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ABSTRACT

Motivation: Non-coding microRNAs (miRNAs) act as regulators of
global protein output. While their major effect is on protein levels of
target genes, it has been proven that they also specifically impact on
the messenger RNA level of targets. Prominent interest in miRNAs
strongly motivates the need for increasing the options available to
detect their cellular activity.
Results: We used the effect of miRNAs over their targets for
the detection of miRNA activity using mRNAs expression profiles.
Here we describe the method, called T-REX (from Targets’ Reverse
EXpression), compare it to other similar applications, show its
effectiveness and apply it to build activity maps. We used six different
target predictions from each of four algorithms: TargetScan, PicTar,
DIANA-microT and DIANA Union. First, we proved the sensitivity and
specificity of our technique in miRNA over-expression and knock-out
animal models. Then, we used whole transcriptome data from acute
myeloid leukemia to show that we could identify critical miRNAs in
a real life, complex, clinically relevant dataset. Finally, we studied
66 different cellular conditions to confirm and extend the current
knowledge on the role of miRNAs in cellular physiology and in cancer.
Availability: Software is available at http://aqua.unife.it and is free
for all users with no login requirement.
Contact: s.volinia@unife.it
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Characterization of genes that control the timing of larval
development in Caenorhabditis elegans revealed two small
regulatory RNAs, lin-4 and let-7 (Reinhart et al., 2000). Soon
thereafter, lin-4 and let-7 were reported to represent a new class of
small RNAs named microRNAs (miRNAs) (Lagos-Quintana et al.,
2001; Lau et al., 2001; Lee and Ambros, 2001). miRNAs have since
been found in plants, green algae, viruses and animals (Griffiths-
Jones et al., 2008). The number of identified miRNA genes in human
now surpasses 1000 (Landgraf et al., 2007; Ruby et al., 2006, 2007).
miRNAs are involved in a variety of biological processes including
cell cycle regulation, differentiation, development, metabolism,
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neuronal patterning and aging (Bartel, 2009). Alterations in miRNA
expression are also involved in the initiation, progression and
metastasis of human tumors and the consequences are just starting
to be understood (Spizzo et al., 2009).

The number of putative miRNA targets is thought to be >60% of
the total human genes, as novel algorithms allowed to increase by
nearly 3-fold the number of conserved miRNAtarget sites (Friedman
et al., 2009).

In principle from miRNA targets regulation it should be possible
to infer miRNA expression. Farh and colleagues (Farh et al.,
2005) firstly showed that tissue-specific miRNA activities could
be predicted by analyzing mRNA expression profiles combined
with miRNA seed analysis (a surrogate for target prediction). They
showed that site depletion due to miRNA activity occurs specifically
in tissue types expressing the corresponding miRNA. To explore
the specificity of depletion, they used a modified Kolmogorov–
Smirnov (KS) test to determine whether the set of genes with sites
in either human or mouse orthologs were expressed at lower levels
than controls. This finding was confirmed by Sood and coworkers
(Sood et al., 2006). But not until recently the observation could
be quantified at the whole proteome and transcriptome level (Baek
et al., 2008; Selbach et al., 2008). Both groups used quantitative
mass spectrometry to measure the proteome response as function
of mRNA activity and showed that mRNA destabilization was a
major component of miRNA activity. Furthermore, both groups
massively tested different prediction algorithms for miRNA targets.
According to Selbach’s article DIANA-microT was found to be
the most specific method (Maragkakis et al., 2009), with PicTar
(Krek et al., 2005) and TargetScan (Lewis et al., 2005) close
seconds.

We devised, validated and applied a technique for the generation
of miRNA activity networks using messenger RNA profiles,
therefore named Targets’ Reverse Expression (T-REX). After Fahr
(Farh et al., 2005), other groups have developed similar techniques
(Arora and Simpson, 2008; Cheng and Li, 2008), considering mean
absolute target gene expression, rank sum tests or ‘ranked ratios’.
Arora and Simpson confirmed that many miRNAs with reduced
target gene expression corresponded to those known to be expressed
in 8 cognate normal tissues. They validated their approach in two in-
vitro experiment: inhibition of miR-122 by an antagomir (Krutzfeldt
et al., 2005) and miR-124 transfection. Cheng and Li (2008)
proposed the AC score, a generalization of the enrichment score in
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gene set enrichment analysis, or GSEA, (Subramanian et al., 2005).
They again applied it to two in-vitro models: transfection of wild type
and mutant miR-1 and miR-124. Huang et al. (2007) demonstrated
that paired expression profiles of miRNAs and mRNAs can be
used to identify functional miRNA-target relationships. They used a
Bayesian data analysis algorithm, GenMiR++, to identify a network
of 1597 high-confidence target predictions for 104 human miRNAs,
which was supported by RNA expression data across 88 tissues
and cell types. Compared to sequence-based predictions, GenMiR++
predictions were more accurate predictors for let-7b levels. Recently,
a group used anti-correlation between expression of miRNA host
genes and their putative targets (Gennarino et al., 2009). This last
method can be used only for those miRNAs for which host genes are
known. Finally, DIANA-mirExTra, available online (Maragkakis
et al., 2009), considers a lists of regulated and one of background
genes, but it has not been described further yet.

Using T-REX we have extensively screened a range of different
physiological and pathological conditions. One of the main values
of this study lies in the practical application of T-REX to clinical
data, which led to some interesting novel observations.Among them,
miRNA action in the control of lag log phase in mesenchymal
stem cell growth, p53/TGF-beta pathways, chronic lymphocytic
leukemia, acute myeloid leukemia and cancer metastasis.

2 METHODS

2.1 Expression datasets
Expression profiles for messenger RNA were obtained by human or mouse
genome wide Affymetrix assays. GDS datasets were directly imported
from GEO (Barrett et al., 2007) by using BRB-ArrayTools (Simon et al.,
2007), while for GSE records the CEL files were imported and RMA
normalized. Genes whose expression differed by at least 1.5-fold from
the median in at least 20% of the arrays were used. Values relative
to each coding gene, for input to T-REX, were obtained by using the
appropriate statistical test (for example, random-variance t-test for a two
classes experiment or Spearman’s correlation for quantitative traits). The
random-variance t-test is an improvement over the standard separate t-
test as it permits sharing information among genes about within-class
variation without assuming that all genes have the same variance (Wright
and Simon, 2003). Two classes profiles were subject to miRNA analysis
only when the prediction rate of the profiles was >85% (the BRB Array
Tools classifier was used). For quantitative traits (i.e. time, dosage, age),
we tested the hypothesis that the Spearman’s correlation between gene
expression and the trait was zero. The tests P-values were used in a
multivariate permutation test (Korn et al., 2007) in which the traits
were randomly permuted among arrays. The multivariate permutation test
was used to provide 90% confidence that the false discovery rate was
<10%.

2.2 Targets’ Reverse Expression (T-REX)
We used four algorithms and six target predictions: PicTar 5-ways (43 079
predictions for 130 miRNAs in 2513 target mRNAs) and PicTar 4-ways
(75 968 predictions for 178 miRNAs in 9152 target mRNAs) were obtained
from UCSC; TargetScan 5.1 [1 243 782 (55 028 conserved) predictions for
669 miRNAs (153 conserved miRNA families) in 17 689 (9448 conserved)
target mRNAs]; DIANA-microT 3.0 (38 859 predictions for 165 miRNAs
in 5100 target mRNAs) and DIANA-Union (472 428 predictions for 494
miRNAs in 18 362 target mRNAs). The T-REX results are reported for each
one of the different predictions, thus the user can choose the preferred one(s).
MicroT identifies miRNA targets by combining TargetScan and PicTar
predictions (Maragkakis et al., 2009) and has been shown to be the most

Fig. 1. Lack of miR-223 activity in miR-223 KO mice. The cumulative
distribution function (ECDF) plot of the KS test correctly identifies target
coding genes specifically controlled by miR-223. t-test values from miRNA
KO cells versus control cells were analyzed. miR-223 was detected as
the miRNA with the most up-regulated targets byT-REX. The blue curve
(miR-223 target genes), on the right and below the black non-targets curve,
indicates up-regulation of target messenger RNAs. The red dotted curve
is that expected by random association and follows tightly that one of the
non-target controls.

selective algorithm in a proteome scan (Selbach et al., 2008), thus we used it
as the preferred one for the results reported in this paper. For each different
miRNA the KS test was applied to the predicted target and non-target coding
genes. The KS statistic is the maximum difference between the empirical
cumulative distribution function (ECDF) of the two target and non-target
distributions. The KS plots report the ECDF curves (Fig. 1, Supplementary
Fig. 1A and C) and the box-plots (Supplementary Fig. 1B and D) for each
significant miRNA. The Benjamini and Hochberg correction for multiple
testing was applied to the miRNA P-values. Forty-six out of 66 experiments
yielded at least one miRNA from T-REX. DAVID (EASE) was used for the
functional annotation and statistical evaluation of GO terms associated to the
regulated miRNA targets (Huang da et al., 2009). The T-REX results can be
accessed at http://aqua.unife.it/T-REX.

2.3 Network clustering
Clustering algorithms are often used in biology in order to extract coherent
groups of nodes from expression networks. Here we used a circular layout to
portrait interconnected ring and star topologies. Circular layouts emphasize
group and tree structures within a network. The graph-based clustering
algorithms MCL (Enright et al., 2002) has been shown to enable good
performances in extracting co-regulated genes from transcriptome networks
(Brohee and van Helden, 2006). We applied it to detail the network of the
most active miRNAs identified by T-REX in 66 different datasets.

3 RESULTS

3.1 Rationale and Implementation
Recent reports (Baek et al., 2008; Selbach et al., 2008) clearly
indicated that coding genes target of miRNAs are specifically
repressed both at protein and at messenger RNA level. Therefore,
we developed an algorithm, named T-REX, to detect such targets’
repression at mRNA level and to infer the specific controller
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miRNA/s. The rationale was solely based on the fact that when
a miRNA is active in the cell, its target mRNAs are repressed.
Conversely, if the targets are over-expressed then the controlling
miRNA is down-regulated.

First, a statistical value was obtained for the coding mRNAs in
the dataset/experiment. For example, in a two-class experiment (i.e.
treated versus non-treated cells, or disease versus control) we used
the t-value for each measured mRNA (routinely between 5000 and
10 000). Alternatively, for a quantitative analysis (i.e. time course or
dose-response) we used the Spearman’s rank correlation coefficient.
Then we applied the KS test to the respective values of target and
non-target genes for each miRNA in each prediction algorithm.

3.2 Validation
We needed to prove that the T-REX algorithm could correctly detect
the genome wide repression or de-repression of target messenger
RNAs. Therefore we analyzed a number of expression profiles,
where the perturbation was due to over-expression or absence of
a specific miRNA. Firstly, we used two datasets from transfections
of miR-124, in HepG2 and neuroblastoma (Supplementary Fig. 1A).
In both experiments miR-124 was correctly detected as the miRNA
with the most down-regulated targets. The blue curve (miR-124
target genes predicted by microT), on the left and above the
black non-targets curve, indicated specific down-regulation of target
messenger RNAs. Similarly, the box-plot (Supplementary Fig. 1B)
showed an excess of repressed miR-124 targets, indicated by a
t-value distribution in targets skewed towards negative values. The
neuroblastoma data showed significant miR-124 activation with all
the prediction algorithms (TargetScan, microT and Diana Union),
but PicTar, for which no significant miRNA was identified (see
the web site). Transfections were relatively ease for T-REX: for
example, all the six predictors correctly identified miR-29 upon
transfection of K562 cell lines (see online Results). Furthermore,
no miRNAs were identified with any of the predictors in a negative
control: Luciferase versus mock transfections (Supplementary
Table 1). The transfections of a miRNA in cell cultures still
represented controlled in vitro experiment, far from the complex
physio-pathological in vivo conditions we were interested to unravel.
Thus, we tested T-REX on a more relevant model, a miRNA knock-
out (KO) mouse. Figure 1 describes the results for such a miR-223
KO mouse model (Baek et al., 2008).

Again our method proved to be both selective and specific:
following the loss of miR-223 activity, its targets were the most
up-regulated genes (Supplementary Table 2). The blue curve
(miR-223 target genes), on the right and below the black non-
targets curve, indicated up-regulation of target messenger RNAs.
The relative box-plot (Supplementary Fig. 1D) also showed an
excess of up-regulated miR-223 targets, with a t-value distribution
skewed towards positive values.

As an additional element of validation, we tested liver cells from
Dicer KO mice. In these cells the machinery for the production of
mature miRNA is deficient and one would expect a general loss
of miRNA activity. In complete agreement with this hypothesis,
while the mRNA profile was balanced (comprising roughly an
equal number of up- and down-regulated coding genes, ∼3000,
P <0.05), we identified 15 losses and no gains of miRNA activity
(Chi square, P <0.001, Supplementary Table 3). Thus, all four tests
on controlled experiments showed a robust performance of T-REX.

Since we were ultimately interested in deciphering the miRNome
regulation in complex and clinically relevant samples, passing those
controlled experiment was conditio sine qua non but not sufficient.
Therefore we proceeded to validate T-REX by querying a ‘real life’
experiment, where conditions were not pre-determined: the overall
survival in acute myeloid leukemia (AML). As a statistical value
we used the log2 of hazard ratios derived from Cox regression. In
Supplementary Table 4 we show the results of studying the miRNA
activity associated to patients’ overall survival in acute myeloid
leukemia. We performed the KS test on the log2 of the hazard
ratios derived from Cox regression. miR-181, miR-155 and miR-
10 (Garzon et al., 2008; Marcucci et al., 2008; O’Connell et al.,
2008) were correctly identified among the microRNAs with most
significant association to patients’ survival. In fact, miR-155 and
miR-181 (Marcucci et al., 2008) and miR-10 (Garzon et al., 2008)
were confirmed by miRNA chips and RT-PCR. It has to be noted
that the queried AML dataset was unrelated to the confirmation AML
datasets, underlining the sensitivity of T-REX.

3.3 The miRNA activity map
We applied T-REX to 66 different human or mouse studies to
generate a map of miRNA activity. Forty-six out of 66 experiments
(69.6%) yielded at least one significant miRNA (adjusted P <0.05).
The miRNAs and the associated cellular conditions are listed in
Supplementary Table 5. The miRNA-cellular conditions networks
for either activated or repressed miRNAs are shown in Figures 2

Fig. 2. The network of activated miRNAs in 35 different cellular conditions
(868 edges, adjusted P <0.05). Layout style is Circular (BCC isolated).
Each edge color indicates a different cellular condition. External nodes were
rearranged for clarity in the figure. Yellow hexagonal nodes represent the
cellular conditions. This network representation emphasizes miRNAs which
are associated to one cellular condition, or vice-versa. Abbreviations: CRC,
colorectal carcinoma; ES, embryonic stem cells; IPS, induced pluripotent
stem cells; MEFs, mouse embryonic fibroblasts; NSC, neural stem cells;
TGF, tumor growth factor-beta; MDS, Myelodysplasia; CLL, chronic
lymphocytic leukemia; Wt, wild-type; Mut, mutated.
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Fig. 3. The network of miRNAs with loss of activity in 24 different
cellular conditions (418 edges, adjusted P <0.05). Layout style is Circular
(BCC isolated). Each edge color indicates a different cellular condition.
Abbreviations: IDC, invasive/infiltrating ductal carcinoma; DCIS, ductal
carcinoma in situ.

and 3, respectively. Figure 2 shows the network for miRNAs with
gain of function in 35 different cellular conditions. Conversely,
in Figure 3, is reported the network of miRNAs with loss of activity
in 24 different cellular conditions.

To fine tune the selective threshold for activity, we investigated
the frequency distribution of all significant miRNAs from T-REX
(Supplementary Fig. 2). The resulting curve indicated a change in
slope for P < 0.0003, due to an excess of highest scoring miRNAs.
When using this P-value as a threshold, the controls still behaved as
expected, i.e. miR-124 was identified in miR-124 transfections (in
both the neuroblastoma and the HepG2 datasets). Thus we applied
this very stringent threshold to select 176 bona fide modulated
miRNAs across the 66 experiments.

Besides the results of the miR-124 and miR-223 controls, we
detected an additional number of confirmatory signals in the T-REX
miRNA map. For example, the members of the miR-302 cluster
(a/b/c/d) were expressed in pluripotent hES (Landgraf et al., 2007)
and iPS cells (Wilson et al., 2009) and repressed during erythroid
differentiation. miR-34b was active in p53 experiment, in agreement
to its known regulation (Chang et al., 2007; Corney et al., 2007;
He et al., 2007). For a visual representation of the selected
miRNAs, and their respective cellular conditions, we generated
a miRNAs/conditions network (Fig. 4). Clusters of co-regulated
miRNAs were detected by using MCL (Brohee et al., 2008) and
were represented by edges of different colors. The functionally
related experiments on pluripotent stem cells (iPS and hES) clustered
together as expected.

miR-375 was active in lag–log phase of mesenchymal stem cells
(MSCs), and miR-372 in induction of pluripotent iPS from neuronal

stem cells (Voorhoeve et al., 2006). miR-96 was active in both iPS
cells and lag–log phase of MSCs. miR-29 family members were
induced in lag–log phase of MSCs and repressed in breast cancer
progression and early colorectal cancer (CRC) mucosa (Fabbri et al.,
2007; Mott et al., 2007). miR-27a/b (Mertens-Talcott et al., 2007)
were activated in p53 experiment (irrespective of TGF-beta) and
during cancer progression (melanoma versus benign nevi). miR-
181a/b/c were repressed in early CRC mucosa and correlated to Zap
70 prognosis in CLL (Calin et al., 2005). miR-195 was activated
by p53, positively correlated to Zap70 in CLL and repressed in
early CRC mucosa (like miR-194). miR-17-5p was active in the p53
dataset (no TGF-beta) and repressed during erythroid differentiation.
The miR-15/16 cluster was active in p53, irrespective of TGF-beta,
correlated with CLL prognosis (Calin et al., 2008) and was repressed
in early CRC mucosa (Bonci et al., 2008). miR-137 was active
in the progression from benign nevi to melanoma (Bemis et al.,
2008). When clusters of co-regulated miRNAs were detected by
using MCL (Brohee et al., 2008), an interesting cluster contained
miR-26a/b which were active in the basal subtype of breast cancer
and repressed upon estradiol treatment of MCF7 breast cancer
cell line.

Additional intriguing results could be extracted from the 1110
remaining significant miRNAs with scores <3.50 (Supplementary
Table 5). For example, the fastest recovering patients from trauma
had active miR-302 and miR-372 (pluripotent stem cells), active
miR-205 [epithelial to mesenchymal transition (Gregory et al.,
2008)] and miR-221/222 [positive regulators of cell cycle (le
Sage et al., 2007)]. We then analyzed the transcriptome-wide
expression profiles of 20 pulmonary metastases of clear cell renal
cell (CCRCC) carcinoma in order to identify miRNAs associated
with two important prognostic factors: the disease-free interval after
nephrectomy (DFI) and the number of metastases per patient. In
CCRC four miRNAs were negatively associated to disease free
intervals, i.e. highly expressed in aggressive tumors with short DFI:
miR-339, miR-221/222 and miR-188. In the same patients, miR-129,
miR-29a/b/c, miR-30-3p and miR-299-3p correlated to the number
of metastases present in the lungs. Myelodysplasia expressed higher
levels of miR-181a/b/c when compared to CD34 positive cells.
miR-34 was down-regulated upon p63 depletion by shRNA. The
effect of cigarette smoke on the large airways included the down-
regulation of miR-1 and miR-206 (Kim et al., 2006). The lack
of FoxO in the LSK cell population enriched for hematopoietic
stem cells (HSCs) (Tothova et al., 2007) led to the down-regulation
miR-155 and miR-30 family. Zfx is a zinc finger protein of the
Zfy family, whose members are highly conserved in vertebrates
and is involved in embryonic and adult stem cells (SCs) self-
renewal (Galan-Caridad et al., 2007). Analysis of embryonic and
hematopoietic SCs lacking the transcription factor Zfx showed that
miR-29s were down-regulated.

A side-product of our miRNA activity mining procedure was
the identification of the regulated targets in the corresponding
mRNA profile (Supplementary Material). The list of the regulated
gene targets can be used to perform a Gene Ontology (GO)
analysis and identify the affected cellular functions. For example,
for the metastatic renal cancer (CCRCC) Supplementary Table 6
indicates the 41 genes which are targets of miR-221/222 and are
regulated in the tumor profile. The GO analysis revealed that the
miR-221/222 targets were significantly enriched for genes involved
in the regulation of progression through cell cycle. For the same
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Fig. 4. The network of the 176 most significant miRNAs (adjusted P <0.0003; score >3.5) indentified from different cellular conditions. Out of 66 tested
cellular conditions, 17 display highly significant miRNAs. The condition labels are colored in yellow. miRNA grouping was obtained by MCL clustering
and is indicated by the colored edges. For example the orange connects correctly two different, but related, experiments: hES cells and iPS, both pluripotent
human cell types, with activation of miR-302 cluster and miR-372. miR-26a/b are shared by two independent experiment on breast cancer: estradiol treatment
of MCF7 cell line and difference between basal and non-basal subtypes. Abbreviations: MSC, mesenchymal stem cells. Additional details of the experiments
are reported in the Supplementary Material.

disease and the miR-29 family members, the significant GO terms
associated to the CCRCC profiles were extracellular matrix and focal
adhesion (Supplementary Table 7).

4 DISCUSSION
We have devised, developed, implemented and validated, T-REX, a
technique to infer the activity of miRNAs from expression profiles
of messenger RNA. T-REX identifies regulated miRNAs via the
modulation of their predicted targets. Predicted target lists might
contain false positives and lack true positives. Nevertheless, we
postulated that the large number of measured, although not validated,
predicted targets for a miRNA should still result in efficient mining

of its cellular activity. This hypothesis was confirmed by the
positive performance on control experiments (two independent
miR-124 over-expression experiments and the granulocytes from
miR-223 KO mice). Additional confirmations of T-REX specificity
were obtained from the Luciferase negative control (no regulated
miRNAs, as expected) and from the conditional Dicer KO
liver. While approximately the same number of up- and down-
regulated coding mRNAs was present in the Dicer KO mice, only
repressed, and no activated, miRNAs were detected. Such a highly
unbalanced miRNA profile was indeed the expected one from Dicer
KO cells, where the machinery for pre-miRNA processing was
defective and thus no active/mature miRNAs should have been
present.
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Nevertheless passing controlled experiments was only a first
validation step for T-REX. We further validated it on a real life
experiment, investigating the miRNA activity associated to patients’
survival in acute myeloid leukemia. The detection of miR-181 and
miR-155 (Garzon et al., 2008; Marcucci et al., 2008; O’Connell
et al., 2008) positively confirmed the detection power of T-REX
in a complex, clinically relevant, dataset. It has to be noted here
that the various prediction algorithms behave somehow differently.
Only microT and TargetScan (ver 5.1, conserved sites) identified
these two crucial miRNAs. Earlier TargetScan Ver 4.2 did not pick
up miR-181, nor it did the TargetScan prediction based on the
non-conserved sites. DIANA-Union did not detect miR-181, while
PicTar 5ways did not detect miR-155. PicTar 4 ways did not detect
any of the two miRNAs. The version of TargetScan with conserved
sites contains around 50 000 predictions, while the one with the
non conserved sites contains over 1 million. DIANA-Union is too
composed of a very large number of predictions (472 428). Thus
it appears that algorithms with a very large number of prediction
sites are less reliable than those with fewer, possibly more reliable,
sites. To conduct a systematic and rigorous evaluation of T-REX
and other related applications large mRNA/miRNA datasets, run on
homogeneous platforms, will need to be available.

Having proven the specificity and sensitivity of T-REX, we
proceeded to reverse identify the miRNAs involved in more than
60 different physiological and pathological conditions, including
cancers and leukemia (Supplementary Material). One hundred and
seventy-six associations between miRNAs and cellular conditions
were identified when using a very stringent threshold (Fig. 4). Some
of our findings confirmed known activities, such as miR-302 in
embryonic stem cells and miR-34 in the p53 pathway, while others
revealed novel miRNAs/pathways associations, including control
of lag-log phase in MSC growth, p53/TGF-beta pathways, CLL
prognosis, cancer metastasis. In metastatic renal cancer (CCRCC)
four miRNAs were highly expressed in aggressive tumors: miR-339,
miR-221/222 and miR-188. Activation of miR-221/222 had been
observed in other cancer types. In fact, miR-221/222 are cell cycle
accelerators, since they work by controlling cell cycle inhibitors
CDKN1C/p57 and CDKN1B/p27 (Fornari et al., 2008; Galardi
et al., 2007; le Sage et al., 2007). No functions have yet been
reported for the two other active miRNAs, miR-339 and miR-188.
In the same renal cancer patients, miR-129, miR-29a/b/c, miR-30-
3p and miR-299-3p were positively correlated to the number of
lung metastases. Gebeshuber and colleagues (Gebeshuber et al.,
2009) showed that over-expression of miR-29a led to epithelial to
mesenchymal transition (EMT) and metastasis in cooperation with
oncogenic Ras signaling. They also observed enhanced miR-29a
in breast cancer patient samples. The roles of miR-129 and miR-
299 in cancers have not been yet exposed. Myelodysplasia (MDS)
expressed high levels of miR-181a/b/c when compared to CD34
positive cells, a novel finding as nothing is yet known about the
role of miRNAs in MDS. miR-34s, which are downstream of p53
(He et al., 2007), appeared down-regulated upon p63 depletion
by shRNA. The effect of cigarette smoke on the large airways
included the down-regulation of miR-1 and miR-206, two genes
induced during differentiation of C2C12 myoblasts in vitro (Kim
et al., 2006). The lack of FoxO in the lineage-negative Sca-1+, c-
Kit+ (LSK) cell population, enriched for hematopoietic stem cells
(Tothova et al., 2007), led to the down-regulation of miR-155 and
of the miR-30 family. Analysis of embryonic and HSCs lacking the

transcription factor Zfx ,involved in embryonic and adult SCs self-
renewal (Galan-Caridad et al., 2007), showed that the miR-29s were
down-regulated when Zfx was absent.

In conclusion, the molecular dissection of miRNA activities, by
using messenger RNA profiles and T-REX, yielded highly concise
signatures from large mRNA experiments or patient cohorts, thus
helping to unravel their functional comprehension and to escalate
one level towards their molecular decoding. An exemplification of
this feature was well represented by the trauma dataset. The samples
from fastest recovering patients had active miR-302, miR-372 (both
expressed in pluripotent stem cells) and miR-205 (epithelial to
mesenchymal transition). The presence of these miRNAs strongly
suggested a higher number of pluripotent or mesenchymal cells in
the tissues which recovered faster from trauma.
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