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Abstract

Summary: Associations of metabolomics data with phenotypic outcomes are expected to span

functional modules, which are defined as sets of correlating metabolites that are coordinately regu-

lated. Moreover, these associations occur at different scales, from entire pathways to only a few

metabolites; an aspect that has not been addressed by previous methods. Here, we present

MoDentify, a free R package to identify regulated modules in metabolomics networks at different

layers of resolution. Importantly, MoDentify shows higher statistical power than classical associ-

ation analysis. Moreover, the package offers direct interactive visualization of the results in

Cytoscape. We present an application example using complex, multifluid metabolomics data. Due

to its generic character, the method is widely applicable to other types of data.

Availability and implementation: https://github.com/krumsieklab/MoDentify (vignette includes

detailed workflow).

Contact: jak2043@med.cornell.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Associations with clinical phenotypic outcomes in large-scale metabolo-

mics datasets are complex. They typically span entire modules, which

are defined as groups of correlating molecules that are functionally

coordinated, coregulated or generally driven by a common biological

process (Mitra et al., 2013). The systematic identification of modules is

often based on networks, where the aim is to identify highly connected

parts containing nodes that are coordinately associated with a given

phenotype. Systematic module identification algorithms are well estab-

lished (Chuang et al., 2007; Martignetti et al., 2016; May et al., 2016;

Polanski et al., 2014); however, none of the previously published meth-

ods consider that phenotype associations can occur at different scales,

ranging from global associations spanning entire pathways or even sets

of pathways (‘dense’ associations, e.g. between metabolites and pheno-

typic traits such as gender or BMI), to localized associations with only a

few metabolites [‘sparse’ associations, e.g. between metabolites and

phenotypic traits such as insulin-like growth-factor I (IGF-I) levels or

asthma; Do et al., 2017]. For sparse associations, the identification and

interpretation of modules is usually straightforward. However, modules

for dense phenotype associations at the metabolite level are challenging

to interpret due to their overwhelming number. To facilitate interpret-

ation, the plethora of information at the fine-grained metabolite level

can be condensed to a hierarchically superordinate level, such as a path-

way network (i.e. a network of pathways).

VC The Author(s) 2018. Published by Oxford University Press. 532

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 35(3), 2019, 532–534

doi: 10.1093/bioinformatics/bty650

Advance Access Publication Date: 19 July 2018

Applications Note

https://github.com/krumsieklab/MoDentify
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty650#supplementary-data
https://academic.oup.com/


We have recently introduced a module identification algorithm

for multifluid metabolomics data (Do et al., 2017), which has

been successfully applied to IGF-I and gender as examples of sparse

and dense phenotype associations, respectively. We here present

MoDentify, a free R package implementing the approach for general

use. MoDentify offers network inference, module identification and

interactive module visualization at different levels of resolution. In

particular, it increases statistical power compared with classical as-

sociation analysis and can easily be applied to any type of quantita-

tive data due to its generic character.

2 Description

MoDentify identifies network-based modules that are

highly affected by a given phenotype. The underlying network is

either directly inferred from the data at the single metabolite or

pathway level (see below) or can be provided from an external

source. Any external network can be used for the module identifi-

cation procedure. This includes (i) networks obtained from public

databases such as KEGG (Kanehisa et al., 2012) or Recon3D

(Brunk et al., 2018), (ii) networks inferred from statistical

approaches such as partial, Pearson or Spearman correlations

or (iii) networks produced by newly emerging hybrid prior-

knowledge/data-based approaches (e.g. Zuo et al., 2017).

Regardless of the source of the network, all nodes in the network

must be measured in the given dataset. Details can be found in the

Supplementary Material.

2.1 Network inference
MoDentify estimates Gaussian graphical models, which have been

shown to reconstruct metabolic pathways from metabolomics data

(Krumsiek et al., 2011). At the fine-grained level, the network con-

sists of nodes corresponding to metabolites, while at the pathway

level, the nodes correspond to entire pathways (sets of metabolites).

Such pathway definitions are available from public databases

such as the Human Metabolome Database (HMDB) (Wishart et al.,

2007), MetaCyc (Caspi et al., 2014), KEGG (Kanehisa et al., 2012)

or Recon3D (Brunk et al., 2018). Edges represent significant (par-

tial) correlations between two nodes after multiple testing

correction.

2.2 Pathway representation
To build a network of interacting pathways, new variables are

defined as representatives for each pathway, aggregating the total

abundance of metabolites from the pathway into a single value.

MoDentify implements two approaches: (i) eigenmetabolite ap-

proach, where the first principal component (eigenmetabolite) from

a Principal Component Analysis is used as a representative value

(Langfelder and Horvath, 2007); (ii) average approach, where the

pathway representative is calculated as the average of all z-scored

metabolite concentrations in the pathway.

2.3 Module identification and scoring
Given a network, a scoring function, and a starting node (seed node)

as initial candidate module, the algorithm identifies an optimal mod-

ule by score maximization. To this end, candidate modules are

extended along the network edges until no further score improve-

ment can be achieved. The score of a candidate module is calculated

as the negative logarithmized P-value obtained from a multivariable

linear regression model with the candidate module as dependent and

the phenotype and optional covariates as independent variables. The

procedure is repeated for each node in the network as seed node.

Overlapping optimal modules are combined into single modules in

an optional consolidation step. The combined module is then re-

evaluated by the scoring function.

If multiple resolution levels are available, each resolution level is

represented by its own network and module identification is per-

formed at each resolution level separately.

2.4 Module visualization
In addition to returning R data structures and producing flat-

file results, MoDentify offers visualization of the identified

modules within an interactive network in the open source software

Cytoscape (Shannon et al., 2003) for external visualization.

2.5 Complexity and runtime
The algorithm has a complexity of Oðn2Þ, which will lead to quad-

ratic runtime in the worst-case scenario of a fully connected net-

work. In practice, we assume biological networks to be sparse, i.e.

with constant neighborhood sizes, leading to an approximate com-

plexity of OðnÞ. On a 64-bit Windows 8 system with Intel(R)

Core(TM) i7-4600U CPU @ 2.10 GHz, network inference took

�21 s, module identification �100 s and module visualization �48 s

for a network with 1524 nodes.

3 Application example

We demonstrate the easy usage of MoDentify on plasma, urine and

saliva metabolomics data from the Qatar Metabolomics Study on

Diabetes (QMDiab, see Supplementary Material; Mook-Kanamori

et al., 2014), aiming to identify functional modules associated with

type 2 diabetes (T2D). Pathway annotations were provided by

Metabolon, Inc., the metabolomics platform on which metabolo-

mics measurements were performed. The dataset is also available

via https://doi.org/10.6084/m9.figshare.5904022.

MoDentify was applied to the dataset at metabolite and pathway

levels. To produce the list of T2D associated modules, as well as

their interactive visualization in Cytoscape (Fig. 1A), only three lines

A B

Fig. 1. Visualization of identified modules for type 2 diabetes. The metabolo-

mics networks with embedded modules at metabolite (A) and pathway (B)

level are screenshots of the interactive versions in Cytoscape produced by

MoDentify. Zoom-ins have been added to highlight examples for MoDentify’s

increased statistical power and its ability to extract biologically valuable

insights. Rounds nodes correspond to metabolic entitles not significantly

associated with T2D when considered alone. Diamond nodes represent meta-

bolic entities significantly related to T2D
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of code are required. Briefly, generate.network estimates partial

correlations between metabolites, identify.modules searches

network modules for the given phenotype, and draw.modules

visualizes the results in Cytoscape.

MoDentify identified 36 modules for T2D at the metabolite level

(Fig. 1A) and six modules at the pathway level (Fig. 1B). Many of

these modules consist of metabolites or pathways that are not sig-

nificantly associated with T2D if considered alone. In combination,

however, they form modules that are more associated with T2D

than all of their single components. This increased statistical power

in MoDentify can be attributed to the reduction of uncorrelated

technical noise by aggregation of multiple metabolites and allows

the detection of links with the phenotype that would have been

missed with classical association analysis.

4 Conclusion

To the best of our knowledge, MoDentify implements the first ap-

proach for the systematic identification of phenotype-driven modules

based on networks at different layers of resolution. The algorithm uti-

lizes pathway definitions in combination with network topology to

search for functional modules. Due to its increased statistical power,

novel links between phenotypic outcomes and molecular levels can be

detected that would be missed by classical analysis. We presented an

application example using complex multifluid metabolomics data,

but our approach can be applied for any quantitative dataset.
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