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Background: Depression is one of the most prevalent and disturbing non-motor
symptoms in Parkinson’s disease (PD), with few dynamic functional connectivity (dFC)
features measured in previous studies. Our aim was to investigate the alterations of the
dynamics in de novo patients with PD with depression (dPD).

Methods: We performed dFC analysis on the data of resting-state functional MRI
from 21 de novo dPD, 34 de novo patients with PD without depression (ndPD),
and 43 healthy controls (HCs). Group independent component analysis, a sliding
window approach, followed by k-means clustering were conducted to assess
functional connectivity states (which represented highly structured connectivity patterns
reoccurring over time) and temporal properties for comparison between groups. We
further performed dynamic graph-theoretical analysis to examine the variability of
topological metrics.

Results: Four distinct functional connectivity states were clustered via dFC analysis.
Compared to patients with ndPD and HCs, patients with dPD showed increased
fractional time and mean dwell time in state 2, characterized by default mode network
(DMN)-dominated and cognitive executive network (CEN)-disconnected patterns.
Besides, compared to HCs, patients with dPD and patients with ndPD both showed
weaker dynamic connectivity within the sensorimotor network (SMN) in state 4, a
regionally densely connected state. We additionally observed that patients with dPD
presented less variability in the local efficiency of the network.

Conclusions: Our study demonstrated that altered network connection over time,
mainly involving the DMN and CEN, with abnormal dynamic graph properties, may
contribute to the presence of depression in patients with PD.

Keywords: Parkinson’s disease, depression, dynamic functional connectivity, dynamic graph theoretical analysis,
neural network

INTRODUCTION

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder (Poewe et al.,
2017). Nowadays, it is widely acknowledged that PD is characterized not only by motor features
but also by a multitude of non-motor symptoms, such as depression, of which prevalence is
approximately 35% (Reijnders et al., 2008). Depression can occur throughout the course of PD,
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and even precede the onset of motor symptoms in the prodromal
stage (Berg et al., 2015). Depression in PD can worsen
motor and cognitive functions, increase disability, thus, severely
impairing the living quality of patients (Pfeiffer, 2016). A better
understanding of the underlying pathophysiological mechanisms
is crucial for early diagnosis and treatment.

Resting-state functional MRI (rsfMRI) is a novel, non-
invasive method, widely used in investigating neuroimaging
substrates of PD with depression (dPD). Previous studies
employing the amplitude of low-frequency fluctuation (ALFF)
and regional homogeneity (ReHo) approaches revealed that
aberrant regional brain activity in several specific areas of
prefrontal and cingulate cortices was associated with depressive
symptoms in PD (Wen et al., 2013; Luo et al., 2014; Sheng
et al., 2014). Functional connectivity (FC) studies demonstrated
that abnormal FC between the prefrontal and limbic regions
may lead to emotional dysregulation in PD (Luo et al., 2014;
Hu et al., 2015; Huang et al., 2015). Recently, more studies
focused on large-scale neural networks analysis and found that
patients with dPD showed altered intra- and inter-network
connectivity, with the involvement of the cognitive executive
network (CEN), default mode network (DMN), and basal
ganglia network (BGN) (Wei et al., 2017; Liao et al., 2020;
Lin et al., 2020). However, most studies were based on the
assumption that neural activity remained stationary over the
entire scanning, overlooking the time-varying characteristics of
functional activation (Chang and Glover, 2010).

In fact, the strength and directionality of FC can substantially
change at fast time scales of seconds to minutes (Hutchison
et al., 2013). Nowadays, temporal fluctuations can be captured at
short time scales by dynamic FC (dFC) analysis, providing more
detailed connectivity information within the brain (Calhoun
et al., 2014). Emerging evidence revealed that dynamic FC
analysis can add sensitivity to the exploration of neural activity
(Keilholz, 2014) in conditions such as psychiatric disorders
and neurodegenerative diseases (Filippi et al., 2019; Bolton
et al., 2020). Importantly, multiple studies have identified the
temporal fluctuation of functional connectivity in PD and showed
that dynamic properties were associated with the severity of
motor symptoms (Kim et al., 2017) and several non-motor
symptoms, including cognitive function (Fiorenzato et al., 2019),
impulse control disorders (Navalpotro-Gomez et al., 2020),
and rapid eye movement sleep behavior disorder (Gan et al.,
2021). Furthermore, dynamic graph-theoretical analysis is a
novel approach for providing quantified measures reflective of
information or community organization over time (Yu et al.,
2015; Bolton et al., 2020). Higher variability of global efficiency
was observed in patients with PD in a previous study (Kim et al.,
2017). However, there is still a lack of studies on the alterations of
the dynamics in patients with dPD.

Additionally, considering that prior studies have proven that
levodopa and antidepressants could affect the dynamic functional
measures (Arnone et al., 2018; Chen et al., 2021), we focused on
drug-naïve patients with dPD, thereby eliminating the influence
of medication. The aim of the study was to evaluate the
differences in dynamics between patients with PD with and
without depression. We hypothesized that (1) patients with dPD

would show distinctive dFC patterns and temporal properties and
that (2) altered dynamic topological metrics may account for the
occurrence of depression in PD.

MATERIALS AND METHODS

Participants
The study was approved by the Medical Ethics Committee of
the Affiliated Brain Hospital of Nanjing Medical University.
Written informed consent was obtained from all participants
after a full explanation of the whole procedure. Patients were
recruited from the Movement Disorder Clinic at the Department
of Neurology of Brain Hospital Affiliated with Nanjing Medical
University. PD was diagnosed by an experienced neurologist
according to the UK Parkinson’s Disease Society Brain Bank
diagnostic criteria (Hughes et al., 1992). Patients were excluded if
they had (1) anti-Parkinsonism medications prior to enrollment;
(2) history of cerebrovascular disorders, head injury, seizure,
hydrocephalus, intracranial mass, previous neurological surgery,
and other neurologic diseases; (3) meeting the diagnostic criteria
for PD with dementia; (4) history of psychiatric diseases other
than depression; (5) antidepressant treatment or other psychiatric
therapy; (6) other major systemic comorbidities; (7) history of
alcohol or drug dependency or abuse; and (8) excessive head
motion and poor MRI image quality (see below). All the patients
were followed up for at least one year after enrollment to confirm
the diagnosis according to the disease evolution and response to
the dopaminergic therapy. Healthy controls (HCs) were matched
to patients with PD for age, gender, and education. This study
finally included 55 de novo patients with PD and 43 HCs. All the
participants completed the clinical assessments and MRI scans
during the baseline visit.

Clinical Assessments
Patients with dPD were diagnosed using the Diagnostic and
Statistical Manual of Mental Disorders, Fifth Edition (DSM-V)
criteria by an experienced psychiatrist. The severity of depression
was quantified with the 17-item Hamilton Depression Rating
Scale (HAMD-17). A HAMD-17 score higher than 14 was
required for a more accurate diagnosis of dPD (Leentjens et al.,
2000). Twenty-one patients with PD were diagnosed with dPD
at last. In addition, motor symptoms and disease severity were
evaluated by the motor section of the Unified Parkinson’s Disease
Rating Scale (UPDRS-III) and Hoehn and Yahr (H&Y) staging
scale. Cognitive function was assessed using the Mini-Mental
State Examination (MMSE). All the assessments were conducted
immediately before the MRI scan.

MRI Acquisition
Magnetic resonance (MR) images were required using a 3T
MRI scanner (Siemens, Verio, Germany). All participants laid
supine with their heads fixed by foam pads with a standard
birdcage head coil to minimize head movement. The participants
were instructed to remain as still as possible and to close their
eyes while remaining awake without thinking of anything. Axial
anatomical images were acquired using a T1 fluid-attenuated
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inversion recovery sequence with the following parameters:
repetition time (TR) = 2,530 ms; echo time (TE) = 3.34 ms;
field of view (FOV) = 256 mm × 256 mm; matrix = 256 × 192;
slice thickness/gap = 1.33/0.5 mm; flip angle (FA) = 7 degrees;
bandwidth = 180 HZ/PX; 128 slices covered the whole brain,
for image registration and functional localization. Functional
images were subsequently collected in the same slice orientation
with a gradient-recalled echo-planar imaging pulse sequence.
A total of 240 volumes were obtained (TR = 2,000 ms;
TE = 30 ms; FOV = 220 mm × 220 mm; matrix = 64 × 64;
thickness/gap = 3.5/0.63 mm; FA = 90 degrees; bandwidth = 2,232
HZ/PX; slice numbers = 31).

Resting-State Functional MRI Data
Preprocessing
Preprocessing of the functional MRI (fMRI) data was carried out
using data processing assistant for resting-state fMRI (DPARSF)1

(Chao-Gan and Yu-Feng, 2010) based on SPM122. The first
10 volumes of each rest functional section were removed for
signal equilibrium and participant adaptation to the scanning
environment, resulting in a total of 230 volumes. The remaining
volumes were then corrected for slice timing using the middle
slice as a reference, realigned for head motion correction,
segmented into white matter, gray matter, and cerebrospinal
fluid (CSF) using tissue probability maps derived from the T1
images, normalized into the standard Montreal Neurological
Institute space using diffeomorphic anatomical registration
through exponentiated Lie algebra (DARTEL), resliced as a
3 mm × 3 mm × 3 mm voxel size, and spatially smoothed with
a 6 mm full-width at half-maximum (FWHM) Gaussian kernel.
Aiming to further minimize the potential effects of head motion,
we excluded patients with a mean framewise displacement
(FD) > 0.5 mm or whose head motion exceeded a maximum
translation of 3 mm or rotation of 3◦ from the further analysis (1
patient with dPD, 3 patients with ndPD, and 2 HCs), referring to
a previous study (Navalpotro-Gomez et al., 2020). There were no
significant group differences in head motion between dPD (mean
FD = 0.08 ± 0.04 mm), ndPD (mean FD = 0.10 ± 0.06 mm),
and HCs (mean FD = 0.11 ± 0.06 mm) groups (ANOVA,
P = 0.12). Additionally, considering the possible deleterious
influence of head motion, we added a scrubbing step in the
preprocessing procedures and repeated the following analyses
for further verification (Power et al., 2012; Yan et al., 2016). we
found nearly consistent results with regard to temporal properties
(Supplementary Figure 2).

Group Independent Component Analysis
The preprocessed resting-state data of all subjects were
decomposed into functional networks by applying spatial group
independent component analysis (ICA) implemented in the
Group ICA of the fMRI Toolbox (GIFT v4.0b)3. Subject-specific
data were reduced to 120 independent components (ICs) with the
principal component analysis (PCA), and further decomposed

1http://rfmri.org/DPARSF
2http://www.fil.ion.ucl.ac.uk/spm
3http:/icatb.sourceforge.net

into 100 ICs using the expectation-maximization algorithm at
the group level as previously done (Kim et al., 2017). The
Infomax ICA algorithm in ICASSO (Bell and Sejnowski, 1995)
was repeated 20 times to ensure stability and validity (Himberg
et al., 2004). Subject-specific spatial maps and time courses
were obtained using the GICA back-reconstruction approach
(Calhoun et al., 2001).

Out of the 100 independent components, 37 ICs were
identified as meaningful according to the following criteria by
Allen et al. (2014): (1) peak coordinates of spatial maps located
primarily in the gray matter; (2) low spatial overlap with known
vascular, motion, and susceptibility artifacts; (3) time courses
dominated by low-frequency signals (ratio of the integral of
spectral power < 0.10 Hz to.15–0.25 Hz); and (4) time courses
characterized by a high dynamic range (a range difference
between the minimum and maximum power frequencies). These
37 ICs were then sorted into six functional networks based on the
spatial correlation values between ICs and the template and visual
inspection (Shirer et al., 2012). The six functional networks were:
basal ganglia (BG), auditory (AUD), visual (VIS), sensorimotor
(SMN), cognitive executive (CEN), and default mode (DMN)
(Figure 1A and Supplementary Table 1).

The following postprocessing steps were performed on
the time courses of 37 ICs to remove remaining noise
sources, including detrending linear, quadratic, and cubic
trends, regressing out six realignment parameters and
their temporal derivatives, despiking detected outliers by
3DDESPIKE, and low-pass filtering with a high cutoff frequency
of.15 Hz (Allen et al., 2014). To obtain the static functional
connectivity matrix, pair-wise Pearson’s correlations between
ICs were computed and converted to z-scores via Fisher’s
z-transformation using the post-processed time courses (Kim
et al., 2017; Figure 1B).

Dynamic Functional Connectivity
Dynamic functional connectivity analysis was conducted using
the GIFT toolbox through two steps: a sliding window approach
and k-means clustering. First, as in previous studies (Kim
et al., 2017; Fiorenzato et al., 2019; Chen et al., 2021), we
applied a sliding time window of 22 TR (44 s) to segment
the resting-state data, a setting that was proved to provide a
good trade-off between the ability to resolve the dynamics of
FC and the quality of the correlation matrix estimation (Allen
et al., 2014), with a Gaussian window alpha value of 3 and
a step of 1 TR, resulting in the analysis of 208 windows.
To assess the robustness of the results regarding different
window sizes, we repeated all the analyses for window sizes
ranging from 20 to 28 TR (Supplementary Figure 3). For each
window, a 37 × 37 pairwise covariance matrix was calculated
by the regularized inverse covariance matrix (Varoquaux et al.,
2010). Further, a penalty on the L1 norm of the precision
matrix was imposed in the graphical LASSO framework with
100 repetitions to promote sparsity (Friedman et al., 2008).
The resulting functional connectivity matrices were stabilized
via Fisher’s z transformation and then residualized with age,
gender, education, and MMSE scores. We finally obtained 208
functional connectivity matrices for each subject representing
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FIGURE 1 | The 37 independent components identified by group independent component analysis. (A) Independent components spatial maps sorted into six
functional networks. (B) Group-averaged static functional connectivity between independent component pairs was computed using the entire resting-state data. The
value in the correlation matrix represents the Fisher’s z-transformed Pearson correlation coefficient. Each of the 37 independent components was rearranged by
network group based on the six functional networks. BG, basal ganglia; AUD, auditory network; VIS, visual network; SMN, sensorimotor network; CEN, cognitive
executive network; DMN, default mode network.

the dynamic changes of functional connectivity during the entire
scan time for further analysis. Second, we applied the k-means
clustering method to the windowed covariance matrices of all
subjects to assess the reoccurring functional connectivity patterns
(states), which were repeated 100 times (Allen et al., 2014). L1
(Manhattan) distance function was implemented considering its
adaptation to high-dimensional data (Aggarwal et al., 2001).
Based on the elbow criterion of the cluster validity index
suggested by previous studies (Allen et al., 2014; Díez-Cirarda
et al., 2018), the optimal number of clusters (k) was determined
to be four (k = 4) (Figure 2B), and all matrices for each
subject were then categorized into one of the four specific states.
Thus, each subject can enter one to four of the defined states
throughout the entire scanning (Figure 2A). Additionally, to
assess the robustness of the results regarding the optimal value
for k, we repeated the above analyses for k ranging from 2 to 5
(Supplementary Figure 4).

Group Differences in Dynamic
Connectivity: Temporal Properties and
Strength
In order to explore the temporal properties of dynamic functional
connectivity states, we calculated three different indices for each
subject, including: (1) fraction time, defined as the percentage
of total time one subject spent in a given state; (2) mean dwell
time, defined as the time a subject remained in a certain state; and
(3) number of transitions, defined as the number of translations
between states. The differences among groups (HCs, ndPD, and
dPD) were investigated using a one-way ANOVA test, followed
by post hoc two-sample t-tests. P-values were corrected by false
discovery rate (FDR) for multiple comparisons. The threshold for
statistical significance was set at P < 0.05.

Additionally, the subject-specific connectivity pattern of each
state was represented by the median value of all functional
connectivity matrices assigned to that state. Group differences
among patients with HCs, ndPD, and dPD in dynamic functional
connectivity pairs (666 pairings) within each state were calculated
using one-way ANOVA, followed by post hoc two-sample t-tests
(P < 0.05, FDR-corrected).

Dynamic Graph Theory Parameter
Analysis
We applied a graph theory approach to analyze the dynamics of
graph characteristics of the network using GRETNA software4.
Thirty-seven ICs were defined as nodes and the functional
connectivity between each two ICs was constructed as edges for
each time window. The resulting 208 functional connectivity
matrices per subject were binarized with respect to a fixed
sparsity threshold (the existing number of edges divided by
the maximum possible number of edges), set as 0.1 to 0.34
in 0.01 increments based on prior studies (Kim et al., 2017;
Navalpotro-Gomez et al., 2020). Only positive correlations
were considered in our analysis. We calculated the following
parameters by integrating over all the defined threshold ranges
within each time window, including small-worldness, global
efficiency, betweenness centrality, clustering coefficient, and local
efficiency of the network. Then the variance of these parameters
over the time windows was computed to evaluate the dynamic
graph properties for each subject. Two-sample t-tests (or Mann–
Whitney U test) and ANOVA test (or Kruskal–Wallis test) were
respectively conducted to assess whether there were differences in
topological variability between PD and HCs groups or among the
HCs, ndPD, and dPD groups (P < 0.05).

4http://www.nitrc.org/projects/gretna
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FIGURE 2 | Functional connectivity state results. (A) Group-specific cluster centroids matrices for each state. Each subject can enter one to four of the defined
states throughout the entire scanning. The number and percentage of subjects for each group entering the specific state were presented below the matrices. HC,
healthy controls; ndPD, Parkinson’s disease without depression; dPD, Parkinson’s disease with depression. (B) Elbow criterion. The cluster validity index was
computed as the ratio of the within-cluster distance to between-cluster distance. K = 4 combined the lowest cluster validity index and most well-balanced solution.
(C) Strength of dynamic functional network connectivity (dFNC) in state 4. There were significant differences in state 4 among HCs, ndPD, and dPD groups (ANOVA,
P < 0.001, FDR corrected) in strength of dFNC, located between left postcentral cortex (Postcentral_L) and right precentral cortex (Precentral_R).

Statistical Analyses
Statistical analyses were calculated using SPSS Statistic 24.0
(Chicago, IL, United States). A two-sample t-test or Mann–
Whitney U test was applied to compare two groups. One-way
ANOVA or Kruskal–Wallis test was performed to compare the
HCs, ndPD, and dPD groups. A chi-squared test was used
to compare categorical variables such as gender. Spearman’s
correlation analyses were conducted to assess the correlations
between the detected temporal properties and HAMD-17 scores.
P-values were corrected for multiple comparisons and P < 0.05
was set as a threshold for statistical significance.

RESULTS

Demographic and Clinical
Characteristics
A total of 34 patients with ndPD, 21 patients with dPD, and 43
HCs were eventually included in the further analysis. There were
no significant differences among the three groups in terms of
age, gender, education, and MMSE scores (P = 0.963, P = 0.780,
P = 0.150, P = 0.056). No significant differences between patients
with dPD and ndPD were found in disease duration, H&Y
stage, UPDRS-III scores (P = 0.823, P = 0.199, P = 0.097). In
addition, the HAMD-17 score of the patients with dPD was
significantly higher than that of patients with ndPD or HC
(P < 0.001) (Table 1).

Intrinsic Connectivity Networks
Spatial maps of all 37 independent components defined by using
group ICA are illustrated in Figure 1A. These 37 ICs made up

the following six networks: BG (IC 19), AUD (IC 55, 91), VIS (IC
10, 23, 34, 44, 45, 58, 64, 72, 82), SMN (IC 1, 3, 5, 6, 8, 21, 36),
CEN (IC 20, 22, 33, 57, 61, 63, 69, 86, 89, 93), and DMN (IC 7,12,
24, 31, 32, 41, 51, 67). The specific distribution of the 37 ICs is
showed in Supplementary Table 1.

Clustering Analysis and Dynamic
Functional Connectivity State Analysis
Through the k-means clustering analysis, a total of four highly
structured functional connectivity states were identified by
the elbow criterion. We displayed the 5% of the functional
connectivity network with the strongest positive or negative
connections to observe the different patterns of each state
(Figure 3B). Combined with the visualized cluster centroids
(Figure 3A), state 1, which was the most frequent one (47%),
was characterized by sparse connections both within and
between networks, with relatively weak connectivity mainly
located within DMN or VIS. State 2 (25%) was characterized
by DMN-dominated and CEN-disconnected patterns, in which
strong correlations were mainly exhibited within the DMN and
between DMN and other networks (CEN/SMN/AUD), while
the CEN showed sparse intra-network connections and inter-
network connections with SMN/VIS/AUD. State 3 (17%) was
characterized by relatively stronger positive connections within
and between each state. State 4 (11%) was characterized by
a regionally densely connected pattern, which showed positive
correlations located mainly within VIS/SMN and between
these two networks.

One-way ANOVA indicated that there were significant
differences between groups in terms of fraction time and mean
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TABLE 1 | Demographic and clinical information of the participants.

dPD ndPD HCs P-value

n = 21 n = 34 n = 43

Age (years) 59.33 ± 5.73 59.79 ± 8.40 59.44 ± 5.86 0.963a

Gender
(male/female)

9/12 14/20 15/28 0.780b

Education
(years)

9.05 ± 2.94 9.56 ± 2.67 10.51 ± 3.30 0.150a

Disease
duration (years)

2.05 ± 1.40 1.97 ± 1.13 – 0.823c

H & Y 2.00(1.50, 2.00) 1.50(1.50, 2.00) – 0.199d

UPDRS-III 28.57 ± 8.97 24.56 ± 8.28 – 0.097c

MMSE 27(25.5, 29) 29(28, 29) 29(27, 30) 0.056e

HAMD-17 17.43 ± 4.87 3.68 ± 1.75 1.21 ± 1.64 0.000a, *

dPD, Parkinson’s disease with depression; ndPD, Parkinson’s disease without
depression; HCs, healthy controls; H & Y stage, Hoehn and Yahr stages; UPDRS-III,
the motor section of the Unified Parkinson’s Disease Rating Scale; MMSE, Mini-
Mental State Examination; HAMD-17, 17-item Hamilton Depression Rating Scale.
Parametric variables are presented as mean ± SD, and non-parametric variables
are presented as median (interquartile range).
aOne-way ANOVA.
bChi-squared test.
cTwo-sample t-test.
dMann–Whitney U test.
eKruskal–Wallis test.
*P < 0.05.

dwell time in state 2 (ANOVA, fraction time: P = 0.004;
mean dwell time: P = 0.048, FDR-corrected). Post hoc t-tests
demonstrated that patients with dPD had a significantly higher
fraction time in state 2 than that of patients with ndPD (P = 0.030
FDR-corrected) and healthy controls (P = 0.009, FDR-corrected).
Additionally, patients with dPD spent significantly more dwell
time in state 2. This is consistent with fraction time when
compared to patients with ndPD (P = 0.048, FDR-corrected)
and HC (P = 0.015, FDR-corrected). We found that fraction
time (P = 0.006, r = 0.277) and mean dwell time (P = 0.035,
r = 0.215) in state 2 were slightly correlated with HAMD scores
in all participants when regressing out a group as a covariate.
No differences were found in the number of state transitions
or temporal properties in other states between the three groups
(ANOVA, P > 0.05) (Figure 4 and Supplementary Table 2).

Validation analyses showed that the main results of temporal
properties in state 2 were consistent for different window sizes
(Supplementary Figure 3). Besides, with regard to different
numbers of clusters, the main results also persisted, but there
was a redundant state in k = 5, and the clustered states were
incomplete for k less than 4 (Supplementary Figure 4).

Strength of Dynamic Functional Network
Connectivity
We subsequently examined between-group differences in the
strength of connections for each state. ANOVA results (P < 0.001,
FDR-corrected) showed a significant overall difference between
the HC, patients with ndPD, and patients with dPD. Post hoc
t-tests indicated that patients with dPD and patients with ndPD
both had significantly decreased connection within the SMN

(IC1/IC3, left postcentral cortex, and right precentral cortex) in
state 4 compared to healthy controls (P < 0.001, FDR-corrected).
In contrast, no differences were found between the ndPD and
dPD groups (P = 0.58) (Figure 2C).

Dynamic Graph Theory Properties
When comparing the variance of global efficiency, neither HCs
group and PD group (Mann–Whitney U test, P = 0.755) nor
HCs group and PD sub-groups (Kruskal-Wallis test, P = 0.552)
differed significantly in this aspect. No significant differences
were found between the HCs and PD groups (two-sample t-test,
P = 0.501) or between the dPD, ndPD, and HCs groups (ANOVA,
P = 0.286) with respect to betweenness centrality. In terms of the
local efficiency of the network, there were significant differences
between the dPD, ndPD, and HCs groups (ANOVA, P = 0.049).
Post hoc t-tests revealed that the dPD group exhibited smaller
variance than the HCs group did (P = 0.010), but no significant
differences were found between the dPD and ndPD groups
(P = 0.143) or between the ndPD and HCs groups (P = 0.319).
There was a trend for less variability in the PD group than in the
HCs group (two-sample t-test, P = 0.075). Further, the analysis of
small-worldness variability demonstrated that the PD group was
less variable than the HC group (two-sample t-test, P = 0.034),
and there may be a trend of differences between the dPD, ndPD,
and HC groups (ANOVA, P = 0.097), consistent with the results
of clustering coefficient (two-sample t-test, P = 0.041; ANOVA,
P = 0.076) (Figure 5 and Supplementary Table 2).

DISCUSSION

The present study investigated the characteristics of dynamic
functional connectivity and dynamic topological properties in
drug-naïve PD patients with depression, thereby excluding the
confounding effects of dopaminergic therapy and long-term
disease duration. Four distinct connectivity states were found
across the entire participants. Importantly, we observed that
in contrast to patients with ndPD and the healthy population,
patients with dPD showed increased fractional time and mean
dwell time in state 2, characterized by DMN-dominated and
CEN-disconnected patterns. This indicated that patients with
dPD preferred to spend more time in a dysfunctional connectivity
state. Additionally, the above dynamic metrics exhibited a slight
correlation with the severity of depression. Our results suggested
that the occurrence of depression in PD may be attributed to the
temporal fluctuations of functional network connectivity.

State 2 was characterized by strong connections mostly
within the DMN or between DMN and several other networks.
Accordingly, the DMN may play a central role in the development
of depression in PD. The DMN is a highly integrated network
that is active during wakeful rest state and deactivated during
externally directed processes (Buckner et al., 2008), involved in
self-referential processes and rumination (Belzung et al., 2015).
Indeed, prior studies had proved that the DMN was implicated
in numerous neurological and psychiatric disorders (Buckner
et al., 2008; Leech and Sharp, 2014). Studies covering regional
cerebral activity, functional connectivity, and large-scale network
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FIGURE 3 | Results of the clustering analysis per state. (A) Resulting cluster centroids for each state. The total number of occurrences and percentage of total
occurrences are listed above each cluster median. (B) Graphical representation of the strongest 5% functional network connections in each state. BG, basal ganglia;
AUD, auditory network; VIS, visual network; SMN, sensorimotor network; CEN, cognitive executive network; DMN, default mode network.

FIGURE 4 | Differences in the temporal properties of dFC states among the three groups. (A) Fraction time. (B) Mean dwell time. (C) The number of transitions
between states. Asterisks indicate a significant group difference (P < 0.05, FDR-corrected). Error bars represent the standard error. HC, healthy controls; ndPD,
Parkinson’s disease without depression; dPD, Parkinson’s disease with depression.

analysis have demonstrated that the DMN may facilitate the
occurrence of depressive symptoms in PD (Luo et al., 2014;
Wei et al., 2017; Liao et al., 2020). Sheline and colleagues
found that failure to down-regulate activity within the DMN
normally may result in dysregulation of automatic emotional
processing, ultimately leading to depression (Sheline et al., 2009;
Belzung et al., 2015). Furthermore, dynamic interactions between
DMN and other networks influence cognition and emotion
(Zhang and Volkow, 2019). In state 2, there were mainly strong
positive couplings between DMN and CEN. The CEN is a task-
positive network involved in multiple cognitive control functions
including attention, memory, cognitive flexibility (Lerman et al.,
2014; Dajani and Uddin, 2015), while it was proved to be
anti-corrected with the DMN at rest in a healthy population

(Fox et al., 2005). The disruption of the anti-correlation may be
related to the abnormality of behavioral responses (Kelly et al.,
2008). Besides, the relatively sparse connectivity within the CEN
in our results was consistent with a former study which found
that, in contrast to patients with ndPD, patients with dPD showed
reduced functional connectivity in the core nodes of the CEN
(Lou et al., 2015). The weak connections within the CEN or
between CEN and SMN/VIS/AUD may impair the bottom-up
and top-down modulation in emotion regulation (Phillips et al.,
2003; Kaiser et al., 2015; Zhang and Volkow, 2019). Previous
network dynamic analysis also found this top-down control was
relevant to PD motor symptoms and could be improved after
taking levodopa (Chen et al., 2021), which may further explain
that the anti-parkinsonism medication also relieves depression
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FIGURE 5 | Variance of topological metrics in dynamic functional connectivity. (A) Global efficiency. (B) Local efficiency. (C) Small-worldness. (D) Betweenness
centrality. (E) Clustering coefficient. Asterisks represent significant differences at P < 0.05. PD, Parkinson’s disease; HC, healthy controls; ndPD, Parkinson’s disease
without depression; dPD, Parkinson’s disease with depression.

in PD apart from the motor symptoms (Andersen et al., 2015).
Our results suggested that the maintenance in DMN-dominated
and CEN-disconnected state was linked to depression in PD
patients, therefore, underlining the value of dynamic FC analysis
in exploring the substrates of dPD.

Further, we observed that the ndPD group and dPD group
relative to healthy controls showed weaker dynamic connectivity
within the SMN in state 4, mainly located between the left
postcentral cortex and right precentral cortex. PD was proposed
as a disconnection syndrome (Göttlich et al., 2013). Decreased
connection within the SMN was identified in patients with PD
compared to HCs (Wang et al., 2021), and the results were
validated in drug-naïve patients with PD in resting-state analysis
(De Micco et al., 2021), supporting that the dysfunction of cortex-
basal ganglia circuits participate in the PD pathophysiology
(Lindenbach and Bishop, 2013; Burciu and Vaillancourt, 2018;
Shen et al., 2020). Focused on the dynamics, our results provide
further evidence of the significance of SMN abnormality in
the mechanism of PD, in accord with a recent dFC study (De
Micco et al., 2021). Nonetheless, no significant difference was
observed between patients with dPD and ndPD. For one thing,
dynamic functional connectivity abnormalities of SMN may just
be a neuroimaging feature for PD, rather than for depression in
PD. For another, it is possible that the disruption of functional
integrity in SMN has not been aggravated enough to cause
depression at the early stage of PD.

Global efficiency is a measure of parallel information transfer
efficiency across the entire brain network (Achard and Bullmore,
2007), and dynamic global efficiency over time is considered as an
efficient method to measure stability and flexibility of functional

modulation of the whole brain in several neurodegenerative
diseases (Schumacher et al., 2019). Kim and colleagues found
higher variability of global efficiency in patients with PD (Kim
et al., 2017), incompatible with our results. The local efficiency of
the network is the average of the nodal local efficiency, reflecting
the fault tolerance of the network when the index node is
eliminated (Achard and Bullmore, 2007). Brain network tends to
present economical small-worldness properties with high global
and local efficiency (Latora and Marchiori, 2001). Betweenness
centrality assesses the hubness of the whole brain despite the
meaningless results in our study. The clustering coefficient of
the network can quantify the local interconnectivity of the
network and is also an important parameter measuring the small-
worldness properties (Hou et al., 2020). In the present study,
HCs showed significantly more variable local efficiency relative
to the dPD group, along with higher variability of the small-
worldness property and clustering coefficient than in the PD
group, indicating that the rigidity and ineffectiveness of network
communication in response to emotional demands appear to
gradually expand from the local scale to the whole brain. In
combination with our research and previous studies, the results
of dynamic graph theory in PD are still controversial (Kim et al.,
2017; Díez-Cirarda et al., 2018; Cai et al., 2019). The distinction
in the disease stage could be a crucial cause, so further study
covering different stages of PD will need to be conducted to
explore the effects in PD physiology.

There still exists a few limitations in the present study that
should be considered. First, only 21 patients with dPD were
included in the current study. We did not observe a significant
correlation between dynamic properties and HAMD scores when
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specifically considering the dPD group. This can be attributed
to the small sample size, although we ruled out the effects of
dopaminergic or antidepressant medication. Studies with larger
sample sizes should be performed for further validation. Second,
the participants in our study underwent single resting-state
scanning, while a prior study suggested multiple sessions could
improve the detection power especially under the circumstance
of applying the sliding window approach (Hindriks et al.,
2016). Third, although we had eliminated subjects with large
head motion, matched mean framewise displacements between
groups, and regressed out it as covariates, the effects of head
motion in dFC analysis might not have been fully excluded.

CONCLUSION

In summary, the present study is the first study to explore
the characteristics of dynamic functional connectivity in de
novo patients with PD and depression. Our study demonstrated
that altered network connections over time, mainly involving
the DMN and CEN, with less variable graph properties,
could play important roles in the presence of depression
in PD. Decreased time-varying FC within the SMN may
facilitate the emergence of PD. Dynamic functional connectivity
analysis could provide new insights into the pathophysiology of
depression in patients with PD.
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