S

ELS

Since January 2020 Elsevier has created a COVID-19 resource centre with
free information in English and Mandarin on the novel coronavirus COVID-
19. The COVID-19 resource centre is hosted on Elsevier Connect, the

company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related
research that is available on the COVID-19 resource centre - including this
research content - immediately available in PubMed Central and other
publicly funded repositories, such as the WHO COVID database with rights
for unrestricted research re-use and analyses in any form or by any means
with acknowledgement of the original source. These permissions are
granted for free by Elsevier for as long as the COVID-19 resource centre

remains active.



Informatics in Medicine Unlocked 25 (2021) 100681

Contents lists available at ScienceDirect

im

Informatics in Medicine Unlocked INFORMATICS

ELSEVIER journal homepage: www.elsevier.com/locate/imu

L)

Check for

Robust chest CT image segmentation of COVID-19 lung infection based on &
limited data

Dominik Miiller , Inaki Soto-Rey, Frank Kramer

IT-Infrastructure for Translational Medical Research, Faculty of Applied Computer Science, Faculty of Medicine, University of Augsburg, Germany

ARTICLE INFO ABSTRACT

Keywords: Background: The coronavirus disease 2019 (COVID-19) affects billions of lives around the world and has a sig-
COVID-19 nificant impact on public healthcare. For quantitative assessment and disease monitoring medical imaging like
Segmentation

computed tomography offers great potential as alternative to RT-PCR methods. For this reason, automated image
segmentation is highly desired as clinical decision support. However, publicly available COVID-19 imaging data
is limited which leads to overfitting of traditional approaches.

Methods: To address this problem, we propose an innovative automated segmentation pipeline for COVID-19
infected regions, which is able to handle small datasets by utilization as variant databases. Our method fo-
cuses on on-the-fly generation of unique and random image patches for training by performing several pre-
processing methods and exploiting extensive data augmentation. For further reduction of the overfitting risk, we
implemented a standard 3D U-Net architecture instead of new or computational complex neural network
architectures.

Results: Through a k-fold cross-validation on 20 CT scans as training and validation of COVID-19, we were able to
develop a highly accurate as well as robust segmentation model for lungs and COVID-19 infected regions without
overfitting on limited data. We performed an in-detail analysis and discussion on the robustness of our pipeline
through a sensitivity analysis based on the cross-validation and impact on model generalizability of applied
preprocessing techniques. Our method achieved Dice similarity coefficients for COVID-19 infection between
predicted and annotated segmentation from radiologists of 0.804 on validation and 0.661 on a separate testing
set consisting of 100 patients.

Conclusions: We demonstrated that the proposed method outperforms related approaches, advances the state-of-
the-art for COVID-19 segmentation and improves robust medical image analysis based on limited data.

Limited data
Computed tomography
Deep learning
Artificial intelligence

infection [3,4,6,7]. Additionally, the rapid increase of confirmed cases
and the resulting estimated basic reproduction numbers show that
SARS-CoV-2 is highly contagious [4,6,8]. The WHO named this new
disease “coronavirus disease 2019”, short form: COVID-19.

An alternative solution to the established reverse transcription po-
lymerase chain reaction (RT-PCR) as standard approach for COVID-19
screening or monitoring is medical imaging like X-ray or computed to-
mography (CT). The medical imaging technology has made significant
progress in recent years and is now a commonly used method for diag-
nosis, as well for quantification assessment of numerous diseases [9-11].
Particularly, chest CT screening has emerged as a routine diagnostic tool
for pneumonia. Therefore, chest CT imaging has also been strongly
recommended for COVID-19 diagnosis and follow-up [12]. In addition,
CT imaging is playing an important role in COVID-19 quantification
assessment, as well as disease monitoring. COVID-19 infected areas are

1. Introduction

The ongoing coronavirus pandemic has currently (May 18, 2021)
spread to 220 countries in the world [1]. The World Health Organization
(WHO) declared the outbreak as a “Public Health Emergency of Inter-
national Concern” on the January 30, 2020 and as a pandemic on the
March 11, 2020 [2,3]. Because of the rapid spread of severe respiratory
syndrome coronavirus 2 (SARS-CoV-2), billions of lives around the
world were changed. A SARS-CoV-2 infection can lead to a severe
pneumonia with potentially fatal outcome [3-5]. Until now, there are
163,714,589 confirmed cases in total resulting in 3,392,649 deaths [1].
Through a combined international effort, multiple vaccines were rapidly
developed, and various countries already began large vaccine cam-
paigns. However, there is still no effective treatment in case of an
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Abbreviations

CNN Convolutional neural network
CT Computed tomography
COVID-19 coronavirus disease 2019
DSC Dice Similarity Coefficient

FP False positive rate

FN False negative rate

GGO Ground-glass opacity

HU Hounsfield units

IoU Intersection-over-Union

MIS Medical image segmentation
ROI Regions of interest

RT-PCR Reverse transcription polymerase chain reaction
N True negative rate

TP True positive rate

distinguishable on CT images by ground-glass opacity (GGO) in the early
infection stage and by pulmonary consolidation in the late infection
stage [6,12,13]. An illustration of COVID-19 infected regions on a CT
scan can be seen in Fig. 1. In comparison to RT-PCR, several studies
showed that CT is more sensitive and effective for COVID-19 screening,
and that chest CT imaging is more sensitive for COVID-19 testing even
without the occurrence of clinical symptoms [10,12-14]. Notably, a
large clinical study with 1014 patients in Wuhan (China) [12] deter-
mined that chest CT analysis can achieve 0.97 sensitivity, 0.25 speci-
ficity and 0.68 accuracy for COVID-19 detection.

Still, evaluation of medical images is a manual, tedious and time-
consuming process performed by radiologists. Even though increasing
CT scan resolution and number of slices resulted in higher sensitivity
and accuracy, these improvements also increased the workload. Addi-
tionally, annotations of medical images are often highly influenced by
clinical experience [15,16].

A solution for these challenges could be clinical decision support
systems based on automated medical image analysis. In recent years,
artificial intelligence has seen a rapid growth with deep learning models,
whereas image segmentation is a popular sub-field [9,17,18]. The aim of
medical image segmentation (MIS) is the automated identification and
labeling of regions of interest (ROI) e.g. organs like lungs or medical
abnormalities like cancer and lesions. In recent studies, medical image
segmentation models based on neural networks proved powerful pre-
diction capabilities and achieved similar results as radiologists
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regarding the performance [9,19]. It would be a helpful tool to imple-
ment such an automatic segmentation for COVID-19 infected regions as
clinical decision support for physicians. By automatic highlighting
abnormal features and ROIs, image segmentation is able to aid radiol-
ogists in diagnosis, disease course monitoring, reduction of
time-consuming inspection processes and improvement of accuracy [9,
10,20]. Nevertheless, training accurate and robust models requires
sufficient annotated medical imaging data. Because manual annotation
is labor-intensive, time-consuming and requires experienced radiolo-
gists, it is common that publicly available data is limited [9,10,16]. This
lack of data often results in an overfitting of the traditional data-hungry
models. Especially for COVID-19, large enough medical imaging data-
sets are currently unavailable [10,16].

In this work, we push towards creating an accurate and state-of-the-
art MIS pipeline for COVID-19 lung infection segmentation, which is
capable of being trained on small datasets consisting of 3D CT volumes.
In order to avoid overfitting, we exploit extensive on-the-fly data
augmentation, as well as diverse preprocessing methods. In order to
further reduce the risk of overfitting, we implement the standard U-Net
architecture instead of other more computational complex variants, like
the residual architecture of the U-Net. Furthermore, we use a sensitivity
analysis with k-fold cross-validation for reliable performance
evaluation.

Our manuscript is organized as follows: Section 1 introduces the
current challenges, our research question and related work on COVID-19
image analysis research. In Section 2, we describe our proposed pipeline
including the datasets, preprocessing methods, proposed neural network
and evaluation techniques. In Section 3, we report the experimental
results, and discuss these in detail in Section 4. In Section 5, we conclude
our paper and give insights on future work. The Appendix contains
further information on the availability of our trained models, all result
data and the code used in this research.

1.1. Related work

Since the breakthrough of convolutional neural network (CNN) ar-
chitectures for computer vision, neural networks became one of the most
accurate and popular machine learning algorithms for automated
medical image analysis [9,17,21]. Two of the major tasks in this field are
classification and segmentation. Whereas medical image classification
aims to label a complete image to predefined classes (e.g. to a diagnosis),
medical image segmentation aims to label each pixel in order to identify
ROIs (e.g. organs or medical abnormalities). Popular deep learning ar-
chitectures, which achieved performance equivalent to humans, are

Fig. 1. Visualization of COVID-19 infected regions in a chest CT. The left image is the unsegmented CT scan, whereas the right image shows segmentation of lungs
(blue) and infection (red). The infected regions are distinguishable by GGOs and pulmonary consolidation in the lung regions. The image was obtained from the
analyzed CT dataset [45]. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Inception-v3 [22], ResNet [23], as well as DenseNet [24] for classifi-
cation and VB-Net [25], U-Net [26] and various variants of the U-Net for
segmentation [10,27].

For measuring the performance of image segmentation models, it is
important to select suited metrics for reliable evaluation. Especially, in
medical image segmentation, images reveal a large class imbalance
between a small but important ROI and the large number of remaining
pixels defined as background. The ideal metric should heavily focus on
the correct predictability for the ROI, which is usually less than 5 % of
pixels of the total image. Taha et al. [28] discussed the behavior and
requirements of 3D medical image segmentation metrics in detail and
demonstrated that metric behavior can have advantages as well as dis-
advantages. The disadvantage lays in the restrictiveness of the seg-
mentation patterns. Even if a ROI is correctly identified, small
annotation differences, which can arise from not computational refined
annotations, can lead to drastic scoring variances due to the large class
imbalance in medical imaging. Still, the advantage as well as the ne-
cessity of using false negative focused metrics lays in the class imbal-
ance, too. Other common metrics like accuracy are not suited for
medical image segmentation due to the true negative influence. There-
fore, the scientific community, strongly favors F-score based metrics like
the Dice similarity coefficient (1), also called F-1, or the
Intersection-over-Union (2), also called F-O or Jaccard index. Due to
their reliable capability of handling class imbalance by focusing on false
positive and false negative predictions, the two are the most widespread
metrics in computer vision. All related studies, referenced later for
medical image segmentation, are using either one or both of the two
metrics for evaluation. In contrast, the sensitivity (3) and specificity (4)
are one of the most popular metrics in medical fields. All metrics are
based on the confusion matrix for binary classification, where TP, FP, TN
and FN represent the true positive, false positive, true negative and false
negative rate, respectively.

DS~ T W
U= @
Sensitivity = TPYJL% 3
Specificity = % ()]

In reaction to the rapid spread of the coronavirus, many scientists
quickly reacted and developed various approaches based on deep
learning to contribute to the efforts against COVID-19. Furthermore, the
scientific community focused their efforts on the development of models
for COVID-19 classification, because X-ray and CT images of infected
patients could be collected without further required annotations [10,
20]. These classification algorithms can be categorized through their
objectives: 1) Classification of COVID-19 from non-COVID-19 (healthy)
patients, which resulted into models achieving a sensitivity of 94.1 %,
specificity of 95.5 %, and AUC of 0.979 by Jin et al. [29]. 2) Classifi-
cation of COVID-19 from other pneumonia, which resulted in models
achieving a sensitivity of 100.0 %, specificity of 85.18 %, and AUC of
0.97 by Abbas et al. [30]. 3) Severity assessment of COVID-19, which
resulted in a model achieving a true positive rate of 91.0 %, true
negative rate of 85.8 %, and accuracy of 89.0 % by Tang et al. [31].

In the middle of the year 2020, clinicians started to publish COVID-
19 CT images with annotated ROIs, which allowed the training of seg-
mentation models. Automated segmentation is highly desired as COVID-
19 application [10,32]. The segmentation of lung, lung lobes and lung
infection provide accurate quantification data for progression assess-
ment in follow-up, comprehensive prediction of severity in the enroll-
ment and visualization of lesion distribution using percentage of
infection (POI) [10]. Still, the limited amount of annotated imaging data
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causes a challenging task for detecting the variety of shapes, textures
and localizations of lesions or nodules. Nonetheless, multiple ap-
proaches try to solve these problems with different methods. The most
popular network models for COVID-19 segmentation are variants of the
U-Net which achieved reasonable performance on sufficiently sized 2D
datasets [5,10,33-40]. In order to compensate limited dataset sizes,
more attention has been drawn to semi-supervised learning pipelines
[10,41,42]. These methods optimize a supervised training on labeled
data along with an unsupervised training on unlabeled data. Another
approach is the development of special neural network architectures for
handling limited dataset sizes. Frequently, attention mechanisms are
built into the classic U-Net architecture like the Inf-Net from Fan et al.
[41] or the MiniSeg from Qiu et al. [43]. Wang et al. [44] utilized
transfer learning strategies based on models trained on non-COVID-19
related conditions. Particularly worth mentioning is the development
of a benchmark model with a 3D U-Net from Ma et al. [16,45], because
the authors also provide high reproducibility through a publicly avail-
able dataset.

2. Methods

This pipeline was based on MIScnn [46], which is an in-house
developed open-source framework to setup complete medical image
segmentation pipelines with convolutional neural networks and deep
learning models on top of Tensorflow/Keras [47]. MIScnn supports
extensive preprocessing, data augmentation, state-of-the-art deep
learning models and diverse evaluation techniques. The implemented
medical image segmentation pipeline is illustrated in Fig. 2.

2.1. Datasets of COVID-19 chest CTs

In this study, we used two public datasets: Ma et al. [45] as limited
dataset for model training as well as validation, and An et al. [48] as a
larger hold-out dataset for additional testing purpose.

The Ma et al. dataset consists of 20 annotated COVID-19 chest CT
volumes [16,45]. All cases were confirmed COVID-19 infections with a
lung infection proportion ranging from 0.01 % to 59 % [16]. This dataset
was one of the first publicly available 3D volume sets with annotated
COVID-19 infection segmentation [16]. The CT scans were collected
from the Coronacases Initiative and Radiopaedia and were licensed
under CC BY-NC-SA. Each CT volume was first labeled by junior anno-
tators, then refined by two radiologists with 5 years of experience and
afterwards the annotations verified by senior radiologists with more
than 10 years of experience [16]. Despite the fact that the sample size is
rather small, the annotation process led to an excellent high-quality
dataset. The volumes had a resolution of 512x512 (Coronacases Initia-
tive) or 630x630 (Radiopaedia) with a number of slices of about 176 by
mean (200 by median). The CT images were labeled into four classes:
Background, lung left, lung right and COVID-19 infection.

The An et al. dataset consists of unenhanced chest CT volumes from
632 patients with COVID-19 infections and is one of the largest publicly
available COVID-19 CT datasets [48]. The CT scans were collected
through the outbreak settings from patients with a combination of
symptoms, exposure to an infected patient or travel history to an
outbreak region [48,49]. All patients had a positive RT-PCR for
SARS-CoV-2 from a sample obtained within 1 day of the initial CT [48,
49]. The annotation of the dataset was made possible through the joint
work of Children’s National Hospital, NVIDIA and National Institutes of
Health for the COVID-19-20 Lung CT Lesion Segmentation Grand
Challenge [50]. The challenge authors were able to annotate a subset of
295 patients through American board certified radiologists [50].
Through the characteristic as a challenge, not all volumes had publicly
available annotations. Nevertheless, we were able to obtain a subset of
100 patients as additional testing set. The volumes had a resolution of
512x512 with a number of slices of about 75 by mean (65 by median).
The CT images were labeled into two classes: Background and COVID-19



D. Miiller et al.

Informatics in Medicine Unlocked 25 (2021) 100681

/ Spatial \
Augmentations
Color Training Results
Dataset: Augmentations T
ChestCTs I T
| Noise
T — Augmentations Neural Network .
l U-Net Model 1 Evaluation
\ 4 .
. Data
Preprocessing —> Augmentation T I
; |
[ Resampling Inference )
\ ’
—— Normalization 5-fold Cross-Validation Dataset:
1 1 / -
Ground Truth
(Radiologists)

——  Clipping

Fig. 2. Flowchart diagram of the implemented medical image analysis pipeline for COVID-19 lung infection segmentation. The workflow is starting with the COVID-
19 dataset and ending with the computed evaluation results for each fold in the cross-validation.

infection.

2.2. Preprocessing

In order to simplify the pattern finding and fitting process for the
model, we applied several preprocessing methods on the dataset.

We exploited the Hounsfield units (HU) scale by clipping the pixel
intensity values of the images to —1250 as minimum and +250 as
maximum, because we were interested in infected regions (+50 to +100
HU) and lung regions (—1000 to —700 HU) [51]. It was possible to apply
the clipping approach on the Coronacases Initiative and An et al. CTs,
because the Radiopaedia volumes were already normalized to a gray-
scale range between 0 and 255.

Varying signal intensity ranges of images can drastically influence
the fitting process and the resulting performance of segmentation
models [52]. For achieving dynamic signal intensity range consistency,
it is recommended to scale and standardize imaging data. Therefore, we
normalized the remaining CT volumes likewise to grayscale range. Af-
terwards, all samples were standardized via z-score.

Medical imaging volumes have commonly inhomogeneous voxel
spacings. The interpretation of diverse voxel spacings is a challenging
task for deep neural networks. Therefore, it is possible to drastically
reduce complexity by resampling volumes in an imaging dataset to
homogeneous voxel spacing, which is also called target spacing.
Resampling voxel spacings also directly resizes the volume shape and
determines the contextual information, which the neural network model
is able to capture. As a result, the target spacing has a huge impact on the
final model performance. We decided to resample all CT volumes to a
target spacing of 1.58x1.58x2.70, resulting in a median volume shape of
267x254x104.

2.3. Data augmentation

The aim of data augmentation is to create more data of reasonable
variations of the desired pattern and, thus, artificially increase the
number of training images. This technique results into improved model
performance and robustness [53-55]. In order to compensate the small

dataset size, we performed extensive data augmentation by using the
batchgenerators interface within MIScnn. The batchgenerators package
[56] is an API for state-of-the-art data augmentation on medical images
from the Division of Medical Image Computing at the German Cancer
Research Center. We implemented three types of augmentations: Spatial
augmentation by mirroring, elastic deformations, rotations and scaling.
Color augmentations by brightness, contrast and gamma alterations.
Noise augmentations by adding Gaussian noise. Furthermore, each
augmentation method had a random probability of 15 % to be applied
on the current image with random intensity or parameters (e.g. random
angle for rotation) [56,57].

Instead of traditional upsampling approaches, we performed on-the-
fly data augmentation on each image before it was forwarded into the
neural network model. The innovative one-the-fly augmentation tech-
nique is defined as the creation of novel and unique images in each
iteration of the training process instead of generating once a fixed
number of augmented images beforehand. Through this technique, the
probability that the model encounters the exact same image twice dur-
ing the training process decreases significantly, which proved to reduce
the risk of overfitting drastically [57].

2.4. Patch-wise analysis

In image analysis there are three popular methods: The analysis of
full images, the slice-wise analysis for 3D data or patch-wise by slicing
the volume into smaller cuboid patches [9]. We selected the patch-wise
approach in order to exploit random cropping for the fitting process.
Through random forwarding only a single cropped patch from the image
to the fitting process, another type of data augmentation is induced, and
the risk of overfitting additionally decreased. Furthermore, full image
analysis requires unnecessary resolution reduction of the 3D volumes in
order to handle the enormous GPU memory requirements. By slicing the
volumes into patches with a shape of 160x160x80, we were able to
utilize high-resolution data. All slicing processes were done via manual
image matrix slicing.

For inference, the volumes were sliced into patches according to a
grid. Between the patches, we introduced an overlap of half the patch
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size (80x80x40) to increase prediction performance. After the inference
of each patch, they were reassembled into the original volume shape,
whereas overlapping regions were averaged.

2.5. Neural network model

The neural network architecture and its hyper parameters are one of
the key parts in a medical image segmentation pipeline. The current
landscape of deep learning architectures for semantic segmentation
accommodates a variety of variants which distinguish by efficiency,
robustness or performance. Nevertheless, the U-Net is currently the most
popular and promising architecture in terms of the interaction between
performance and variability [57-60]. In this work, we implemented the
standard 3D U-Net as architecture without any custom modification in
order to avoid unnecessary parameter increase by more complex ar-
chitectures like the residual variant of the 3D U-Net [26,61,62]. The
input of our architecture was a 160x160x80 patch with a single channel
consisting of normalized HUs. The output layer of our architecture
normalized the class probabilities through a softmax function (normal-
ized exponential function) and returned the 160x160x80 mask with 4
channels representing the probability for each class (background, lung
left, lung right and COVID-19 infection). Upsampling was achieved via
transposed convolution and downsampling via maximum pooling. The
architecture used 32 feature maps at its highest resolution and 512 at its
lowest. All convolutions were applied with a kernel size of 3 x 3 x 3ina
stride of 1 x 1 x 1, except for up- and downsampling convolutions which
were applied with a kernel size of 2 x 2 x 2 in a stride of 2 x 2 x 2. After
each convolutional block, batch normalization was applied. The archi-
tecture can be seen in Fig. 3.

In medical image segmentation, it is common that semantic anno-
tation includes a strong bias in class distribution towards the back-
ground class. Our dataset revealed a class distribution of 89 % for
background, 9 % for lungs and 1 % for infection. In order to compensate
this class bias, we utilized the sum of the Tversky index [63] and the
categorical cross-entropy as loss function for model fitting (5).
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We implemented a multi-class adaptation for the Tversky index (6),
which is an asymmetric similarity index to measure the overlap of the
segmented region with the ground truth. It allows for flexibility in
balancing the false positive rate (FP) and false negative (FN) rate. The
cross-entropy (7) is a commonly used loss function in machine learning
and calculates the total entropy between the predicted and true distri-
bution. The multi-class adaptation for multiple categories (categorical
cross-entropy) is represented through the sum of the binary cross-
entropy for each class ¢, whereas y, . is the binary indicator whether
the class label c is the correct classification for observation o. The var-
iable p, . is the predicted probability that observation o is of class c.

For model fitting, an Adam optimization [64] was used with the
initial weight decay of 1e-3. We utilized a dynamic learning rate which
reduced the learning rate by a factor of 0.1 in case the training loss did
not decrease for 15 epochs. The minimal learning rate was set to 1le-5. In
order to further reduce the risk of overfitting, we exploited the early
stopping technique for training, in which the training process stopped
without a fitting loss decrease after 100 epochs. The neural network
model was trained for a maximum of 1000 epochs. Instead of the com-
mon epoch definition as a single iteration over the dataset, we defined
an epoch as the iteration over 150 training batches. This allowed for an
improved fitting process for randomly generated batches in which the
dataset acts as a variation database. According to our available GPU
VRAM, we selected a batch size of 2.

2.6. Sensitivity analysis with cross-validation

For reliable robustness evaluation, we performed a sensitivity anal-
ysis to estimate the generalizability and sensitivity of our pipeline. Thus,
we performed multiple k-fold cross-validations on the Ma et al. dataset
to obtain various models based on limited training data as well as
different validation subsets.

As k-fold multitude, we used a range from 2 up to 5 for the sensitivity
analysis resulting in to 4 separate cross-validation analyses with in total
14 models. Each model was created through a training process on k-1
folds and validated through the leftover fold in each cross-validation
sampling. Training and validation were performed on the small Ma et
al. dataset, whereas the An et al. dataset was used as additional testing
set to further ensure a robust evaluation. As example, this technique

o
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Fig. 3. The architecture of the standard 3D U-Net. The network takes a 3D patch (cuboid) and outputs the segmentation of lungs and infected regions by COVID-19.
Skip connections were implemented with concatenation layers. Conv: Convultional layer; ReLU: Rectified linear unit layer; BN: Batch normalization.
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resulted in the following sampling for a 5-fold cross-validation: 16
samples as training dataset (Ma et al.), 4 samples as validation dataset
(Ma et al.) and 100 samples as testing dataset (An et al.).

Furthermore, we analyzed the impact of the preprocessing and data
augmentation techniques on model performances for the 5-fold cross-
validation. We did not configure any hyper parameters afterwards on
basis of validation results and did not perform any validation monitoring
based training techniques, which allowed us to utilize our validation
results for hold-out evaluation, as well.

2.7. Evaluation metrics

During the fitting process, we computed the segmentation perfor-
mance for each epoch on randomly cropped and data augmented
patches from the validation dataset. This allowed for an evaluation of
the overfitting on the training data.

After the training, we used mainly four widely popular evaluation
metrics in the community for medical image analysis to do the inference
performance measurement on the validation and testing set: Dice simi-
larity coefficient, Intersection-over-Union, sensitivity, and specificity.
Furthermore, we computed the accuracy and precision as supplemen-
tary metrics for the Appendix. The performance measurement was based
on the segmentation overlap between prediction and ground truth,
which was manually annotated through the consensus of multiple ra-
diologists, as described in the dataset section. For the Ma et al. dataset,
the two lung classes (‘lung left’ and ‘lung right’) were averaged by mean
into a single class (‘lungs’) during the evaluation.

2.8. Code reproducibility

In order to ensure full reproducibility and to create a base for further
research, the complete code of this project, including extensive docu-
mentation, is available in a public Git repository which is referenced in
the Appendix.

3. Results

The sequential training of the complete cross-validation on 2 NVIDIA
QUADRO RTX 6000 with 24 GB VRAM, an Intel Xeon Gold 5220R using
4 CPUs and 20 GB RAM took around 182 h. All models did not require
the entire 1000 epochs for training and instead were early stopped after
an average of 312 epochs.

After the training, the inference revealed a strong segmentation
performance for lungs and COVID-19 infected regions. Overall, the k-
fold cross-validation models achieved a DSC and IoU of around 0.971
and 0.944 for lungs, as well as 0.804 and 0.672 for COVID-19 infection
segmentation on the Ma et al. dataset, respectively. On the additional
testing set from An et al. the models achieved a DSC of around 0.661 and
an IoU of around 0.494 for COVID-19 infection segmentation. Further-
more, the models obtained a sensitivity and specificity of 0.778 and
0.999 on the validation set, as well as 0.580 and 0.999 on the testing set
for COVID-19 infection, respectively. More details on inference perfor-
mance are listed in Table 1 and visualized in Fig. 4.

Table 1

Informatics in Medicine Unlocked 25 (2021) 100681

For the sensitivity analysis, average evaluation metrics were calcu-
lated for each k-fold cross-validation (Table 1) as well as for each data
augmentation and preprocessing configuration (Table 2). The 5-fold
cross-validation revealed the best performance on all evaluation met-
rics on the validation set, whereas the 4-fold cross-validation was su-
perior on the testing set. The Dice similarity coefficient difference
between the best k-fold cross-validation and the worst is 0.093 on
validation and 0.106 on testing for COVID-19 lesion segmentation. The
inclusion of data augmentation and preprocessing increased the pipeline
performance on average by 0.647 for lung and by 0.630 for COVID-19
lesion segmentation based on the Dice similarity coefficient, which is
summarized in Table 2.

Through validation monitoring, no overfitting was observed. The
training and validation loss function revealed no significant distinction
from each other, which can be seen in Fig. 5. During the fitting, the
performance settled down at a loss of around 0.383 for the 5-fold cross-
validation (Fig. 5-D) which is a generalized DSC (average of all class-
wise DSCs) of around 0.919. Because of this robust training process
without any signs of overfitting, we concluded that fitting on randomly
generated patches via extensive data augmentation and random crop-
ping from a variant database, is highly efficient for limited imaging data.

Exemplary for model performance of the 5-fold cross-validation, 4
samples with annotated ground truth and predicted segmentation are
visualized in Fig. 6. The performance evaluation of our sensitivity
analysis revealed that there is only a marginal but notable difference
between the k-fold cross-validations. As example, the 3-fold cross-
validation with a training dataset size of only 13 samples achieved ac-
curate segmentation results on the validation as well as testing set.
Interestingly, the 4-fold cross-validation (15 training samples) obtained
the best DSC and IoU and the 3-fold cross-validation the best sensitivity
on the larger testing set. This demonstrated that generalizability is one
of the most important hallmarks of a model, especially if trained on a
limited dataset. If all important visual features for the medical condition
are present in the training set, a low number of samples can be sufficient
by using extensive image augmentation and preprocessing techniques as
our pipeline for creating a powerful model. However, if too many
samples share similar morphological features without any variation, the
risk of overfitting or generating a less generalized model is still present.

4. Discussion

From a medical perspective, detection of COVID-19 infection is a
challenging task and one of the reasons for the weaker segmentation
accuracy in contrast to the lung segmentation. The reason for this is the
variety of GGO and pulmonary consolidation morphology. In contrast to
the specificity, the dice similarity coefficient as well as the sensitivity are
showing a lower but more reliable performance evaluation comparable
with the visualized segmentation correctness. The reason for this is that
false negative predictions have a strong impact on these two metrics.
Especially, in medical image segmentation, in which ROIs are quite
small compared to the remaining image, a few incorrect predicted pixels
have a large impact on the resulting score. Such strict metrics are
required in order to compensate the class unbalance between mostly

Achieved results showing the median Dice similarity coefficient (DSC), the Intersection-over-Union (IoU) the sensitivity (Sens) and specificity (Spec) on Lung and
COVID-19 infection segmentation for each k-fold cross-validation of the sensitivity analysis for the Ma et al. and An et al. dataset. Standard deviation is included for

DSC and IoU.

Dataset: Ma et al.

Dataset: An et al.

Lungs COVID-19 Lesion COVID-19 Lesion
k-fold CV. DSC IoU Sens. Spec. DSC IoU Sens. Spec. DSC ToU Sens. Spec.
k=2 0.960 + 0.06 0.923 £+ 0.10 0.970 0.998 0.775 + 0.20 0.635 + 0.19 0.747 0.999 0.555 + 0.07 0.386 + 0.07 0.485 0.998
k=3 0.966 + 0.07 0.934 + 0.10 0.968 0.999 0.778 + 0.19 0.636 + 0.18 0.730 0.999  0.598 + 0.10 0.426 + 0.11 0.580  0.999
k=4 0.951 + 0.22 0.907 + 0.29 0.948 0.999 0.711 £ 0.27 0.552 £ 0.25 0.731 0.999  0.661 + 0.07  0.494 + 0.09  0.561 0.999
k=5 0.971 £ 0.07  0.944 +0.11  0.971  0.999 0.804 +0.20 0.672+0.19 0.778 0.999  0.623 £ 0.04 0.453 + 0.04 0.513 0.998
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Fig. 4. Summaries showing the Dice similarity coefficient distributions from validation and testing on the Ma et al. and An et al. datasets. A: Boxplot showing the
results of the 5-fold cross-validation on the Ma et al. dataset. B: Boxplots and bar plots showing the average Dice similarity coefficient for each k-fold cross-validation
run on the Ma et al. dataset. C: Boxplots for each model of the k-fold cross-validation on the An et al. testing dataset.

Table 2

The segmentation pipeline was applied four times with in-/excluded preprocessing and data augmentation in order to evaluate their performance influence on the
model. Achieved results showing the median Dice similarity coefficient (DSC) on Lung and COVID-19 infection segmentation for each CV fold of the 5-fold cross-

validation and the global average (AVG) based on the Ma et al. dataset.

Data Augmentation:Excluded
Preprocessing: Excluded

Data Augmentation: Included
Preprocessing: Excluded

Data Augmentation: Excluded
Preprocessing: Included

Data Augmentation: Included
Preprocessing: Included

Fold Lungs COVID-19 Lungs COVID-19 Lungs COVID-19 Lungs COVID-19
1 0.711 0.031 0.397  0.166 0.867  0.530 0.907 0.556
2 0.046  0.186 0.275 0.050 0.979  0.819 0.977 0.801
3 0.190  0.241 0.168  0.057 0.951 0.814 0.952 0.829
4 0.080  0.005 0.175 0.114 0.979  0.819 0.979 0.853
5 0.520 0.194 0.360  0.201 0.964  0.798 0.967 0.765
AVG 0309 0.131 0.275 0.118 0.948  0.756 0.956 0.761

background and small ROIs in medical imaging. Nevertheless, our
medical image segmentation pipeline allowed fitting a model which is
able to segment COVID-19 infection with state-of-the-art accuracy that
is comparable to models trained on large datasets.

In order to provide further insights on the influence of our method-
ology on the achieved performance, we run and analyzed our pipeline
through a sensitivity analysis based on cross-validation and variable
data augmentation as well as applied preprocessing configuration. All
other configurations as well as the neural network architecture
remained the same as described in the methods section. Thus, this
experiment resulted into 30 models (14 models from cross-validation
ranging from k-fold 2 up to 5 and 15 models from three 5-fold cross-
validation runs with variable data augmentation as well as preprocess-
ing configuration).

The fitting process of the different runs revealed that extensive data
augmentation plays an important role for avoiding overfitting and to
improve model robustness, as it can be seen in the fitting curves of Fig. 5.
Therefrom, the model overfitted on the training data. The on-the-fly
data augmentation helped the model to learn a more generalized
pattern for recognizing the lungs and infected regions instead of just
memorizing the training data. In contrast, the preprocessing methods
increased the overall performance of the model by simplifying the
computer vision task. The applied methods like resampling or clipping
led to a search space reduction which increased the chances of the model
to identify patterns in the imaging data. This advantage was also shown

in the resulting performances, which can be seen in Table 2. As expected,
the pipeline run with no data augmentation as well as no preprocessing
appeared to be the worst model. In contrast, the preprocessing tech-
niques demonstrated the highest performance increase on the testing
data of the 5-fold cross-validation. Therefore, the final pipeline build
combined data augmentation, for improving robustness, and pre-
processing techniques, for increasing performance, in order for opti-
mizing inference quality.

4.1. Comparison with prior work

For further evaluation, we compared our pipeline to other available
COVID-19 segmentation approaches based on CT scans. Information and
further details of related work was structured and summarized in
Table 3. The authors (Ma et al.), who also provided the dataset we used
for our analysis, implemented a 3D U-Net approach as a baseline for
benchmarking [16]. They were able to achieve a DSC of 0.70355 and
0.6078 for lungs and COVID-19 infection, respectively. With our model,
we were able to outperform this baseline. It is important to mention that
the authors of this baseline trained with a 5-fold cross-validation sam-
pling of 20 % training and 80 % validation, whereas we used the
inverted distribution for our k-fold cross-validations (k-1 folds for
training and the k’s fold for validation). Based on the Ma et al. dataset,
Wang et al. [44] gathered more samples, expanded the dataset and also
applied a 3D U-Net which resulted in a DSC of 0.704. Another approach
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Fig. 5. The illustration showing the loss course during the training process for training (red) and validation (cyan) data for the 5-fold cross-validation from four
pipeline runs including (‘on’) or excluding (‘off’) data augmentation (Data Aug) and preprocessing (PreProc) techniques. The lines were computed via Gaussian
Process Regression and represent the average loss across all folds for each 5-fold cross-validation pipeline run. The final pipeline fitting curve is illustrated in the
bottom-right corner (D). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

from Yan et al. [65] developed a novel neural network architecture
(COVID-SegNet) specifically designed for COVID-19 infection segmen-
tation with limited data. The authors tested their architecture on a
limited dataset consisting of ten COVID-19 cases from Brainlab Co. Ltd
(Germany) and were able to achieve a DSC of 0.987 and 0.726 for lungs
and infection, respectively. Hence, COVID-SegNet as well as our
approach achieved similar results. This raises the question, if it is
possible to further increase our performance by switching from the
standard U-Net of our pipeline to an architecture specifically designed
for COVID-19 infection segmentation like COVID-SegNet. Further ap-
proaches, with the aim to utilize specifically designed architectures,
were Inf-Net (Fan et al.) [41] and MiniSeg (Qiu et al.) [43]. Both were
trained on 2D CT scans and achieved for COVID-19 infection segmen-
tation DSCs of 0.764 and 0.773, respectively. Although diverse datasets
were used for training, which leads to incomparability of the results, it is
highly impressive that they achieved similar performance as approaches
based on 3D imaging data. The 3D transformation of these architectures
and the integration into our pipeline would be an interesting experiment
to evaluate improvement possibilities. Other high-performance 2D ap-
proaches like Saood et al. [37] and Pei et al. [38] were difficult to
compare due to these models are purely trained and evaluated on 2D
slices with COVID-19 presence [66].

4.2. Limitations

However, it is important to note that the majority of current seg-
mentation approaches in research are not suited for clinical usage. The
bias of current models is that the majority are only trained with COVID-
19 related images. Therefore, it is not certain how good the models can

differentiate between COVID-19 lesions and other pneumonia, or
entirely unrelated medical conditions like cancer. Furthermore, iden-
tical to COVID-19 classification, the models reveal huge differences
depending on which dataset they were trained on. Segmentation models
purely based on COVID-19 scans are often not able to segment accu-
rately in the presence of other medical conditions [16]. Additionally,
there is a high potential for false positive segmentation of pneumonia
lesions that are not caused by COVID-19. This demonstrates that these
models could be biased and are not suitable for COVID-19 screening.
Nevertheless, current infection segmentation models are already highly
accurate for confirmed COVID-19 imaging. This offers the opportunity
for quantitative assessment and disease monitoring as applications in
clinical studies.

Despite that our model and those of others, which are based on
limited data, are capable for accurate segmentation, it is essential to
discuss their robustness. Currently, there are only a handful annotated
imaging datasets publicly available for COVID-19 segmentation. More
imaging data with especially more variance (different COVID-19 states,
other pneumonia, healthy control samples, etc.) need to be collected,
annotated, and published for researchers. Similar to Ma et al. [16,45],
community accepted benchmark datasets have to be established in order
to fully ensure robustness as well as comparability of models.

5. Conclusions

Even so, neural networks are capable of accurate decision support,
their robustness is highly dependent on dataset size for training. Various
medical conditions like rare or novel diseases lack available data for
model training which decreases generalizability and increases the risk of
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Fig. 6. Visual comparison of the segmentation between ground truth from radiologist annotations and our model (5-fold cross-validation) on four slices from
different CT scans of the Ma et al. dataset. Visualization for all samples for both datasets is provided in the appendix.

Table 3

Related work overview for COVID-19 segmentation and comparison of resulting segmentation performances. The table categories the related work in terms of model
architecture, training dataset information for comparability like source, dimension (Dim.), sample size as well as the presence of non-COVID-19 slices (Control) and

their performance on a validation/testing set.

Related Work Training Dataset

Validation/Testing Performance

Author Model Architecture Source Dim. Sample Size Control DSC - COVID-19 Sample Size
Amyar et al. [5] U-Net (Standard) Amyar et al. [5] 2D 1219 Yes 0.78 150
Fan et al. [41] Inf-Net (Attention U-Net) Fan et al. [41] 2D 1650 Yes 0.764 50

Qiu et al. [43] MiniSeg (Attention U-Net) Qiu et al. [43] 2D 3558 Yes 0.773 3558
Saood et al. [37] U-Net (Standard) SIRM [66] 2D 80 No 0.733 20
Saood et al. [37] SegNet SIRM [66] 2D 80 No 0.749 20

Pei et al. [38] MPS-Net (Supervision U-Net) SIRM [66] 2D 300 No 0.833 68
Zheng et al. [39] MSD-Net Zheng et al. [39] 2D 3824 Yes 0.785 956
Wang et al. [40] COPLE-Net (enhanced U-Net) Wang et al. [40] 2D 59,045 Yes 0.803 17,205
Ma et al. [16] U-Net (Standard) Ma et al. [16] 3D 20 Yes 0.608 20

Ma et al. [16,57] nnU-Net Ma et al. [16] 3D 20 Yes 0.673 20
Wang et al. [44] U-Net (Standard) Wang et al. [44] 3D 211 Yes 0.704 211
Yan et al. [65] COVID-SegNet Yan et al. [65] 3D 731 Yes 0.726 130

He et al. [42] M?UNet (Segmentation only) He et al. [42] 3D 666 Yes 0.759 666
Our Pipeline U-Net (Standard) Ma et al. [16] 3D 20 Yes 0.804/0.661 20/100

overfitting. In this paper, we developed and evaluated an approach for
automated as well as robust segmentation of COVID-19 infected regions
in CT volumes based on a limited dataset. Our method focuses on on-the-
fly generation of unique and random image patches for training by
performing several preprocessing methods and exploiting extensive data
augmentation. Thus, it is possible to handle limited dataset sizes which
act as variant database. Instead of novel and complex neural network
architectures, we utilized the standard 3D U-Net. We proved that our
medical image segmentation pipeline is able to successfully train accu-
rate and robust models without overfitting on limited data. Further-
more, we were able to outperform current state-of-the-art semantic
segmentation approaches for COVID-19 infected regions. Our work has

great potential to be applied as a clinical decision support system for
COVID-19 quantitative assessment and disease monitoring in a clinical
environment. As further research, we are planning to integrate ensemble
learning techniques in our pipeline to combine the predictive strengths
of the k-fold cross-validation models. Additional, clinical studies are
needed for robust validation on clinical performance and generaliz-
ability of models based on limited data. Also, we are going expand our
testing data and evaluation by adding cases with non-COVID-19 con-
ditions like bacterial pneumonia or lung cancer.
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