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BACKGROUND Left ventricular ejection fraction (LVEF) and end-systolic volume (ESV) remain the main imaging bio-

markers for post-acute myocardial infarction (AMI) risk stratification. However, they are limited to global systolic function

and fail to capture functional and anatomical regional abnormalities, hindering their performance in risk stratification.

OBJECTIVES This study aimed to identify novel 3-dimensional (3D) imaging end-systolic (ES) shape and contraction

descriptors toward risk-related features and superior prognosis in AMI.

METHODS A multicenter cohort of AMI survivors (n ¼ 1,021; median age 63 years; 74.5% male) who underwent cardiac

magnetic resonance (CMR) at a median of 3 days after infarction were considered for this study. The clinical endpoint was

the 12-month rate of major adverse cardiac events (MACE; n ¼ 73), consisting of all-cause death, reinfarction, and new

congestive heart failure. A fully automated pipeline was developed to segment CMR images, build 3D statistical models

of shape and contraction in AMI, and find the 3D patterns related to MACE occurrence.

RESULTS The novel ES shape markers proved to be superior to ESV (median cross-validated area under the receiver-

operating characteristic curve 0.681 [IQR: 0.679-0.684] vs 0.600 [IQR: 0.598-0.602]; P< 0.001); and 3D contraction to

LVEF (0.716 [IQR: 0.714-0.718] vs 0.681 [IQR: 0.679-0.684]; P < 0.001) in MACE occurrence prediction. They also

contributed to a significant improvement in a multivariable setting including CMR markers, cardiovascular risk factors, and

basic patient characteristics (0.747 [IQR: 0.745-0.749]; P < 0.001). Based on these novel 3D descriptors, 3 impairments

caused by AMI were identified: global, anterior, and basal, the latter being the most complementary signature to already

known predictors.

CONCLUSIONS The quantification of 3D differences in ES shape and contraction, enabled by a fully automated pipeline,

improves post-AMI risk prediction and identifies shape and contraction patterns related to MACE occurrence. (J Am Coll

Cardiol Img 2022;15:1563–1574) © 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology

Foundation. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ABBR EV I A T I ON S

AND ACRONYMS

AMI = acute myocardial

infarction

AUC = area under the receiver-

operating characteristic curve

CMR = cardiac magnetic

resonance

ED = end-diastole

ES = end-systole

IS = infarct size

LDA = linear discriminant

analysis

LV = left ventricle

LVEF = left ventricular ejection

fraction

MACE = major adverse cardiac

events

MVO = microvascular

obstruction

PCA = principal component

analysis

SAx = short-axis stacks
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P reventive and personalized medicine
is crucial to improving both the effi-
ciency and efficacy of health care sys-

tems.1 Advances have significantly improved
the prognosis of acute myocardial infarction
(AMI) patients worldwide.2 Nevertheless,
AMI survivors are at risk of recurrent cardio-
vascular events, and mortality within
6 months sits at 12%.3

Cardiac magnetic resonance (CMR) imag-
ing has proven to be uniquely suitable to
assess morphological and functional
myocardial alterations, including left ven-
tricular (LV) remodeling, which is central to
AMI early prognosis prediction.4 LV micro-
myocardial injury, assessed by means of late
gadolinium enhancement CMR and quanti-
fied as infarct size (IS) and microvascular
obstruction (MVO), has emerged as a robust
measure in AMI risk assessment.4,5 None-
theless, LV macro-function, typically quan-
tified as LV ejection fraction (LVEF), remains
the preferred image biomarker in AMI
guidelines.3,4 Patients with pumping function dete-
rioration, at higher risk of severe cardiac events, also
exhibit an increase in end-systolic volume (ESV),
which is reported in several studies as superior to
LVEF in predictive power;6 and patients with early
revascularization and preserved pumping function
are characterized by an increase in LV wall thickening
in both infarcted and remote regions.7

LVEF and ESV are limited to global systolic func-
tion and fail to capture functional and anatomical
regional abnormalities.4,6,7 Moreover, LVEF is mainly
preserved or only moderately reduced in most AMI
survivors, and therefore recurrent adverse events
often occur in patients at a theoretical low risk, which
further evidences the need of stratification improve-
ments.8 To overcome such limitations, unraveling of
the global LV remodeling changes at the different
regions of the ventricle, ie, the 17-segment American
Heart Association model, has been proposed.9 High-
dimensional 3-dimensional (3D) shape analysis is
also used in cardiac research to describe subtle focal
changes.10

The present study aimed to disentangle ESV and
LVEF into 3D shape and contraction with the use of
only standard CMR short-axis stacks (SAx) to: 1) gain a
better understanding of how 3D remodeling patterns
modulate risk and the interplay between macro-
remodeling and microdamage; and 2) improve AMI
risk stratification. We present a fully automated
shape analysis pipeline including state-of-the-art
artificial intelligence and 3D meshing and its
application on a large multicenter population
including ST-segment elevation myocardial infarc-
tion (STEMI) and non-STEMI (NSTEMI) patients.

METHODS

STUDY POPULATION. Our retrospective population
consisted of 1,235 AMI survivors8 from 2 multicenter
randomized trials, AIDA-STEMI (Abciximab Intra-
coronary Versus Intravenously Drug Application in
ST-Elevation Myocardial Infarction; NCT00712101)
and TATORT-NSTEMI (Thrombus Aspiration in
Thrombus Containing Culprit Lesions in Non–ST-
Elevation Myocardial Infarction; NCT01612312).11,12 In
both studies, reperfusion therapy with primary
percutaneous coronary intervention and post-
infarction medical treatment were supplied according
to state-of-the-art guideline recommendations.3 The
size of the study is argued in Supplemental Methods:
TRIPOD Reporting (Supplemental Table 1), based on
Riley et al.13

AIDA-STEMI and TATORT-NSTEMI were registered
with ClinicalTrials.gov, were approved by the insti-
tute ethics committees, and complied with the
Declaration of Helsinki, including written informed
consent. Data supporting our findings are available on
reasonable request.

CMR IMAGING PROTOCOL AND MANUAL ANALYSIS.

The same standardized protocol, including electro-
cardiography-gated balanced steady-state free pre-
cession sequences and T1-weighted late gadolinium
enhanced images, was followed for all patients with
AMI on 1.5-T or 3.0-T clinical scanners.11,12 Horizontal
and vertical long-axis views as well as continuous
stacks of SAx slices capturing the whole LV were ac-
quired in all sequences. Infarct characteristics, ven-
tricular volumes, and LVEF were determined in
sequential SAx by blinded clinicians using certified
evaluation software (cmr42, Circle Cardiovascular
Imaging).12 IS and MVO were assessed in Eitel et al,12

applying standard thresholding techniques.

STUDY ENDPOINTS. The 12-month rate of MACE,
consisting of reinfarction, new congestive heart fail-
ure, and all-cause death, was the predefined clinical
endpoint of the study as detailed previously.8,11,12

The events were adjudicated by a blinded clinical
committee based on the data collected in the study
sites. Only 1 contribution per patient to the endpoint
composite was considered in case of multiple MACE
events per patient (death > reinfarction > congestive
heart failure).

LV FULLY AUTOMATED SHAPE ANALYSIS. The LV
myocardium was segmented in the SAx images, and 2
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FIGURE 1 Shape Analysis Pipeline
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Shape analysis pipeline (left) along sample case (right), consisting of the following steps: 1) short-axis stacks (SAx) preprocessing (intensity normalization, heart

detection, cropping of region of interest [ROI]); 2) fine segmentation of left ventricular myocardium; 3) volumetric segmentation at end-systole (ES) and end-diastole

(ED) phases; and 4) personalized mesh generation. 3-dimensional (3D) contraction is then calculated from the ES and ED meshes, and principal component analysis

(PCA) dimensionality reduction is applied on the meshes to facilitate the supervise learning of major adverse cardiac events (MACE) occurrence.
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personalized 3D LV meshes were built for each pa-
tient: at end-diastole (ED) and at end-systole (ES).
The displacements between corresponding points in
them constituted the 3D contraction. 3D shape and
contraction descriptors were obtained by unsuper-
vised construction of statistical shape models and
used as potential predictive biomarkers. The process
(Figure 1) was fully automated.
LV segmentation. A 2-step deep learning approach was
applied to segment the LV myocardium, based on a
UNet architecture with enhanced preprocessing,14,15

that reached the best performance in the 2019 LV Full
Quantification Challenge.15 ES and ED phases are
detected as those of minimal and maximal LV blood
pool area at the midventricular slice. Implementa-
tions details are provided in Supplemental Methods:
LV Segmentation (Supplemental Figure 1).
Mesh generation. The construction of 3D meshes from
segmentation contours used a solution based on
smooth cubic Hermite interpolation, which was
shown to be accurate and robust concerning SAx slice
misalignment and segmentation errors and fully
described in Lamata et al.16 In brief, an idealized LV
template mesh was fitted to the 3D myocardium mask
by combining image registration and mesh projection
techniques. Meshing results were evaluated for ac-
curacy using the 3D distance between segmentation
contours and mesh surfaces. The anatomical corre-
spondence between meshes was achieved by orient-
ing the LV meshes according to the SAx canonic
position.
Dimensionality reduction. The direct analysis of the 3D
meshes, discretized into 2,450 nodes with their cor-
responding 3D spatial coordinates, is impractical and
ill posed. This motivates the use of principal compo-
nent analysis (PCA) for dimensionality reduction.10 In
short, PCA inspects the data to find the directions of
change that maximize the variance observed in the
population. The resulting main directions represent
the 3D shape patterns of change with respect to the

https://doi.org/10.1016/j.jcmg.2021.11.027
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FIGURE 2 3D LV Shape and Contraction Risk-Related Patterns

10

P

A

LS

15510

P

A

LS

155

Mode ES6 ~ Impaired Thickening
P < 0.001, AUCRS = 0.637, AUCL1 = 0.634

NST
EMI 0

ST
EMI 0

NST
EMI 1

ST
EMI 1

No MACE RV Mass Center MACE RV Mass Center

10

P

A

LS

15510

P

A

LS

155

Mode ES5 ~ Anterior Impairment
P = 0.005, AUCRS = 0.587, AUCL1 = 0.580

NST
EMI 0

ST
EMI 0

NST
EMI 1

ST
EMI 1

No MACE RV Mass Center MACE RV Mass Center

10

P

A

LS

15510

P

A

LS

155

Mode ES1 ~ Global Impairment (ESV)
P < 0.001, AUCRS = 0.67, AUCL1 = 0.602

ES Shape

NST
EMI 0

ST
EMI 0

NST
EMI 1

ST
EMI 1

No MACE RV Mass Center

MACE RV Mass Center
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views, and as differential thickness maps (ED-ES thickness) on polar plots of the American Heart Association model. To facilitate comparisons, the contractions are

applied on the mean ED shape (reference transparent surface) and visualized as resulting ES shapes. No MACE (blue, class 0) and MACE (red, class 1) representations
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operating characteristic curve; LDA ¼ linear discriminant analysis; other abbreviations as in Figure 1.

Continued on the next page
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mean shape, which are called anatomical “PCA
modes.” Conceptually, the LV of each subject is
decomposed into the mean shape (average ventricle)
plus the anatomical modes (shape variations, ie,
thickening, scaling, lengthening, etc) times a coeffi-
cient. Each of the modes is therefore a continuous
variable that accounts for a particular pattern of 3D
shape variation, which has a certain value for each
patient and becomes the potential biomarker to pre-
dict MACE (Figure 2). The formulation details are
explained in Supplemental Methods: Dimensionality
Reduction (Supplemental Figures 2 to 5).

Three statistical shape models were built with
this PCA technique, studying the 3D shape at ED and
at ES, and the displacement between them
(contraction). PCA coefficients of ED were found to

https://doi.org/10.1016/j.jcmg.2021.11.027
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FIGURE 2 Continued
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contain no predictive value and are therefore not
reported.
SUPERVISED LEARNING. The relevant PCA modes to
predict MACE were found by a stepwise multivari-
able Fisher linear discriminant analysis (LDA), as
detailed below. The search was performed on the ES
shape and on the contraction modes needed to
reconstruct 95% of the total variance of the popula-
tion. This selection was further refined with another
LDA applied on the combination of ES and
contraction-significant modes found in the previous
step.
EVALUATION EXPERIMENTS. The predictive value of
the novel ES shape and contraction PCA modes was
evaluated against standard clinical biomarkers and in
combination with them. Conceptually, ES and
contraction PCA modes are the 3D extension of the
ESV and LVEF biomarkers, and a first test compared
them. Multivariable combinations were next investi-
gated, considering only CMR biomarkers and all the
clinical variables of the study together.

Comparisons were based on the prediction perfor-
mance resulting from both a multivariable LDA (bi-
nary classification of MACE occurrence at 12 months)
and a multivariable Cox analysis (time to MACE). A
backward stepwise strategy (unbiased to univariable
associations17) was followed in both analyses to find
intervariable synergies and address collinearity: All
variables of interest were initially included, and the
less significant in the model iteratively removed,
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until a 0.05 P value threshold was met by all of them.
Significance in the LDA was approximated as signifi-
cance in the generalized linear binomial sigmoid
regression model. To account for both specificity and
sensitivity and class imbalance, the performance of
the resulting configurations was assessed via area
under the receiver-operating characteristic curve
(AUC) for binary classifications and by concordance
index (C-index) for time-dependent curves.

The generality of findings was evaluated by com-
parison of performance in the resubstitution
(apparent performance: learning and testing with the
entire cohort) and cross-validation (optimism-cor-
rected performance: 10 cross-fold-validation repeated
for 100 random data splits). To further strengthen this
generalization, an additional experiment trained the
models only on AIDA-STEMI patients and tested
them on the TATORT-NSTEMI independent cohort
(Supplemental Results: Independent Testing, Sup-
plemental Figure 6). A reproducibility analysis, where
the ED and ES frames were removed to test the
robustness of the new methodology, is included in
Supplemental Results: Reproducibility Analysis
(Supplemental Table 2, Supplemental Figures 7 and
8).

STATISTICAL ANALYSIS. The variables of the study
(baseline characteristics, cardiovascular risk factors,
CMR biomarkers, and significant ES and contraction
PCA coefficients) are described according to MACE
occurrence. Continuous variables are presented as
median (IQR), because they were not normally
distributed in a Shapiro-Wilk test except for the
modes of variation (which are gaussian distributed
by definition). Categoric variables are presented as
frequencies and percentages. The MACE and No
MACE distributions, as well as the cross-validated
AUC distributions, were compared by means of the
nonparametric Wilcoxon rank sum test. Univariate
Cox regression analyses were also performed. HRs,
95% CIs, and the predictor significance are presented
in the results. All analyses were implemented in
Matlab R2019b. The study follows the guidelines
of the Transparent Reporting of Multivariable Pre-
diction Model for Individual Prognosis or Diagnosis
(Supplemental Table 1) and the Prediction Model Risk
of Bias Assessment Tool for model development.17,18

RESULTS

PATIENTS. A total of 1,021 patients with AMI (STEMI:
n ¼ 723; NSTEMI: n ¼ 298) out of the initial 1,235
cohort had both original CMR scans and 12-month
follow-up data available and were included in this
study (No CMR: n ¼ 126; incomplete protocol: n ¼ 86;
no follow-up: n ¼ 2).8,11,12 They underwent CMR a
median of 3 days (IQR 2-4 days) after infarction and
presented a total of 73 MACE (congestive heart fail-
ure: n ¼ 20; reinfarction: n ¼ 21; death: n ¼ 32).11,12

CMR and baseline clinical characteristics are
described in Table 1. As reported previously,8,11,12 the
population was predominantly male, with an overall
median age of 63 years, LVEF 50.5%, and IS 13.4% of
LV mass, with minor MVO. The MACE subgroup was
significantly older, with higher body surface area, a
lower percentage of smokers, and greater prevalence
of hypertension and diabetes mellitus. They also
presented larger ESV, IS, MVO, Killip class on admis-
sion, and number of diseased vessels and lower LVEF.

SHAPE ANALYSIS. The automated segmentation of
the SAx, including all the planes and phases, resulted
in median Dice scores of 0.971 (IQR: 0.945-0.981) and
0.975 (IQR: 0.959-0.982) for LV epicardium and
endocardium, respectively. The Spearman correlation
coefficients (rs) between the volumes calculated from
automated and manual segmentations were 0.916,
0.919, and 0.842 for ESV, EDV, and LVEF, respec-
tively. The median distances between mesh surfaces
and contours were 0.981 mm (IQR: 0.806-1.22 mm) for
ES and 1.02 mm (IQR: 0.828-1.31 mm) for ED. The rs
coefficients between the manual volumes and those
integrated from the mesh were 0.905, 0.914, and
0.792 for ESV, EDV, and LVEF, respectively. The
resulting LVEF calculated from the meshes was
negative for 4 patients because of noise in the mid-
ventricular segmentation that led to an incorrect
phase selection. They were excluded from the sta-
tistical analysis (Figure 1).

Ninety-five percent of the variance was captured
by the first 13 ES shape and the 21 first contraction
modes of variation in PCA analyses. The LDA stepwise
analysis on the combination of ES and contraction
significant modes converged to ES modes 1, 5, and 6
and contraction modes 3, 5, and 16 (Figure 2, Videos 1
and 2). These modes are interpreted as basal (C16),
anterior (ES5, C5), and global impairment, in the form
of increased ESV (ES1), decreased LVEF (C3) and
impaired thickening (ES6) (see Discussion).

ENDPOINT PREDICTION. The automated volumes
calculated from the mesh led to a moderate but sig-
nificant improvement in performance (P < 0.001)
compared with manual contours (Central Illustration).

The most predictive variables of the study were ES
shape and contraction, followed by LVEF, age, IS, and
ESV (Table 1). The LDA on ES shape, described as the
combination of ES modes 1, 5, and 6, improves the
cross-validated AUC (AUCk) of endpoint prediction
from 0.60 to 0.68 (P < 0.001) with respect to ESV; the

https://doi.org/10.1016/j.jcmg.2021.11.027
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TABLE 1 Baseline Characteristics, Cardiovascular Risk Factors, and CMR Biomarkers

All Patients MACE (n ¼ 73) No MACE (n ¼ 948) AUCk P Value HR (95% CI) HR P Value

Age, y 63 (52 to 72) 72 (61 to 77) 63 (52 to 72) 0.659 <0.001 1.80 (1.39-2.32) <0.001

Sex 753/1,011 (74.5) 46/71 (64.8) 707/940 (75.2) 0.505 0.052 0.81 (0.65-1.00) 0.050

Height, cm 2 (1 to 2) 2 (1 to 3) 1 (1 to 2) 0.597 0.003 0.69 (0.55-0.86) 0.001

Weight, kg 81 (72 to 90) 76 (70 to 86) 82 (73 to 90) 0.568 0.035 0.82 (0.64-1.05) 0.110

Cardiovascular risk factors

Current smoking 405/935 (43.3) 19/63 (30.2) 386/872 (44.3) 0.522 0.029 0.75 (0.57-0.97) 0.032

Hypertension 716/1,010 (70.9) 61/71 (85.9) 655/939 (69.8) 0.545 0.004 1.53 (1.13-2.08) 0.006

Hyperlipoproteinemia 624/1,005 (62.1) 45/71 (63.4) 579/934 (62.0) <0.5 0.816 1.03 (0.81-1.30) 0.824

Diabetes mellitus 231/1,010 (22.9) 26/71 (36.6) 205/939 (21.8) 0.526 0.004 1.34 (1.09-1.64) 0.005

Body mass index, kg/m2 27.4 (25.0 to 30.4) 27.0 (25.2 to 30.8) 27.4 (25.0 to 30.3) <0.5 0.959 1.03 (0.82-1.30) 0.773

Body surface area, m2 1.95 (1.83 to 2.08) 1.88 (1.76 to 2.00) 1.96 (1.83 to 2.08) 0.593 0.006 0.74 (0.59-0.94) 0.014

Killip class on admission 0.573 <0.001 0.52 (0.41-0.65) <0.001

1 899/1,011 (88.9) 49/71 (69.0) 850/940 (90.4)

2 76/1,011 (7.5) 13/71 (18.3) 63/940 (6.7)

3 20/1,011 (2.0) 4/71 (5.6) 16/940 (1.7)

4 16/1,011 (1.6) 5/71 (7.0) 11/940 (1.2)

No. of diseased vessels 0.567 0.003 1.40 (1.12-1.75) 0.003

1 502/1,011 (49.7) 25/71 (35.2) 477/940 (50.7)

2 310/1,011 (30.7) 23/71 (32.4) 287/940 (30.5)

3 199/1,011 (19.7) 23/71 (32.4) 176/940 (18.7)

TIMI flow grade after PCI <0.5 0.318 0.95 (0.77-1.16) 0.598

0 19/1,011 (1.9) 1/71 (1.4) 18/940 (1.9)

1 21/1,011 (2.1) 2/71 (2.8) 19/940 (2.0)

2 78/1,011 (7.7) 8/71 (11.3) 70/940 (7.4)

3 893/1,011 (88.3) 60/71 (84.5) 833/940 (88.6)

CMR biomarkers

LV ESV, mL 70 (53 to 91) 86 (60 to 110) 69 (53 to 90) 0.599 0.004 1.43 (1.18-1.73) <0.001

LV EDV, mL 144 (117 to 171) 145 (121 to 170) 144 (117 to 172) <0.5 0.987 1.05 (0.83-1.33) 0.679

LVEF, % 50.5 (43.3 to 57.3) 40.6 (33.1 to 52.2) 50.8 (44.0 to 57.5) 0.683 <0.001 0.80 (0.74-0.87) <0.001

Infarct size, mL 17.2 (6.4 to 30.2) 24.6 (9.7 to 36.4) 16.7 (6.0 to 29.9) 0.591 0.006 1.29 (1.08-1.53) 0.005

Infarct size (% LV mass) 13.4 (5.4 to 21.8) 20.3 (9.6 to 28.9) 13.1 (5.3 to 21.4) 0.609 0.001 1.44 (1.18-1.76) <0.001

MVO, mL 0.00 (0.00 to 1.90) 0.40 (0.00 to 3.00) 0.00 (0.00 to 1.80) 0.543 0.060 1.27 (1.11-1.45) <0.001

MVO (% LV mass) 0.00 (0.00 to 1.39) 0.32 (0.00 to 2.15) 0.00 (0.00 to 1.27) 0.547 0.044 1.26 (1.09-1.46) 0.002

ES shape 0.680

Mode 1 �5 (�135 to 126) 62 (�61 to 233) �10 (�136 to 119) 0.002 1.49 (1.18-1.87) <0.001

Mode 5 0 (�34 to 36) �11 (�51 to 22) 1 (�33 to 37) 0.014 0.73 (0.58-0.91) 0.006

Mode 6 �3 (�30 to 28) �21 (�44 to 3) �2 (�29 to 30) <0.001 0.64 (0.50-0.81) <0.001

Contraction displacement 0.716

Mode 3 �4 (�54 to 62) 49 (�29 to 106) �6 (�55 to 59) <0.001 1.70 (1.36-2.12) <0.001

Mode 5 3 (�37 to 39) �30 (�57 to 23) 4 (�33 to 40) <0.001 0.63 (0.51-0.78) <0.001

Mode 16 1 (�15 to 14) �9 (�19 to 5) 1 (�14 to 15) <0.001 0.65 (0.52-0.82) <0.001

Values are median (IQR) or n/N (%). P values calculated between MACE and No MACE groups. HRs presented with 95% CIs and predictor significance. AUCk provides the predictive power of each biomarker,
assessed via linear discriminant analysis (median AUC, 10-cross-fold validated, 100 random data splits).

AUC ¼ area under the receiver-operating characteristic curve; CMR ¼ cardiac magnetic resonance; EDV ¼ end-diastolic volume; ESV ¼ end-systolic volume; LV ¼ left ventricular; LVEF ¼ left ventricular
ejection fraction; MACE ¼ major adverse cardiac events; MVO ¼ microvascular obstruction; PCI ¼ percutaneous coronary intervention; TIMI ¼ Thrombolysis in Myocardial Infarction.
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LDA on 3D contraction, described by the contraction
modes 3, 5, and 16, increases from 0.68 to 0.72 (P <

0.001) compared with LVEF (Central Illustration).
The combination of the 3D descriptors with only

CMR biomarkers (AUCk ¼ 0.738) and including car-
diovascular factors and basic patient characteristics
(AUCk ¼ 0.747) led to a further improvement
compared with the clinical baselines (P < 0.001).
Similar results were obtained for C-indexes (Table 2).
The LDA and Cox analyses converged to the same
selection of variables except for a deviation in 1
variable. The differences in performance hold in the
independent testing experiment (Supplemental
Figure 6). The resulting receiver-operating charac-
teristic curves, Kaplan-Meier estimates, and addi-
tional multivariable model experiments are included
in Supplemental Figures 9 to 13 and Supplemental
Tables 3 to 6.
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(Left) MACE prediction comparison between ESV and LVEF and the proposed 3D disentanglement into ES shape and contraction. Assessment

based on AUC resubstitution (AUCrs, blue) and 10-cross-fold validation (AUCk, orange), repeated for 100 random data splits (black

distributions). All prediction differences were significant (P < 0.001); y-axis origin set to 0.5 (random classifier). (Right) Anterior views of

representative No MACE (blue) vs MACE (red) ES shape and 3D contraction, and differential thickness maps (ED-ES thickness) in American

Heart Association model representation. Contractions are applied on the mean ED shape (transparent surface) and visualized as resulting ES

shapes to ease comparisons. 3D ¼ 3-dimensional; AUC ¼ area under the receiver-operating characteristic curve; ED ¼ end-diastole;

ES ¼ end-systole; ESV ¼ end-systolic volume; LVEF ¼ left ventricular ejection fraction; MACE ¼ major adverse cardiac events.
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TABLE 2 Risk Prediction Results

Type Model Linear Selection AUCk AUCRS Cox Selection C-Indexk C-IndexRS

Clinical baseline ESV ESV 0.600 (0.598-0.602) 0.605 ESV 0.611 (0.610-0.612) 0.614

LVEF LVEF 0.682 (0.681-0.685) 0.687 LVEF 0.669 (0.668-0.670) 0.671

3D analysis ES shape ES1, ES5, ES6 0.681 (0.679-0.684) 0.693 ES1, ES5, ES6 0.667 (0.665-0.669) 0.677

3D contraction C3, C5, C16 0.716 (0.714-0.718) 0.727 C3, C5, C16 0.700 (0.698-0.702) 0.709

Multivariable CMR ESV, EDV, C5, C16 0.738 (0.736-0.740) 0.750 ESV, EDV, C5, C16 0.728 (0.727-0.730) 0.736

All ESV, EDV, age, Killip,a C5, C16 0.747 (0.745-0.749) 0.766 ESV, EDV, Age, C5, C16 0.741 (0.739-0.744) 0.753

Comparative analysis (linear discriminant analysis and Cox) of clinical baseline, 3D descriptors, and multivariable models with only CMR vs all clinical variables. ESV, EDV, and LVEF calculated from automated
volumes (results with manual volumes presented in Supplemental Table 6). Final selections of variables are reported along with their predictive performances, expressed as AUC and C-index, under cross-
validation (k ¼ 10) and resubstitution (RS). AUCk and C-indexk are presented as median (IQR). All differences were statistically significant (P < 0.001). aKillip class on admission.

3D ¼ 3-dimensional; other abbreviations as in Table 1.
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DISCUSSION

In this study, we present the first large-sized multi-
center CMR study that comprehensively analyzes the
LV 3D shape and contraction after AMI for risk
assessment. We successfully 1) combined AI and
computational anatomy technologies to develop a
fully automated pipeline that segments the cine CMR
SAx stack and identifies the 3D signatures of AMI that
predict risks along the first year of follow-up; 2)
identified these LV shape and contraction macro-
features related to AMI prognosis and built a 3D
reference atlas from more than 1,000 AMI patients;
and 3) proved that a 3D enhancement of ESV and
LVEF not only outperforms the standalone versions,
but also contributes to a significant overall risk pre-
diction improvement in a multivariable setting
including CMR markers, cardiovascular risk factors,
and basic patient characteristics.

AMI UNDER THE LENS OF AUTOMATED SHAPE

ANALYSIS. Our automated method takes a CMR
stack, segments the LV, and summarizes its shape
and contraction related to AMI into 6 biomarkers. It
reduces the time of the analysis to seconds, removing
the burden of manual segmentations. The mesh-
fitting step16 ensures 3D-spatial consistency,
smoothing the 2D segmentations (ie, misalignment,
segmentation errors) and leading to more accurate
volumes. This explains the improvement in MACE
prediction driven by the automated volumes
compared with the manual ones (Central Illustration).

The method, which runs on a standard laptop, is
fully deterministic: Given a scan, it always returns the
same volumes and scores. This removes intra- and
interobserver variability, producing a robust diag-
nosis. The large size of the cohort, the small gap be-
tween resubstitution and cross-validation metrics,
and the narrow variance for the 100 random data
splits suggest the robustness of the method for MACE
prediction. The independent testing experiment
confirmed the generality of the findings (Supple-
mental Figure 6). This was further supported by the
reproducibility analysis studying the effect of delet-
ing the ED and ES frames, which highlights the
robustness of the automated volumes (EDV:
R2 ¼ 0.987; ESV: R2 ¼ 0.990) and confirms a good
reproducibility of the method (multivariable:
R2 ¼ 0.901) (Supplemental Table 2, Supplemental
Figures 7 and 8), which is similar to those of CMR
state-of-art interstudy reproducibility studies.19

As a result of the automated shape analysis, we
have built a 3D LV reference atlas from more than
1,000 patients with AMI that captures the average
shape and contraction after infarction alongside the
main variations (PCA modes). These data and the
resulting risk models, which have been made publicly
available,20 will allow further AMI shape studies,
computer mechanistic simulations, or synthetic pa-
tient data generation for training algorithms or
educational use. The segmenter, specifically modified
to cope with different protocols and scanners (as
described by Corral Acero et al21), and the meshing
pipeline will be likewise available, opening the scope
to other cardiac diseases and applications.

IMPACT AND INTERPRETABILITY OF THE NOVEL

METHODOLOGY. LVEF and ESV are the most estab-
lished markers for postinfarction risk assessment.
Although there are data suggesting that these pa-
rameters can be fully automatically determined with
the use of commercially available software,22 our
proposed methodology is further capable of disen-
tangling them into their enhanced 3D versions. It is
expected that proposed 3D biomarkers capture more
information and achieve additional prognostic value
compared with their unidimensional versions, as
shown in the Central Illustration (the implication of
these AUC improvements is illustrated in Supple-
mental Figure 12). Indeed, although the main moti-
vation of the study was not prediction performance
but rather understanding how the 3D features

https://doi.org/10.1016/j.jcmg.2021.11.027
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modulate risk, the prognostic value of these 3D bio-
markers was superior to any of the variables of the
study (Table 1) and even to the combination of all of
the tissue CMR biomarkers (Supplemental Figure 11).

Furthermore, these 3D patterns are complementary
to the other variables included in the study (Table 1),
as evidenced by their significant contribution in any
of the considered multivariable approaches (Table 2),
unlike, eg, IS, which is predictive according to the
univariate analysis but does not significantly add
value to the multivariable models8 and therefore was
not included in the final selection of variables. These
results demonstrate the prognostic value of the novel
3D metrics in AMI postinfarction risk assessment,
significantly contributing to multivariable models
that improve MACE prediction from 0.68 to 0.75
(cross-validated AUC) compared with LVEF, the clin-
ical baseline (Table 2).

The severity of the infarct is associated with
morphological and functional alterations, and certain
acute changes have proven to be important to AMI
prognosis, but their interplay in modulating MACE
occurrence remains unsolved.4,6,7 In this study, we
identified 3 ES shape variations and 3 contraction
patterns relevant to MACE (Figure 2, Videos 1 and 2),
that suggest 3 possible impairments caused by AMI:
global (C3, ES1, ES6), anterior (C5, ES5), and basal
(C16). Because the ED shape was not predictive, the
changes inmorphology seen in the ESmodes should be
interpreted as functional and not remodeling. These
novel biomarkers are consistent with the predominant
LV remodeling descriptors according to the literature:
ES1 is strongly correlated with ESV (rs ¼ 0.868), C3
with LVEF (rs ¼ �0.563), and ES6 with ES myocardial
thickness.3,6,7 Indeed, any of the prognostic contrac-
tion modes (C3, C5, C16) captures some degree of the
latter thickening impairment. ES5 and C5 are alterna-
tive (ie, not correlated) manifestations of anterior
impairment, where the posterior wall pulls the weak-
ened anterior wall and causes a shift in the LV vertical
axis. This suggests a perfusion impairment in the left
anterior descending (LAD) artery, in agreement with
Ortiz-Pérez et al.9 In addition, C16 points to basal
impairment as an additional risk factor (Supplemental
Figures 14 to 17, where differences are highlighted),
which could be caused by twist differences caused by
circumferential fiber damage (resulting in larger basal
diameters), in contrast to the endocardial vertical and
fiber injuries that lead to decreased LVEF (elongation
and wall thickening, respectively). C16, a basal
contraction impairment, is the signature most com-
plementary to already known predictors.

The derived risk score model, however, does not
include the contraction patterns C2 and C14, which
could be interpreted as related to injury in the left
circumflex and right coronary artery9 (Supplemental
Figures 14 to 16). These patterns were not significant
in the stepwise analysis, suggesting that they could
be implicitly described by linear combinations of the
selected MACE signatures.

Myocardial tissue death is central to pumping
ability and prognosis, but because of hemodynamic
reflexes, quantifying its contribution to acute
remodeling and dysfunction is not straightforward.23

There is an interplay between myocardial 3D shape
changes and microdamage (IS, MVO) that we detected
in our data by the correlation of ES1 with IS
(rs ¼ 0.461) and MVO (rs ¼ 0.345). Risk-related shape
and contraction variations (except for C16) are also
significant in stratifying IS and MVO into low vs high
myocardial damage, using the median values of the
AMI population as threshold (Table 1, Supplemental
Results: Modes Correlation Analysis, Supplemental
Figures 18 to 21). This explains why IS and MVO are
not included in the multivariable risk assessment
models: The myocardial damage information is im-
plicit to the identified shape and contraction modes.

The analysis of endpoints prediction stratifying by
sex, infarct etiology, and LVEF is discussed in
Supplemental Results: Subgroup Analysis (Supple-
mental Figure 17).

TOWARD CLINICAL TRANSLATION. CMR-based risk
models have not yet found their role in clinical
practice despite multiple trials showing their incre-
mental prognostic information in AMI management.8

This is partly explained by the more common avail-
ability of echocardiography, the complexity of CMR
multiparameter models, and the requirement for
significant manual interaction.3,8 Nonetheless, CMR
availability has significantly increased in recent
years, CMR postinfarction protocols have been
shortened, and complex CMR prognostic markers can
now be combined into simple risk score models,8 as
we have shown. Our work further contributes to
facilitating the adoption of CMR postinfarction risk
management in clinical routine by removing the
burden of manual segmentation, along with the
intraobserver and interobserver variability, and
boosting MACE prediction with the use of enhanced
3D CMR metrics. Although further trials should be
considered to validate the findings of this study, the
scientific basis to assume prognosis improvement is
solid.

STUDY LIMITATIONS. Patients were imaged within
10 days after infarction in the absence of optimal
postinfarction CMR imaging time recommendations.8

The effect of this postinfarction imaging time on the
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: This large-size

multicenter CMR study identifies the 3D LV patterns related to

postinfarction risk and proves their superior prognostic infor-

mation compared with the most-established predictors, EF and

ESV. Moreover, it highlights the value of multivariable CMR

models in AMI stratification and further supports the feasibility

of fully automated CMR analysis.

TRANSLATIONAL OUTLOOK: The study demonstrates the

potential of 3D computational models to improve myocardial

infarction management. This is attained by building a refined

understanding on the functional and structural interplay that

modulates risk, and by bringing the robustness of state-of-the-

art tools, which ease the clinical workflow and pave the road

toward multivariable models and CMR imaging use. To further

accelerate this vision and facilitate future contributions, the 3D

shape and contraction atlases and shape models resulting from

the study have been made publicly available.
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proposed 3D modes of variations has not been
assessed. It is, however, hypothesized that we were
capturing acute injury, whose extent and phenotype
can predict outcome, and therefore long-term
myocardial adaptations. The main objective of this
work was to evaluate this hypothesis in a clinical
cohort, and not to optimize MACE prediction. For the
latter, advanced nonlinear classifiers could be
explored. The additional prognostic information of
later chronic remodeling24 could be straightforwardly
incorporated in our pipeline (eg, scan at 3 months).

The study focuses on only 2 instances of the car-
diac cycle (ED and ES). This enables for fair and direct
comparisons between traditional metrics (ESV, LVEF)
and their 3D versions. Future work will explore the
time dimension and benefit from automated seg-
mentations and 3D reconstruction across the cardiac
cycle, presumably finding an even superior marker.
The temporal CMR strains, reported to be prognostic
in postinfarction management,8 should then be
considered.

The PCA geometric features are limited to the
gaussian assumption, yet they satisfactorily cover the
observed variability in the cohort. Although other
approaches25 could be considered for dimensionality
reduction, they usually come at the cost of inter-
pretability. The PCA selection of features is unsu-
pervised, not biased to outcomes prediction but
entirely based on variance, which intrinsically avoids
noise and eases interpretability.

CMR long-axis views were excluded from the 3D
shape regression for the sake of simplicity, which,
although it was not evidenced in our results, may
result in shape-lengthening noise. Finally, the results
are limited to patients with AMI who can undergo a
CMR scan.

CONCLUSIONS

This multicenter CMR study evidences the prognostic
value of novel LV 3D shape and contraction metrics in
AMI risk assessment. Besides, it further proves the
feasibility of fully automated CMR analysis and the
significance of multivariable CMR models in AMI
stratification.
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