mag-
nitude of underlying variance–covariance components. 
Specifically,

• Data were simulated under the following 4 scenarios 
with a non-factorial design, assuming all the cor-
relation coefficients ρ12 = ρ13 = ρ23=0. Values in the 
parentheses were selected based on OHTS model 
and held constant when data were simulated under 
other scenarios.

(1)  σI(SD of random intercept): 0.5, 1.5, (2.5), 3.5, 
5.0;

(2) σS(SD of random slope): 0.1, 0.2, (0.4), 0.7, 1.0;
(3) σV(SD of within-subject variability): 0.4, (0.7), 

1.0, 1.5, 2.5;
(4) µV(Mean of within-subject variability): 0.5, 1.0, 

(1.5), 2.0, 3.0.

• In all the simulated scenarios, we assumed a moder-
ate assocation between IOP variability and POAG 
(γ3 = 0.5). The frequency of visits was set semi-
annually with a 2-year lead-in period. All the other 
parameters remained constant across all scenarios, 
with β0 = 25, β1 = -0.2, β2 = 1.0, α0 = 0.5, γ1 = 0.2, and 
γ2 = 1.0.

Figure  2A-D showed the average estimated effect of 
biomarker variability ( ̂γ3 ) under the above 4 scenarios, 
respectively. The average estimates of other parameters 
were also presented in Supplementary Tables 5, 6, 7 and 
8, respectively.

• In Scenario 1 (Fig. 2A), Naive showed the largest bias 
and RC performed the best among the two-stage 
methods. LMA and td-Cox, having almost identi-
cal performance, fell in-between. The results also 
showed that, at least within the range of specified 
values, σI had little impact on estimating γ3. Similar 
observations were made in the Scenario 4 (Fig.  2D) 
for the varying µV .

• In Scenario 2 (Fig.  2B), the relative performance of 
two-stage methods remained the same as above, but 
the performance of all the methods slightly decreased 
as σS increased.

• In Scenario 3 (Fig. 2C), the accuracy of estimation for 
all two-stage methods improved as σV  increased and 
Naïve converged to LMA and td-Cox in the pres-
ence of a strong within-subject variability. When 
there existed very weak within-subject variability, all 
methods had a poor performance to detect the effect 
of variability on outcome—the joint model produced 
slightly overestimation and all two-stage methods 
resulted in severe underestimation.

Discussion
In this paper, using simulated data we compared the rela-
tive performance of several two-stage methods in esti-
mating the prognostic effect of biomarker variability on 
survival outcome. These two-stage methods were cho-
sen for evaluation because they have been widely used 
in medical applications or thoroughly evaluated in other 
studies against joint models [2, 3]. Among these methods, 
the simple approach (Naïve) provides an easy interpreta-
tion, requires the least efforts in data manipulation and 
model fit, and thus gains most popularity in practical use. 
However, our simulations revealed that it had the worst 
performance among all the compared methods. Under 
the scenarios with relatively short longitudinal measure-
ments, for example, the naïve approach resulted in nega-
tive association when there is actually no association and 
suffered from severe underestimation when there exists 
a moderate association. One reason is that the naïve 
model fails to control the number of data points in a lon-
gitudinal predictor when calculating the subject-specific 
estimates. Since those subjects with higher risk are more 
likely to develop event earlier, the number of data points 
is also associated with clinical outcome. LMA and td-Cox 
showed improved performance. They provided reliable 
estimation when there exists no association, but both 
still suffered from substantial downward bias in the pres-
ence of moderate association. Consistent to the previous 
researches [1–3], the model-based two-stage method 
(i.e., RC) produced the least bias among all the two-stage 
methods. In addition, the results showed that, at least 
within the range of evaluated scenarios, a relatively long 
series of measurements (i.e., minimum 7 readings) are 
needed in order to produce an estimation with < 10% bias 
for the effect of biomarker variability.

In the analysis of longitudinal data (and multi-level 
data in general), it has been a long tradition to focus 
on mean level and/or trajectory, while treating within-
subject variability (or level-1 variance) as nuisance 
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parameters. The presence of excessive heterogeneity for 
within-subject variability often serves as a sign of model 
misspecification, providing evidence of missing impor-
tant predictor(s) for the mean function of the model [23]. 
In recent years, however, there is an increasing interest 
in modeling heterogeneity of level-1 variance. Rast et al. 
[24] and Goldstein et  al. [21] among other relaxed the 
assumption of homogenous variance in multi-level mixed 
models, not only modelling the level-1 variance as a log-
linear function of subjects’ characteristics but also allow-
ing the association among random effects in the mean 
and level-1 variance. Leckie et  al. [16] summarized the 
recent development in this field and also reviewed the 
software options for fitting such extensions. Martins [11] 

proposed a joint model with flexible links using standard 
deviation of residuals as a predictor to assess the stability 
of CD4 counts on survival outcome in patients with HIV/
AIDS. Such a joint model allows simultaneously account-
ing for the measurement errors in both longitudinal and 
survival processes, uses information more efficiently and 
leads to unbiased estimates regarding the “true” relation-
ship between longitudinal and survival data.

Despite the recent progress in joint models [10, 11], 
two-stage methods remain the most popular approach 
in assessing the prognostic effect of within-subject bio-
marker variability on clinical outcomes [5–8]. Sev-
eral factors contribute to the popularity of two-stage 
approaches. First, these methods can produce tangible 

Fig. 2 Average estimated effect of biomarker variability on survival outcome ( ̂γ3 ) from the joint model and two-stage methods based on 
the second simulation, where the dotted red-line represents the true value (γ3 = 0.5). A γ̂3 as function of varying SD of random intercept; B 
γ̂3 as function of varying SD of random slope; C γ̂3 as function of varying SD of within-subject variability; D γ̂3 as function of varying mean of 
within-subject variability
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descriptive statistics for each individual regarding bio-
marker variability/trajectory and thus facilitate an easy 
interpretation. Second, the wealth of theory and software 
that have been developed for the conventional regression 
analyses have greatly smoothed the process of model fit-
ting and diagnosis. In addition, graphical techniques such 
as Kaplan–Meier curves are readily available under a 
two-stage analysis framework. However, all the two-stage 
methods share the potential problem that the uncer-
tainty in the estimates from the first stage is not taken 
into account when assessing their association with clini-
cal outcome, and it is well known that failure to account 
for the error in covariates can bias parameter estimates 
downward to null values [25]. Our simulations suggested 
that these sample-based two-stage methods (i.e., Naïve, 
LMA, and td-Cox) be used with caution to assess the 
effect of within-subject variability on future outcomes, 
unless a relatively long series of longitudinal biomarkers 
is available for each subject and/or there exists a strong 
effect size.

Several alternative approaches are available for intro-
ducing the association between variability and clinical 
outcomes. For example, Henderson et al. [26] introduced 
a within-subject autocorrelation to the longitudinal sub-
model to account for “wiggles” over time and they added 
a frailty into survival sub-model to accommodate any 
effect that cannot be explained by the shared random 
intercept and slope. Jiang et al. [27] took a growth mix-
ture model approach and the association between bio-
marker variability and clinical outcome was introduced 
via distinct sub-groups (latent classes) as determined by 
unique longitudinal patterns. In this study, we selected a 
joint model that directly relates the within-subject vari-
ability of longitudinal data as a predictor to the survival 
outcome [10, 11]. This model possesses some attractive 
features on modeling the within-subject variability and 
is relatively straightforward to interpret as comparing 
to the frailty-model or growth mixture framework. For 
example, the effect of variability on clinical outcome can 
be readily quantified as hazard ratio (e.g.,HR = exp(γ3)) 
and makes it easy to model the effect under the standard 
framework such as Cox proportional hazards model.

Many potential variants of the aforementioned two-
stage methods are also available for assessing the effect 
of biomarker variability, depending on which summary 
statistics are used and how the statistics are estimated. 
For example, one possible method is the “risk-set RC” in 
Sweeting et al. [3]. It is essentially a mixture of LMA and 
ordinary RC, where a regression calibration is performed 
at each landmark point. Per reviewer’s comments to dis-
tinguish between two-stage methods with and without 
future information (i.e., using longitudinal measurements 
only prior to certain time T to estimate the summary 

statistics at time T), we also explored the potential per-
formance of Naïve and RC without future information via 
simulated data. As an illustration, the longitudinal data in 
both methods only included measurements taken during 
lead-in periods. Therefore, the new methods under con-
sideration were essentially a special case of the LMA and 
risk-set RC, respectively (i.e., LMA or risk-set RC with a 
single landmark point at time 0). The results showed that 
the new Naïve has similar performance as LMA, while 
the performance of new RC is comparable to that of the 
ordinary RC (Supplementary Table 3).

In this study, although the simulation studies were per-
formed based on OHTS data, we expect that the observa-
tion is generalizable to similar researches in general. One 
potential limitation of our study is the intensive compu-
tational time for joint modelling and RC approach. In the 
analysis of OHTS data (N = 709), for example, the joint 
model and RC took approximately 40 min when using 3 
parallel chains with 50,000 iterations each. In contrast, 
those sample-based two-stage approaches with standard 
software took almost no computation time. To make a 
simulation study feasible, we used a moderate sample size 
(N = 500) with 30,000 iterations, but it still took about 
10 min for each replicate. Each simulation therefore only 
included 100 replicates.

Conclusion
A relatively long series of longitudinal measurements is 
required when the effect of biomarker variability is of inter-
est. Model-based two-stage method (regression calibra-
tion) and joint modelling are the preferred methods to fulfil 
this goal. In contrast, sample-based two-stage methods 
should be used with caution unless there exists a long series 
of longitudinal measurements and/or strong effect size.
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