
Tutorial in Biostatistics

Received: 22 December 2014, Accepted: 19 November 2015 Published online 5 January 2016 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/sim.6844
Low-event-rate meta-analyses of clinical
trials: implementing good practices
Jonathan J. Shustera*† and Michael A. Walkerb

Meta-analysis of clinical trials is a methodology to summarize information from a collection of trials about an inter-
vention, in order to make informed inferences about that intervention. Random effects allow the target population
outcomes to vary among trials. Since meta-analysis is often an important element in helping shape public health pol-
icy, society depends on biostatisticians to help ensure that the methodology is sound. Yet when meta-analysis in-
volves randomized binomial trials with low event rates, the overwhelming majority of publications use methods
currently not intended for such data. This statistical practice issue must be addressed. Proper methods exist, but
they are rarely applied. This tutorial is devoted to estimating a well-defined overall relative risk, via a patient-
weighted random-effects method. We show what goes wrong with methods based on ‘inverse-variance’ weights,
which are almost universally used. To illustrate similarities and differences, we contrast our methods, inverse-
variance methods, and the published results (usually inverse-variance) for 18 meta-analyses from 13 Journal of
the American Medical Association articles. We also consider the 2007 case of rosiglitazone (Avandia), where impor-
tant public health issues were at stake, involving patient cardiovascular risk. The most widely used method would
have reached a different conclusion. © 2016TheAuthors. Statistics inMedicine published by JohnWiley& Sons Ltd.
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1. Introduction

Meta-analysis is often used to assist policymakers assemble information on important health policy issues.
We recognize that because of selection bias, reporting bias, and the likelihood of errors in the data from con-
tributing studies, it is imperfect as a scientific method. But when meta-analysis is conducted, its methods
must be statistically rigorous. The primary purposes of this tutorial are to (i) make potential analysts and
journal reviewers aware that the overwhelming majority of reports of random-effects meta-analysis of
low-event-rate clinical trials are using inverse-variance methods that are not appropriate for this situation;
(ii) present parameterizations of relative risk, the most popular metric for meta-analysis of binomial data,
and argue for a survey-sampling approach; (iii) present in detail the method of Shuster, Guo and Skylar
(SGS) [1] as one possible remedy; and (iv) present a comparative analysis of 18 meta-analyses from 13 Jour-
nal of the American Medical Association (JAMA) articles as published, using the method of DerSimonian
and Laird (DL) [2] and using SGS [1]. The scope of this article is on good practices in the estimation of the
overall relative risk for low-event-rate random-effects meta-analysis of randomized binomial trials. Issues re-
lated to how to properly conduct other aspects of a meta-analysis are beyond the scope of this tutorial.

In random-effects meta-analysis, the method most commonly used for summarizing relative risk for in-
dependent two-sample binomial trials, DL [2], has serious theoretical deficiencies when the event rates are
low. As of 08/04/2015, according to the Web-of-Science, this is the most-cited paper on meta-analysis
(nearly 13,000). Yet some of the most important clinical trials related applications of meta-analysis are pre-
cisely in this arena, as when event rates are low, it takes large numbers of patients and large numbers of
trials to accurately assess the safety and efficacy of interventions. In their final paragraph, DL [2] mildly
cautioned users about problems in estimating variances when sample sizes are small. Section 16.9.5 of
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the Cochrane Handbook [3] expressly states that ‘Methods that should be avoided with rare events are the
inverse-variance methods (including the DerSimonian and Laird random-effects method)’. Further, the
Cochrane Handbook also states that as of 2011, ‘The DerSimonian and Laird method is the only
random-effects method commonly available in meta-analytic software’. [These statements also appear in
Section 16.9.5 of the 2008 version.] This leaves applied researchers with a serious gap between computa-
tional capability and sound biostatistical theory. In their Section 5, SGS [1] present mechanistic reasons that
there is potential for major differences in accuracy within studies between the large-sample estimates and
the actual parameters they are trying to estimate. The issues center on rare events, even when no arms have
zero events. Hence, the theoretical problems are not resolved by continuity corrections (perhaps more ap-
propriately termed bias adjustments) in zero-event arms of trials.

The major issue with inverse-variance methods in low-event-rate situations is that the variance
estimate for an individual-study-level log of the relative risk is associated with the direction of the
sampling error, inducing bias. The estimate of within-study asymptotic variance when, for both groups,
the observed number of events is not zero is

v̂j ¼ N1jP̂1j= 1� P̂1j
� �� ��1 þ N2jP̂2j= 1� P̂2j

� �� ��1
(1)

where the Nij and P̂ij are the sample sizes and event proportions for study j, treatment i.
When the sampling error for an event proportion is in the positive (negative) direction, the impact is to

increase (decrease) the weights, respectively. For large samples without rare events, this is a minor con-
sideration. But it is a major problem for low-event-rate situations, even when no zero-event arms occur.

The common practice of assessing heterogeneity using Cochran’s Q statistic, and using the result to de-
cide between fixed and random effects, is generally not acceptable. Borenstein et al. [4], page 84 entitles a
section: ‘Model should not be based on the test for heterogeneity’. In other words, the choice should be
made according to the nature of the trials being combined, and not on empirical evidence supporting or
rejecting homogeneity. Given the exceedingly low sensitivity of the Cochran’s Q statistic when event rates
are low, the only plausible conclusions are that (i) homogeneity is implausible and (ii) homogeneity is in-
conclusive. In either case, we do not have much confidence in homogeneity. Since random effects are
valid whether or not fixed effects are valid, it is prudent to use random effects, unless the trials being com-
bined are truly conducted under universal conditions, something that will occur only rarely.

To fill the methodological gap, Section 4 of SGS [1] presents a patient-weighted alternative random-
effects method that they vetted in nearly 40,000 rare-event meta-analysis scenarios where the number of
studies being combined is small, 5–20. The large-sample theory applies to large numbers of studies be-
ing combined, so when the number of studies is small, the authors had concern about the accuracy of
their normal distribution and t-distribution approximations. The normal distribution approximations
fared poorly, but their t-distribution approximations were much more accurate. For these, the real cov-
erage of the 95% confidence intervals (CIs) averaged nearly 95%, with only modest departures from
95% in the individual scenarios. To help users conduct the analyses using these methods, they offer a
SAS (Statistical Analysis System) macro at http://actstat.org/associated-links.html.

We chose to concentrate our review of published meta-analyses on the JAMA because it publishes a
large number of highly cited meta-analyses of low-event-rate clinical trials. Our purpose is not to second
guess individual articles but rather to see how the published papers’ results line up with the methods of
SGS. The review aims to answer two questions. (i) Do the published results differ from SGS? (ii) Do DL
and SGS produce substantially different results for these studies? Specifically, do the analyses reach the
same conclusions? Do the methods differ systematically on effect size estimates and lengths of CIs? An
excellent motivating example for the clinical importance of this investigation is the Nissen and Wolski
[5] meta-analysis of myocardial infarction in randomized trials of rosiglitazone (Avandia) in type 2
diabetes. This will be presented in the Discussion section.

It seems that despite the warnings from [3], analytic practice has not changed. Using the Web-of-Science,
we looked at the three most-cited 2014 low-event-rate papers with keywords ‘clinical trial’ and
‘meta-analysis’ as of August 14, 2014: Kishimoto et al. [6], Williams et al. [7] and Monami et al. [8].
All used DL [2].

2. Parameterization of relative risk

In this section, we look at two approaches to creating a target population parameter: (i) effects at random
and (ii) studies at random. We also review inverse-variance approaches and briefly summarize the major
application issues raised in Section 5 of SGS [1]. Finally, we present the large-sample distribution theory
© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 2467–2478
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for the summary estimate for the patient-weighted approach of SGS [1]. In effects at random, we pre-
sume conceptually that each study design in the universe is a fixed entity and the effect size is drawn
randomly from a single urn of effect sizes, independent of the study design. For example, in effects at
random, there is no correlation between study size and the study’s true effect. In studies at random,
we presume conceptually that the studies form a random sample from a universe of studies, allowing
the study-specific effect sizes to be associated with the design. But if we make the additional assumption
that the effect size is independent of the design, studies at random and effects at random will coincide.
Hence, effects at random is a special case of studies at random.

2.1. Effects at random

In random-effects meta-analysis, the usual model is

bθ j ¼ ⊖j þ εj (2)

where j is the index for the j-th study, j = 1, 2, 3, …, M, with studies considered as independent, and the

(possibly vector-valued) estimate bθj has conditional mean ⊖j, given the study, making the random error

term εj satisfy E(εj) = 0. That is, bθj, the study estimate of the study-specific parameter, is unbiased for its
population counterpart ⊖j, given the selected study. Physically, we think of the study-specific set {⊖j}
that comprise the meta-analysis as a random sample from a population whose mean is ⊖=E(⊖j).

The statistical task is to estimate ⊖, or functions of components of ⊖, if vector-valued.
SGS called this sampling model ‘Effects at random’. It has a very attractive feature in that all

weighted combinations of the bθj, where the weights are fixed (non-random) and sum to 1, are unbiased
for ⊖, and thus, it makes sense to optimize the weights.

There is an inherent assumption that because the {⊖j} are presumed to come from a single population,
there can be no association between the study design parameters, including sample size, and the partic-
ular ⊖j for the study.

Consider a weighted estimate of ⊖, with non-random weights Wj:

bθW ¼ ΣWj; θ̂ j (3)

where the sum of the weights =ΣWj=1.
With effects at random, model (2) ensures that

E bθW� �
¼ ⊖ and Var bθW� �

¼ ΣWj
2σj2 (4)

with σj2 the unconditional variance of the study estimator bθ j in equation (2).
For estimating the log of the relative risk (or the log of the odds ratio), DL used weights inversely pro-

portional to the variance of bθ j, namely

Wj ¼ σj�2= Σ σk�2 (5)

This choice would minimize Var(bθW) if these variances were known constants (at least to a very high
degree of certainty), but in practice, they are unknown. Since these variances involve both between-study
and within-study variance components, they must be estimated. Accuracy and bias are major problems for
combining low-event-rate studies as the weights become random variables, subject to bias and sampling
error. The DL approach in general ignores the systematic and sampling errors in deriving the weights, lead-
ing to validity issues. For further information on this issue, see Böhning et al. [9] and Hamza et al. [10].

When event rates are low, this approach has three obvious issues, as well as a critical but subtle issue
that should make us look for alternative approaches to analyze these collections of studies. These issues
are illustrated through an example in Section 5 of SGS [1].

Issue 1: Whether or not there are zero-event cells, the individual logs of relative risk estimates, bθj, have
substantial bias in estimating ⊖j.

Issue 2: Whether or not there are zero-event cells, the variance estimates for within-study variance are
inaccurate. {See equation (1)}

The two issues above also compromise estimation of between-study variance as well as true
heterogeneity.
© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 2467–2478
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Issue 3: When event rates are low, for inverse estimated variance-related weights, the contribution of a
single arm of a single study to the weight is approximately proportional to the event probability
for that arm [see equation (1)], leading to a strong association between the weights Wj and the
estimates bθ j.

The randomness of the weights due to the within-study properties is not considered in the inverse-
variance weighting formulation of the effects at random meta-analysis. However, another connected is-
sue should make a user reluctant to apply these methods.

Issue 4: A challenge to the effects at random concept. In actuality, the weights should be seen as random
unless they are fixed as Wj=1/M. Without loss of generality, we can randomly permute the indi-
ces j =1, 2, …, M in equation (3), as after this permutation the estimate in equation (3) is un-
changed. For ease of notation, we continue to label the studies 1, 2, …, M rather than (1), (2),
…, (M) after the permutation. This permutation tool is an enabling concept that allows us to em-
ploy powerful techniques borrowed from clustering methods in survey sampling. After this ran-
dom permutation, each study has a 1/M chance of occupying each index 1, 2, …, M. Now
there is no controversy as to whether the weights are random variables. Further, this permutation
makes the vectors (Wj, bθ j) exchangeable over j and therefore identically distributed. From this
exchangeability, equations (2) and (3) and the fact that the weights Wj sum to 1, it follows
(for all j) that

E bθW� �
¼ ME Wj

bθ j� �
; E bθ j� �

¼ ⊖ and E Wj
� � ¼ 1=M (6)

Note that equation (6) is valid as long as the studies can be viewed as a random sample from a uni-
verse of studies, a more general situation than effects at random, which as noted previously is a special
case. We shall work under this more general set-up in the following.

Using equation (6), the bias in bθW can be expressed as

B ¼ E bθW� �
�⊖ ¼ M E Wj

bθ j� �
�⊖ 1=Mð Þ

n o
¼ MCov Wj; bθ j� �

It follows that to avoid bias, the weights must be uncorrelated with the point estimates.
This problem goes well beyond issue 3 stated previously, as violations of the unverifiable ‘no corre-

lation’ assumption would render effects at random a biased method. This ‘no correlation’ assumption is
also a problem for other meta-analysis settings, including Bayesian approaches.

Since no other weighting system can guarantee unbiasedness in all circumstances, Shuster, Jones and
Salmon [11] suggested the use of unweighted methods. Their focus was on literally estimating ⊖ rather
than seeking out an alternative target parameter. The unweighted method is legitimate and may be the only
bias-free method involving equation (3) to estimate ⊖, but it is intuitively unappealing to most end-users.
Section 4 of SGS [1] used a survey-sampling approach and thereby chose a different target parameter.

We can envision important situations where effects at random may not be a reasonable presumption.
For example, early studies of a drug may be smaller and have shorter follow-up than later studies. Fur-
ther, as side-effect profiles become clearer, eligibility criteria and concomitant medication can differ
from earlier (smaller) to later (larger) trials.

2.2. Studies at random: a cluster sampling approach

Conceptually, we think of studies as being a random sample of potential studies, taken from a large urn
of studies. Our inference will be aimed at the totality of studies in the urn. The inference we will make
will be to the totality of conceptual patients in the studies in the urn, treating the actual sampled studies
as completed. The robustness of this concept lies in the fact that after a random permutation of the study
indices 1, 2, …, M, the vectors of parameters (including design information and outcomes) are identi-
cally distributed across studies. As we shall see, total-sample-size weighting is a very simple approach,
with readily evaluable statistical properties. One can also view the study selection as casting a net into
the large urn of potential studies and drawing a sample of M studies from the urn without labeling them.

A key difference between other methods and SGS [1] is that their recommended methods estimate in-
dividual proportions and do not rely on individual-study relative-risk estimation, which as noted previ-
ously, is biased and has difficulty estimating variances when event rates are low. Even for small samples,
proportions can be estimated without bias. We estimate a global event proportion for each treatment and
© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 2467–2478
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estimate the relative risk by the ratio of these proportions. We use weights proportional to the total sam-
ple size for the study. Using arm-specific weighting could create bias if, for example, there was an un-
balanced randomization (say, 3 : 1) in a study where the overall event rate was high on both treatments.
Studies with one or both arms having zero events are included without continuity corrections.

One easily understood physical definition of relative risk follows naturally from the studies at random
concept. Step 1: Draw an unassigned patient at random from the universe of trials, with each hypothetical
patient having the same chance of being drawn. What is the ratio of the probability of an event given that
patient is assigned to Arm 2, to the probability of an event given that patient is assigned to Arm 1? In this
hypothetical experiment, the probability that a patient is drawn from a given trial is proportional to the total
sample size for that trial, irrespective of the arm-specific sample-size ratio. Specifically, if we denote the
true event rate for Arm= i and Study= j as Pij, and the total sample size for study j as Nj, then the true over-
all probability of an event for the randomly selected patient, given assignment to Arm i=1 or Arm i=2 is

Πi ¼ ΣNjPij=ΣN j (7)

where summation is over the universe of studies.
The true relative risk for this experiment is therefore

RR ¼ Π2=Π1 ¼ Σ N jP2j=ΣNjP1j (8)

Equation (8) gives us another intuitive interpretation of this relative risk. The numerator (denominator)
is the hypothetical expected number of events in the universe of trials if all patients received Arm 2
(Arm 1). RR=2 would imply that we would expect twice as many events on Arm 2 had all patients in
the universe been uniformly treated on Arm 2, rather than if all patients in the universe received Arm 1.

Next, for our actual experiment, we are drawing a random sample of studies from the target universe of studies.
For treatment i = 1, 2 and study j = 1, 2, …, M, let

Aij ¼ NjP̂ij (9)

be the predicted number of events on study j if all patients received treatment i, where Nj is the total sam-
ple size for study j, and bPij represents the sample proportion of events for treatment i, study j. Since the
proportions are conditionally unbiased, based on the studies at random concept:

E Aij

� � ¼ E NjP̂ij� ¼ E½ E NjP̂ij Study ¼ jg� ¼ E½ NjPij�
��	�

(10)

with the unconditional expectation taken over the universe of studies, from which the actual studies are a
conceptual random sample. The sample proportions given the study ID are unbiased for the true under-
lying proportion for that study.

We define the sample means of the exchangeable Aij as follows for the actual studies in the analysis:

Ai ¼ ∑jAij=M

Since Āi is the sample mean of the exchangeable Aij, j = 1, 2, …, M, it follows from equation (10) that

E Ai

� � ¼ E Nj Pij
� �

(11)

If we divide the numerator and denominator in equation (8) by NS, the number of studies in the uni-
verse, making both the transformed numerator and denominator population means for the projected
number of events when all subjects in the study would receive treatment 2 (numerator) or treatment 1
(denominator), it follows that

RR ¼ E Nj P2j� = E½ Nj P1j
� �

(12)

and hence RR can be estimated simply by

cRR ¼ A2= A1 (13)

The Āi are unbiased for the numerator (i = 2) and denominator (i = 1) for the true relative risk, defined
in equation (12). Moreover, from the method of moments, see Shuster [12], they are nonparametrically
minimum variance for the numerator and denominator among all unbiased competitors.
© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 2467–2478
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2.3. Summary notes on effects at random versus studies at random

(A) If effects at random holds, then studies at random also holds, but not the converse.
(B) When event rates are low, the estimation of the logarithm of a summary relative risk from the indi-

vidual studies’ logarithms of relative risks for effects at random involves biased estimates and poor
large-sample approximation of weights and variances.

(C) For effects at random, the target transformation is a log of the relative risk, not a directly estimated
relative risk. The mean of a function can differ from the function of the mean, especially when event
rates are low. The studies at random approach directly estimates a well-defined relative risk.

(D) Using studies at random, both the random-effects concept and the target relative risk are easier for
lay individuals to grasp than they are for effects at random. No model equation is needed in studies
at random.

2.4. Obtaining p-values, point and interval estimates using studies at random

In this subsection, we provide the asymptotic sampling properties of log(cRR), defined in equation (13),
obtained by the delta method in SGS [1], Section 4 for M, a ‘large number’ of studies in the analysis.

log(cRR) is asymptotically t-distributed (M�2 df) with asymptotic mean log(RR) and variance

SE2 ¼ S A1j
� �

= A1
	 
2 þ S A2j

� �
=A2

	 
2 � 2 C A1j; A2j
� �

= A1 A2
� �	 
h i

=M (14)

where S( ) represents the sample standard deviation and C( , ) represents the sample covariance, denom-

inators M�1. The standard error of log(cRR) is SE=SQRT(SE2).

By asymptotic t, we mean that [log(cRR)� log(RR)]/[SE] is approximately central t-distributed with
M�2 degrees of freedom for large M. This is asymptotically equivalent to asymptotic normality, but
empirically it gives much more accurate approximations than those based on normality. For small M
(5–20), SGS [1], Section 6, have vetted the methods in nearly 40,000 scenarios, with 100,000 simula-
tions for each, with good accuracy. This forms the basis for obtaining p-values and, after taking antilogs,
CIs for RR. Specifically, the endpoints of the 100(1�α) CI for RR are

exp log cRR� �
± TINV M� 2; α=2ð ÞSE

n o
(15)

with TINV(n, γ) defined as the upper 100γ percentile of the central t-distribution with n degrees of freedom.

P-value ¼ 2*PROBT � log cRR� ���� ���=SE; M� 2
� �

(16)

with PROBT(t, n) defined as the probability that an observation from a central t-distribution with n degrees
of freedom falls below t.

3. Review of 13 highly cited JAMA articles

In this section, we assess the potential impact of the use of inverse-variance methods for low-event-rate
meta-analysis of clinical trials published in the JAMA. This journal was selected because at the time of
our selection process, it had the second highest impact factor, behind only the New England Journal of
Medicine (NEJM), and unlike the NEJM, it published a large number of meta-analyses. We found that
all of the eligible articles basically ignored the warnings in [3] and [4] about (i) the use of inverse-
variance random-effects methods or (ii) testing for heterogeneity and using a fixed-effects method when
the test for heterogeneity was not significant. Our primary purpose is to see how the published results,
DL [2] and SGS [1] agree or disagree.

3.1. Eligibility criteria for inclusion of JAMA articles

Criteria for inclusion: (1) highly cited article published from 2007 to 2013, as searched in the Web-of-
Science as of December 2013 [we prioritized selection by times cited in two strata: (i) 2007–2011 and
(ii) 2012–2013]; (2) reported on a review of a collection of randomized independent binomial trials;
(3) had at least one low-event-rate study with expected events at most 5; (4) used relative risk (RR) as
its metric; and (5) had fully retrievable numerator and denominator data on events. [One potential article
had to be excluded for this reason.]
© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 2467–2478
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We identified 13 eligible articles [13–25] and conducted analyses on all low-event-rate binomial end-
points in the article, except that no subset analyses were conducted. The total number of meta-analyses
we reviewed from JAMA was 18. Table I lists the meta-analyses that qualified for inclusion in our re-
analyses, along with the definition of the endpoints studied.

3.2. Results of JAMA review

For each study, the analysis is provided as published and, more importantly, by the DL [2] method and
by the SGS [1] method. Comprehensive Meta-Analysis 2.0 was used for DL, with standard continuity
corrections (adding 0.5 to all cells for trials with one zero-event arm and excluding trials where both
arms had zero events). Some authors did not fully report the method of meta-analysis used in their pa-
pers. Most of these meta-analyses used similar analytical methods. The authors who reported the RR
methodology for their results used random effects and fixed effects (some using DL and some using
Mantel–Haenszel analysis). Thirteen of these 18 meta-analyses apparently used DL, where our DL re-
sults agree with the published results to sufficient accuracy. Those JAMA authors who did not report
their methods failed (and evidently were not required) to comply with the recommendation of the Inter-
national Committee of Medical Journal Editors.

Table II displays point estimates and 95% CIs for each eligible analysis, as published, by DL [2], and
by SGS [1]. DL and SGS give similar results for most of the point estimates and CIs. We did find five
analyses with substantially different results from SGS. The last column provides the ratio of lengths for
the CIs. Analyses with major differences between DL and SGS are highlighted.

4. Discussion

An example of the strong motivation for the public health importance of using appropriate methods is a
2007 meta-analysis for myocardial infarction in 48 trials of rosiglitazone (Avandia) in type 2 diabetes.
The sentinel danger signal was published by Nissen and Wolski [5] (May 2007), and the FDA held a
hearing in July 2007, leading to a Black Box Warning and a major reduction in written prescriptions
for rosiglitazone. Although the meta-analysis was not the sole basis for this action, it probably would
not have occurred so rapidly without it. Yet, on the basis of the software available to these authors
(and still widely used today), the ultimate inferences for both Nissen and Wolski [5] (fixed-effects Peto
Table I. Low-event-rate meta-analyses published in JAMA between 2007 and 2013.

Reference #,
multiple analyses .1 and .2

M Endpoint Lead author

13 27 Suicide ideation/attempt Bridge (2007)
14 63 Antibiotic-associated diarrhea Hempel (2012)
15 15 Risk of low birth weight Kayentao (2013)
16 15 Venous thromboembolism Nalluri (2008)
17.1 8 Lung injury Neto (2012)
17.2 9 Mortality Neto (2012)
18.1 8 Cardiovascular deaths Nguyen (2011)
18.2 11 Prostate cancer-specific mortality Nguyen (2011)
19.1 21 Incident pancreatitis in 21 large statin trials Preiss (2012)
19.2 7 Incident pancreatitis in 7 large fibrate trials Preiss (2012)
20 16 Fatal adverse events Ranpura (2011)
21 17 All-cause mortality Rizos (2012)
22.1 17 Major cardiovascular events—inhaled

anticholinergics
Singh (2008)

22.2 5 Major cardiovascular events—long term Inhaled
anticholinergics

Singh (2008)

23.1 5 Major cardiovascular events Udell (2013)
23.2 5 Cardiovascular mortality Udell (2013)
24 25 In hospital mortality Wiener (2008)
25 35 Mortality Zarychanski (2013)

Studies where DerSimonian and Laird and Shuster, Guo and Skylar differ substantially are highlighted.
M= number of studies in analysis.

© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 2467–2478
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Table II. Results as published versus DL (1986) versus SGS (2012).

Ref. from
Table I

Method As published DL SGS Ratio lengths
DL:SGS

13 DL (cc) 1.7 (1.1–2.7){0.017} 1.73 (1.11–2.70) 2.13 (1.32–3.44){0.003} 0.75
14 DL (cc) 0.58 (0.50–0.68){<0.001} 0.58 (0.49–0.68) 0.58 (0.49–0.68){<0.001} 1.00
15 DL 0.80 (0.69–0.94){0.006} 0.81 (0.69–0.94) 0.79 (0.68–0.92){0.005} 1.04
16 Fixed 1.33 (1.13–1.56){<0.001} 1.35 (1.14–1.58) 1.36 (1.15–1.61){0.002} 0.96
17.1 Fixed (cc) 0.33 (0.23–0.47){<0.001} 0.41 (0.30–0.56) 0.39 (0.28–0.55){0.001} 0.96
17.2 Fixed (cc) 0.64 (0.46–0.86){0.007} 0.71 (0.55–0.93) 0.70 (0.44–1.11){0.11} 0.57
18.1 Fixed 0.93 (0.79–1.10){0.41} 0.94 (0.79–1.10) 0.94 (0.80–1.10){0.36} 1.03
18.2 DL (cc) 0.69 (0.56–0.84){<0.001} 0.69 (0.56–0.84) 0.72 (0.59–0.88){0.004} 0.97
19.1 DL (cc) 0.79 (0.65–0.95){0.01} 0.79 (0.65–0.95) 0.78 (0.68–0.90){0.001} 1.36
19.2 DL (cc) 1.39 (1.00–1.95){0.053} 1.40 (1.00–1.95) 1.40 (1.00–1.98){0.052} 0.97
20 DL (cc) 1.33 (0.95–1.86){0.094} 1.33 (0.95–1.86) 1.42 (0.99–2.06){0.058} 0.85
21 DL (cc) 0.96 (0.91–1.02){0.17} 0.96 (0.91–1.02) 0.96 (0.91–1.01){0.097} 1.10
22.1 DL (cc) 1.58 (1.21–2.06){0.001} 1.57 (1.19–2.06) 1.60 (1.28–2.01){0.001} 1.16
22.2 Fixed 1.73 (1.27–2.36){<0.001} 1.71 (1.26–2.33) 1.74 (1.31–2.31){0.008} 1.07
23.1 DL 0.57 (0.39–0.82){0.003} 0.57 (0.39–0.82) 0.54 (0.32–0.91){0.032} 0.73
23.2 DL 0.81 (0.36–1.83){0.61} 0.81 (0.36–1.83) 0.77 (0.19–3.03){0.58} 0.52
24 DL 0.93 (0.85–1.03){0.15} 0.93 (0.85–1.03) 0.93 (0.84–1.03){0.15} 0.95
25 DL 1.07 (1.00–1.14){0.05} 1.07 (1.00–1.14) 1.07 (1.02–1.12){0.009} 1.40

Entries in columns 3–5 are point estimate of relative risk (95% CI){two-sided p-value}. Studies where DL and SGS
differ substantially are highlighted. DL is calculated from Comprehensive Meta-Analysis version 2.0 and also
employs standard continuity corrections for zero-event cells. DL, DerSimonian and Laird; SGS, Shuster, Guo and
Skylar; cc, continuity corrections for zero-event cells.
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method after a preliminary test for heterogeneity) and Diamond and Kaul [26] (both Bayes and DL [2]
with standard continuity corrections), reaching conflicting conclusions, were flawed methodologically.

The Nissen and Wolski meta-analysis was published using a summary odds ratio, so we reconstructed
the results using relative risk (RR) as a metric. However, for low event rates, the distinction is slight, and
relative risk (the ratio of event probabilities) is easier to interpret than the odds ratio (ratio of event odds).
The FDA decision had considerable impact on averting potential harm to patients, on large ongoing
rosiglitazone trials, and on financial losses to the manufacturer (sales and lawsuits). The meta-analytic
basis of the decision, which turned out to be correct, can only be attributed to good fortune, in that
NW used the Peto fixed-effect method rather than the DL method (default in Comprehensive Meta-
Analysis, the program they used). That program forces the user to see the results of DL before the user
can select alternative methods. The results are contrasted in Table III, with clear-cut added risk in the
SGS [1] analyses, but equivocal CIs in both the DL and Peto analyses. Although we would not exclude
studies in a de novo analysis, we also present SGS results after eliminating studies with no events on
both arms as a parallel to what was published.

In 2010, Nissen and Wolski [27] added eight studies and further follow-up to their original meta-
analysis. For all three methods, the 2010 results agree well with the respective 2007 results, and so de-
tails are not shown.

One might argue that the Peto and Mantel–Haenszel methods are valid for low-event-rate collections
in assessing the signal, that is, testing that the true relative risk is 1.00 for all studies in the universe. This
reduces the testing problem to fixed effects under this null hypothesis. However, this simplification has
Table III. Nissen–Wolski (2007) analysis and re-analyses.

Method Outcome Point est. LCL UCL Two-sided p-value

Peto OR 1.43 1.03 1.98 0.032
DL OR 1.29 0.94 1.76 0.12
DL RR 1.28 0.94 1.75 0.12
SGS (1) RR 1.41 1.14 1.75 0.0026
SGS (2) RR 1.41 1.13 1.76 0.0031

(1) includes all 48 studies; (2) excludes 10 studies with no event on both arms.
DL, DerSimonian and Laird; SGS, Shuster, Guo and Skylar; RR, relative risk; OR, odds ratio; LCL(UCL)=lower (upper)
95% confidence limit.
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two issues. First, when random effects are present, these methods do not produce valid point estimates
and confidence limits, both of which are exceedingly important. Second, with random effects, there can
be a true overall relative risk of 1.00, with some studies having true relative risks above the neutral value
of 1.00, counterbalanced by other studies with true relative risks below 1.00. Now both the Peto and
Mantel–Haenszel methods’ theoretical presumptions are not applicable under this less restrictive null
hypothesis and are likely to misstate the precision of their estimates.

The overwhelming majority of clinical investigators are very reluctant to use Bayesian methods in
meta-analysis. Biostatisticians and other methodologists should encourage their clinical colleagues as
to their merits in appropriate situations. As of 21 November 2014, there were 15.8 million Google,
2.6 million Google Scholar and 13,000 PUBMED hits for the terms Clinical Trial and Meta-Analysis.
When we added the term Bayes, the numbers dropped to 370,000 (2.4%), 23,000 (0.9%) and 118
(0.9%), respectively. Therefore, methodologists need to be much more proactive in this arena.

We draw one distinction between this article and SGS [1], in that SGS did not choose a recommended
strategy among three metrics and two weighting methods. We recommend (i) the use of patient-
weighted over unweighted analysis and (ii) relative risk as the metric of choice. While SGS showed
slightly more accurate coverage for unweighted methods, the patient-weighted methods had consider-
ably narrower confidence intervals, and we consider this added precision to be more important. Further,
in a non-binomial article by Shuster [28], with discussion from Laird, Fitzmaurice and Ding [29],
Waksman [30] and Thompson and Higgins [31], with response by Shuster et al. [32], the net message
for unweighted methods is that, although valid, they are highly inefficient. There was no criticism of
a patient-weighted method of Shuster [28], also presented in that article. As for choosing among the
three metrics in SGS [1], their relative risk analysis needs to estimate far fewer parameters (five sample
moments) than their odds-ratio analysis (14 sample moments). Absolute differences in proportions
are not in common use in meta-analysis of low-event-rate binomial trials, and they overly weight studies
with very low event rates.

Of related interest, Hamza and colleagues [10] have proposed an alternative and superior method of
estimating variances via likelihood methodology, rather than the traditional methods.

The majority of these recently published JAMA meta-analyses give similar results when analyzed
with DL [2] or SGS [1]. This might give us some comfort in that the majority of published low-
event-rate meta-analyses using the DL or Peto method are likely to reach similar conclusions to SGS,
including fairly similar confidence limits. But we expect a substantial minority will have major issues
with the conclusions and CIs for relative risk. A wider review of the most-cited low-event-rate meta-
analyses of clinical trials in other publications is therefore essential. Such a review could assess what
study properties exist when DL is accurate versus inaccurate. Such an assessment was well beyond
the scope of our small JAMA review. For the future, it is critically important to heed the warnings issued
by the Cochrane Handbook and avoid the use of DL when event rates are low. New warnings in major
software packages would also help. SGS and a Hypergeometric/Normal Bayesian method per Stijnen
et al. [33] are attractive alternatives.

Other authors who have approached the low-event-rate problem include Tian et al. [34] and Lane
[35], but in practice DL continues to be predominantly used. Advantages of SGS over other methods
for low-event-rate meta-analysis include the following: (a) it targets a more easily understood population
parameter; (b) its estimates do not rely on asymptotic properties within studies; (c) it accommodates a
more conservative t-approximation rather than a normal approximation when the number of studies is
small; (d) it is valid in the more general studies at random setting, whereas its competitors all use the
more restrictive effects at random model, assuming the effect drawn for a given study is independent
of the study design; (e) it has been vetted for combining small numbers of studies in nearly 40,000
low-event-rate scenarios, with 100,000 simulations each; (f) zero events on one or both arms of a study
are handled no differently than any other study (in fact, if no events occur on both arms, the same point
estimate is obtained with the study included or excluded [not recommended], but these studies have im-
pact on standard errors; for more on zero event arms, see Kuss[36]); and (g) it is more robust when
some trials have group sequential designs. The framework of inference is that the actual trials are com-
plete, that they represent a random sample from a large conceptual universe of trials and that the infer-
ence is to the actual potential participants in this universe of trials. This immunizes the inference from
biases of raw proportions within group sequential trials. Perceived disadvantages include the following:
(i) the method does not directly estimate heterogeneity of relative risks (users can still run a test of
heterogeneity of odds ratios, preferably an exact one, but SGS works with or without heterogeneity;
one can also readily look for heterogeneity in the proportions, but that has very limited utility); (ii)
© 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 2467–2478



Table IV. Neto [17] study data.

Study Arm 1 Arm 2

1 2/26 1/26
2 3/23 2/13
3 27/163 69/212
4 13/558 15/533
5 24/76 23/74
6 3/154 1/75
7 1/75 2/74
8 0/50 1/50
9 1/20 1/20

Entries are events/sample size.
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the inferential framework is to a conceptual population of studies with the actual completed studies con-
sidered to be a random sample (but most alternate methods emanate from equation (2) without a true
physical population that allows associations between weights and estimates; moreover, the exchange-
ability after a random permutation allows us to legitimately use the exchangeability in our inference,
even if the targeted population is not fully defined for convenience sampling as opposed to random sam-
pling of studies); and (iii) when the number of studies is small, and the sample sizes and/or event rates
are highly diverse, the t-approximation may not be accurate.

A question posed and answered by a reviewer is as follows: Why does the DL method receive nearly
universal use for these low-event-rate binomial meta-analyses, despite the warning in the Cochrane
Handbook? Neither of the two main software packages (RevMan 5 or Comprehensive Meta-Analysis 3.0)
issue user warnings when studies have low event rates. Further, the Deeks and Higgins 2010
publication on the statistical algorithms in RevMan 5, http://www.researchgate.net/profile/Jonathan_
Deeks2/publication/241313811_Standard_statistical_algorithms_in_Cochrane_reviews_Ve_r_s_i_o_n_
5/links/54d159b70cf28370d0e07f9f.pdf, does not issue a warning. A recent article by Cornell et al. [37]
suggests sunsetting the method in these low-event scenarios.

A completely counterintuitive application can be seen in the second Neto [17] analysis in Table II (in-
dividual study data shown in Table IV). DL gives a point estimate for relative risk at 0.71, 95% CI 0.55–
0.93, p=0.004. If we double the data (every numerator and every denominator), one would think the
significance would be amplified. Yet the DL point estimate changes to 0.78 and the CI widens by nearly
40% to 0.56–1.09, p=0.15. In the actual data, thanks to the Q statistic being less than the degrees of
freedom, the fixed and random-effects analysis coincided. When all entries are doubled, a random-
effects analysis was mandated as Q more than doubled, thereby making the standard error increase. This
anomaly cannot occur with SGS.

The following are good topics for future advances: (i) Since we claim validity, not optimality of
SGS [1], it is of interest to see how its precision compares with Bayesian methods (a tutorial on var-
ious Bayesian methods would be a good addition to the literature on low-event-rate meta-analysis);
(ii) since SGS’ validity does not require low event rates, its properties for small numbers of studies
should be investigated when event rates are not low; and (iii) it would be of further interest to see
the gain in precision for methods that rely on patient-level data over SGS. With mandatory raw data
deposits recently implemented for European clinical trials and with ClinicalTrials.gov considering
similar requirements, patient-level data should become available in the not too distant future, without
worries of selection bias. Further, we recommend that a doctoral level biostatistician or quantitative
epidemiologist be part of the research team for conducting any meta-analysis. Finally, when called
upon to review a manuscript that presents results of a meta-analysis involving clinical trials with
low event rates, make sure that the analytic methods used are appropriate and adequately documented
before recommending acceptance. These meta-analyses can play major contributing roles in setting
health policy and in multi-million dollar litigation. Using inappropriate statistical methods can cause
substantial damage.
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