
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Informatics in Medicine Unlocked 25 (2021) 100681

Available online 27 July 2021
2352-9148/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Robust chest CT image segmentation of COVID-19 lung infection based on 
limited data 
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A B S T R A C T   

Background: The coronavirus disease 2019 (COVID-19) affects billions of lives around the world and has a sig-
nificant impact on public healthcare. For quantitative assessment and disease monitoring medical imaging like 
computed tomography offers great potential as alternative to RT-PCR methods. For this reason, automated image 
segmentation is highly desired as clinical decision support. However, publicly available COVID-19 imaging data 
is limited which leads to overfitting of traditional approaches. 
Methods: To address this problem, we propose an innovative automated segmentation pipeline for COVID-19 
infected regions, which is able to handle small datasets by utilization as variant databases. Our method fo-
cuses on on-the-fly generation of unique and random image patches for training by performing several pre-
processing methods and exploiting extensive data augmentation. For further reduction of the overfitting risk, we 
implemented a standard 3D U-Net architecture instead of new or computational complex neural network 
architectures. 
Results: Through a k-fold cross-validation on 20 CT scans as training and validation of COVID-19, we were able to 
develop a highly accurate as well as robust segmentation model for lungs and COVID-19 infected regions without 
overfitting on limited data. We performed an in-detail analysis and discussion on the robustness of our pipeline 
through a sensitivity analysis based on the cross-validation and impact on model generalizability of applied 
preprocessing techniques. Our method achieved Dice similarity coefficients for COVID-19 infection between 
predicted and annotated segmentation from radiologists of 0.804 on validation and 0.661 on a separate testing 
set consisting of 100 patients. 
Conclusions: We demonstrated that the proposed method outperforms related approaches, advances the state-of- 
the-art for COVID-19 segmentation and improves robust medical image analysis based on limited data.   

1. Introduction 

The ongoing coronavirus pandemic has currently (May 18, 2021) 
spread to 220 countries in the world [1]. The World Health Organization 
(WHO) declared the outbreak as a “Public Health Emergency of Inter-
national Concern” on the January 30, 2020 and as a pandemic on the 
March 11, 2020 [2,3]. Because of the rapid spread of severe respiratory 
syndrome coronavirus 2 (SARS-CoV-2), billions of lives around the 
world were changed. A SARS-CoV-2 infection can lead to a severe 
pneumonia with potentially fatal outcome [3–5]. Until now, there are 
163,714,589 confirmed cases in total resulting in 3,392,649 deaths [1]. 
Through a combined international effort, multiple vaccines were rapidly 
developed, and various countries already began large vaccine cam-
paigns. However, there is still no effective treatment in case of an 

infection [3,4,6,7]. Additionally, the rapid increase of confirmed cases 
and the resulting estimated basic reproduction numbers show that 
SARS-CoV-2 is highly contagious [4,6,8]. The WHO named this new 
disease “coronavirus disease 2019”, short form: COVID-19. 

An alternative solution to the established reverse transcription po-
lymerase chain reaction (RT-PCR) as standard approach for COVID-19 
screening or monitoring is medical imaging like X-ray or computed to-
mography (CT). The medical imaging technology has made significant 
progress in recent years and is now a commonly used method for diag-
nosis, as well for quantification assessment of numerous diseases [9–11]. 
Particularly, chest CT screening has emerged as a routine diagnostic tool 
for pneumonia. Therefore, chest CT imaging has also been strongly 
recommended for COVID-19 diagnosis and follow-up [12]. In addition, 
CT imaging is playing an important role in COVID-19 quantification 
assessment, as well as disease monitoring. COVID-19 infected areas are 
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distinguishable on CT images by ground-glass opacity (GGO) in the early 
infection stage and by pulmonary consolidation in the late infection 
stage [6,12,13]. An illustration of COVID-19 infected regions on a CT 
scan can be seen in Fig. 1. In comparison to RT-PCR, several studies 
showed that CT is more sensitive and effective for COVID-19 screening, 
and that chest CT imaging is more sensitive for COVID-19 testing even 
without the occurrence of clinical symptoms [10,12–14]. Notably, a 
large clinical study with 1014 patients in Wuhan (China) [12] deter-
mined that chest CT analysis can achieve 0.97 sensitivity, 0.25 speci-
ficity and 0.68 accuracy for COVID-19 detection. 

Still, evaluation of medical images is a manual, tedious and time- 
consuming process performed by radiologists. Even though increasing 
CT scan resolution and number of slices resulted in higher sensitivity 
and accuracy, these improvements also increased the workload. Addi-
tionally, annotations of medical images are often highly influenced by 
clinical experience [15,16]. 

A solution for these challenges could be clinical decision support 
systems based on automated medical image analysis. In recent years, 
artificial intelligence has seen a rapid growth with deep learning models, 
whereas image segmentation is a popular sub-field [9,17,18]. The aim of 
medical image segmentation (MIS) is the automated identification and 
labeling of regions of interest (ROI) e.g. organs like lungs or medical 
abnormalities like cancer and lesions. In recent studies, medical image 
segmentation models based on neural networks proved powerful pre-
diction capabilities and achieved similar results as radiologists 

regarding the performance [9,19]. It would be a helpful tool to imple-
ment such an automatic segmentation for COVID-19 infected regions as 
clinical decision support for physicians. By automatic highlighting 
abnormal features and ROIs, image segmentation is able to aid radiol-
ogists in diagnosis, disease course monitoring, reduction of 
time-consuming inspection processes and improvement of accuracy [9, 
10,20]. Nevertheless, training accurate and robust models requires 
sufficient annotated medical imaging data. Because manual annotation 
is labor-intensive, time-consuming and requires experienced radiolo-
gists, it is common that publicly available data is limited [9,10,16]. This 
lack of data often results in an overfitting of the traditional data-hungry 
models. Especially for COVID-19, large enough medical imaging data-
sets are currently unavailable [10,16]. 

In this work, we push towards creating an accurate and state-of-the- 
art MIS pipeline for COVID-19 lung infection segmentation, which is 
capable of being trained on small datasets consisting of 3D CT volumes. 
In order to avoid overfitting, we exploit extensive on-the-fly data 
augmentation, as well as diverse preprocessing methods. In order to 
further reduce the risk of overfitting, we implement the standard U-Net 
architecture instead of other more computational complex variants, like 
the residual architecture of the U-Net. Furthermore, we use a sensitivity 
analysis with k-fold cross-validation for reliable performance 
evaluation. 

Our manuscript is organized as follows: Section 1 introduces the 
current challenges, our research question and related work on COVID-19 
image analysis research. In Section 2, we describe our proposed pipeline 
including the datasets, preprocessing methods, proposed neural network 
and evaluation techniques. In Section 3, we report the experimental 
results, and discuss these in detail in Section 4. In Section 5, we conclude 
our paper and give insights on future work. The Appendix contains 
further information on the availability of our trained models, all result 
data and the code used in this research. 

1.1. Related work 

Since the breakthrough of convolutional neural network (CNN) ar-
chitectures for computer vision, neural networks became one of the most 
accurate and popular machine learning algorithms for automated 
medical image analysis [9,17,21]. Two of the major tasks in this field are 
classification and segmentation. Whereas medical image classification 
aims to label a complete image to predefined classes (e.g. to a diagnosis), 
medical image segmentation aims to label each pixel in order to identify 
ROIs (e.g. organs or medical abnormalities). Popular deep learning ar-
chitectures, which achieved performance equivalent to humans, are 

Abbreviations 

CNN Convolutional neural network 
CT Computed tomography 
COVID-19 coronavirus disease 2019 
DSC Dice Similarity Coefficient 
FP False positive rate 
FN False negative rate 
GGO Ground-glass opacity 
HU Hounsfield units 
IoU Intersection-over-Union 
MIS Medical image segmentation 
ROI Regions of interest 
RT-PCR Reverse transcription polymerase chain reaction 
TN True negative rate 
TP True positive rate  

Fig. 1. Visualization of COVID-19 infected regions in a chest CT. The left image is the unsegmented CT scan, whereas the right image shows segmentation of lungs 
(blue) and infection (red). The infected regions are distinguishable by GGOs and pulmonary consolidation in the lung regions. The image was obtained from the 
analyzed CT dataset [45]. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Inception-v3 [22], ResNet [23], as well as DenseNet [24] for classifi-
cation and VB-Net [25], U-Net [26] and various variants of the U-Net for 
segmentation [10,27]. 

For measuring the performance of image segmentation models, it is 
important to select suited metrics for reliable evaluation. Especially, in 
medical image segmentation, images reveal a large class imbalance 
between a small but important ROI and the large number of remaining 
pixels defined as background. The ideal metric should heavily focus on 
the correct predictability for the ROI, which is usually less than 5 % of 
pixels of the total image. Taha et al. [28] discussed the behavior and 
requirements of 3D medical image segmentation metrics in detail and 
demonstrated that metric behavior can have advantages as well as dis-
advantages. The disadvantage lays in the restrictiveness of the seg-
mentation patterns. Even if a ROI is correctly identified, small 
annotation differences, which can arise from not computational refined 
annotations, can lead to drastic scoring variances due to the large class 
imbalance in medical imaging. Still, the advantage as well as the ne-
cessity of using false negative focused metrics lays in the class imbal-
ance, too. Other common metrics like accuracy are not suited for 
medical image segmentation due to the true negative influence. There-
fore, the scientific community, strongly favors F-score based metrics like 
the Dice similarity coefficient (1), also called F-1, or the 
Intersection-over-Union (2), also called F-0 or Jaccard index. Due to 
their reliable capability of handling class imbalance by focusing on false 
positive and false negative predictions, the two are the most widespread 
metrics in computer vision. All related studies, referenced later for 
medical image segmentation, are using either one or both of the two 
metrics for evaluation. In contrast, the sensitivity (3) and specificity (4) 
are one of the most popular metrics in medical fields. All metrics are 
based on the confusion matrix for binary classification, where TP, FP, TN 
and FN represent the true positive, false positive, true negative and false 
negative rate, respectively. 

DSC =
2⋅TP

2⋅TP + FP + FN
(1)  

IoU =
TP

TP + FP + FN
(2)  

Sensitivity=
TP

TP + FN
(3)  

Specificity=
TN

TN + FP
(4) 

In reaction to the rapid spread of the coronavirus, many scientists 
quickly reacted and developed various approaches based on deep 
learning to contribute to the efforts against COVID-19. Furthermore, the 
scientific community focused their efforts on the development of models 
for COVID-19 classification, because X-ray and CT images of infected 
patients could be collected without further required annotations [10, 
20]. These classification algorithms can be categorized through their 
objectives: 1) Classification of COVID-19 from non-COVID-19 (healthy) 
patients, which resulted into models achieving a sensitivity of 94.1 %, 
specificity of 95.5 %, and AUC of 0.979 by Jin et al. [29]. 2) Classifi-
cation of COVID-19 from other pneumonia, which resulted in models 
achieving a sensitivity of 100.0 %, specificity of 85.18 %, and AUC of 
0.97 by Abbas et al. [30]. 3) Severity assessment of COVID-19, which 
resulted in a model achieving a true positive rate of 91.0 %, true 
negative rate of 85.8 %, and accuracy of 89.0 % by Tang et al. [31]. 

In the middle of the year 2020, clinicians started to publish COVID- 
19 CT images with annotated ROIs, which allowed the training of seg-
mentation models. Automated segmentation is highly desired as COVID- 
19 application [10,32]. The segmentation of lung, lung lobes and lung 
infection provide accurate quantification data for progression assess-
ment in follow-up, comprehensive prediction of severity in the enroll-
ment and visualization of lesion distribution using percentage of 
infection (POI) [10]. Still, the limited amount of annotated imaging data 

causes a challenging task for detecting the variety of shapes, textures 
and localizations of lesions or nodules. Nonetheless, multiple ap-
proaches try to solve these problems with different methods. The most 
popular network models for COVID-19 segmentation are variants of the 
U-Net which achieved reasonable performance on sufficiently sized 2D 
datasets [5,10,33–40]. In order to compensate limited dataset sizes, 
more attention has been drawn to semi-supervised learning pipelines 
[10,41,42]. These methods optimize a supervised training on labeled 
data along with an unsupervised training on unlabeled data. Another 
approach is the development of special neural network architectures for 
handling limited dataset sizes. Frequently, attention mechanisms are 
built into the classic U-Net architecture like the Inf-Net from Fan et al. 
[41] or the MiniSeg from Qiu et al. [43]. Wang et al. [44] utilized 
transfer learning strategies based on models trained on non-COVID-19 
related conditions. Particularly worth mentioning is the development 
of a benchmark model with a 3D U-Net from Ma et al. [16,45], because 
the authors also provide high reproducibility through a publicly avail-
able dataset. 

2. Methods 

This pipeline was based on MIScnn [46], which is an in-house 
developed open-source framework to setup complete medical image 
segmentation pipelines with convolutional neural networks and deep 
learning models on top of Tensorflow/Keras [47]. MIScnn supports 
extensive preprocessing, data augmentation, state-of-the-art deep 
learning models and diverse evaluation techniques. The implemented 
medical image segmentation pipeline is illustrated in Fig. 2. 

2.1. Datasets of COVID-19 chest CTs 

In this study, we used two public datasets: Ma et al. [45] as limited 
dataset for model training as well as validation, and An et al. [48] as a 
larger hold-out dataset for additional testing purpose. 

The Ma et al. dataset consists of 20 annotated COVID-19 chest CT 
volumes [16,45]. All cases were confirmed COVID-19 infections with a 
lung infection proportion ranging from 0.01 % to 59 % [16]. This dataset 
was one of the first publicly available 3D volume sets with annotated 
COVID-19 infection segmentation [16]. The CT scans were collected 
from the Coronacases Initiative and Radiopaedia and were licensed 
under CC BY-NC-SA. Each CT volume was first labeled by junior anno-
tators, then refined by two radiologists with 5 years of experience and 
afterwards the annotations verified by senior radiologists with more 
than 10 years of experience [16]. Despite the fact that the sample size is 
rather small, the annotation process led to an excellent high-quality 
dataset. The volumes had a resolution of 512x512 (Coronacases Initia-
tive) or 630x630 (Radiopaedia) with a number of slices of about 176 by 
mean (200 by median). The CT images were labeled into four classes: 
Background, lung left, lung right and COVID-19 infection. 

The An et al. dataset consists of unenhanced chest CT volumes from 
632 patients with COVID-19 infections and is one of the largest publicly 
available COVID-19 CT datasets [48]. The CT scans were collected 
through the outbreak settings from patients with a combination of 
symptoms, exposure to an infected patient or travel history to an 
outbreak region [48,49]. All patients had a positive RT-PCR for 
SARS-CoV-2 from a sample obtained within 1 day of the initial CT [48, 
49]. The annotation of the dataset was made possible through the joint 
work of Children’s National Hospital, NVIDIA and National Institutes of 
Health for the COVID-19-20 Lung CT Lesion Segmentation Grand 
Challenge [50]. The challenge authors were able to annotate a subset of 
295 patients through American board certified radiologists [50]. 
Through the characteristic as a challenge, not all volumes had publicly 
available annotations. Nevertheless, we were able to obtain a subset of 
100 patients as additional testing set. The volumes had a resolution of 
512x512 with a number of slices of about 75 by mean (65 by median). 
The CT images were labeled into two classes: Background and COVID-19 
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infection. 

2.2. Preprocessing 

In order to simplify the pattern finding and fitting process for the 
model, we applied several preprocessing methods on the dataset. 

We exploited the Hounsfield units (HU) scale by clipping the pixel 
intensity values of the images to − 1250 as minimum and +250 as 
maximum, because we were interested in infected regions (+50 to +100 
HU) and lung regions (− 1000 to − 700 HU) [51]. It was possible to apply 
the clipping approach on the Coronacases Initiative and An et al. CTs, 
because the Radiopaedia volumes were already normalized to a gray-
scale range between 0 and 255. 

Varying signal intensity ranges of images can drastically influence 
the fitting process and the resulting performance of segmentation 
models [52]. For achieving dynamic signal intensity range consistency, 
it is recommended to scale and standardize imaging data. Therefore, we 
normalized the remaining CT volumes likewise to grayscale range. Af-
terwards, all samples were standardized via z-score. 

Medical imaging volumes have commonly inhomogeneous voxel 
spacings. The interpretation of diverse voxel spacings is a challenging 
task for deep neural networks. Therefore, it is possible to drastically 
reduce complexity by resampling volumes in an imaging dataset to 
homogeneous voxel spacing, which is also called target spacing. 
Resampling voxel spacings also directly resizes the volume shape and 
determines the contextual information, which the neural network model 
is able to capture. As a result, the target spacing has a huge impact on the 
final model performance. We decided to resample all CT volumes to a 
target spacing of 1.58x1.58x2.70, resulting in a median volume shape of 
267x254x104. 

2.3. Data augmentation 

The aim of data augmentation is to create more data of reasonable 
variations of the desired pattern and, thus, artificially increase the 
number of training images. This technique results into improved model 
performance and robustness [53–55]. In order to compensate the small 

dataset size, we performed extensive data augmentation by using the 
batchgenerators interface within MIScnn. The batchgenerators package 
[56] is an API for state-of-the-art data augmentation on medical images 
from the Division of Medical Image Computing at the German Cancer 
Research Center. We implemented three types of augmentations: Spatial 
augmentation by mirroring, elastic deformations, rotations and scaling. 
Color augmentations by brightness, contrast and gamma alterations. 
Noise augmentations by adding Gaussian noise. Furthermore, each 
augmentation method had a random probability of 15 % to be applied 
on the current image with random intensity or parameters (e.g. random 
angle for rotation) [56,57]. 

Instead of traditional upsampling approaches, we performed on-the- 
fly data augmentation on each image before it was forwarded into the 
neural network model. The innovative one-the-fly augmentation tech-
nique is defined as the creation of novel and unique images in each 
iteration of the training process instead of generating once a fixed 
number of augmented images beforehand. Through this technique, the 
probability that the model encounters the exact same image twice dur-
ing the training process decreases significantly, which proved to reduce 
the risk of overfitting drastically [57]. 

2.4. Patch-wise analysis 

In image analysis there are three popular methods: The analysis of 
full images, the slice-wise analysis for 3D data or patch-wise by slicing 
the volume into smaller cuboid patches [9]. We selected the patch-wise 
approach in order to exploit random cropping for the fitting process. 
Through random forwarding only a single cropped patch from the image 
to the fitting process, another type of data augmentation is induced, and 
the risk of overfitting additionally decreased. Furthermore, full image 
analysis requires unnecessary resolution reduction of the 3D volumes in 
order to handle the enormous GPU memory requirements. By slicing the 
volumes into patches with a shape of 160x160x80, we were able to 
utilize high-resolution data. All slicing processes were done via manual 
image matrix slicing. 

For inference, the volumes were sliced into patches according to a 
grid. Between the patches, we introduced an overlap of half the patch 

Fig. 2. Flowchart diagram of the implemented medical image analysis pipeline for COVID-19 lung infection segmentation. The workflow is starting with the COVID- 
19 dataset and ending with the computed evaluation results for each fold in the cross-validation. 
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size (80x80x40) to increase prediction performance. After the inference 
of each patch, they were reassembled into the original volume shape, 
whereas overlapping regions were averaged. 

2.5. Neural network model 

The neural network architecture and its hyper parameters are one of 
the key parts in a medical image segmentation pipeline. The current 
landscape of deep learning architectures for semantic segmentation 
accommodates a variety of variants which distinguish by efficiency, 
robustness or performance. Nevertheless, the U-Net is currently the most 
popular and promising architecture in terms of the interaction between 
performance and variability [57–60]. In this work, we implemented the 
standard 3D U-Net as architecture without any custom modification in 
order to avoid unnecessary parameter increase by more complex ar-
chitectures like the residual variant of the 3D U-Net [26,61,62]. The 
input of our architecture was a 160x160x80 patch with a single channel 
consisting of normalized HUs. The output layer of our architecture 
normalized the class probabilities through a softmax function (normal-
ized exponential function) and returned the 160x160x80 mask with 4 
channels representing the probability for each class (background, lung 
left, lung right and COVID-19 infection). Upsampling was achieved via 
transposed convolution and downsampling via maximum pooling. The 
architecture used 32 feature maps at its highest resolution and 512 at its 
lowest. All convolutions were applied with a kernel size of 3 × 3 × 3 in a 
stride of 1 × 1 × 1, except for up- and downsampling convolutions which 
were applied with a kernel size of 2 × 2 × 2 in a stride of 2 × 2 × 2. After 
each convolutional block, batch normalization was applied. The archi-
tecture can be seen in Fig. 3. 

In medical image segmentation, it is common that semantic anno-
tation includes a strong bias in class distribution towards the back-
ground class. Our dataset revealed a class distribution of 89 % for 
background, 9 % for lungs and 1 % for infection. In order to compensate 
this class bias, we utilized the sum of the Tversky index [63] and the 
categorical cross-entropy as loss function for model fitting (5). 

Ltotal = LTversky + LCCE (5)  

LTversky = N −
∑N

c=1

TPc

TPc + α⋅FNc + β⋅FPc
(6)  

LCCE = −
∑N

c=1
yo,clog(po,c) (7) 

We implemented a multi-class adaptation for the Tversky index (6), 
which is an asymmetric similarity index to measure the overlap of the 
segmented region with the ground truth. It allows for flexibility in 
balancing the false positive rate (FP) and false negative (FN) rate. The 
cross-entropy (7) is a commonly used loss function in machine learning 
and calculates the total entropy between the predicted and true distri-
bution. The multi-class adaptation for multiple categories (categorical 
cross-entropy) is represented through the sum of the binary cross- 
entropy for each class c, whereas yo,c is the binary indicator whether 
the class label c is the correct classification for observation o. The var-
iable po,c is the predicted probability that observation o is of class c. 

For model fitting, an Adam optimization [64] was used with the 
initial weight decay of 1e-3. We utilized a dynamic learning rate which 
reduced the learning rate by a factor of 0.1 in case the training loss did 
not decrease for 15 epochs. The minimal learning rate was set to 1e-5. In 
order to further reduce the risk of overfitting, we exploited the early 
stopping technique for training, in which the training process stopped 
without a fitting loss decrease after 100 epochs. The neural network 
model was trained for a maximum of 1000 epochs. Instead of the com-
mon epoch definition as a single iteration over the dataset, we defined 
an epoch as the iteration over 150 training batches. This allowed for an 
improved fitting process for randomly generated batches in which the 
dataset acts as a variation database. According to our available GPU 
VRAM, we selected a batch size of 2. 

2.6. Sensitivity analysis with cross-validation 

For reliable robustness evaluation, we performed a sensitivity anal-
ysis to estimate the generalizability and sensitivity of our pipeline. Thus, 
we performed multiple k-fold cross-validations on the Ma et al. dataset 
to obtain various models based on limited training data as well as 
different validation subsets. 

As k-fold multitude, we used a range from 2 up to 5 for the sensitivity 
analysis resulting in to 4 separate cross-validation analyses with in total 
14 models. Each model was created through a training process on k-1 
folds and validated through the leftover fold in each cross-validation 
sampling. Training and validation were performed on the small Ma et 
al. dataset, whereas the An et al. dataset was used as additional testing 
set to further ensure a robust evaluation. As example, this technique 

Fig. 3. The architecture of the standard 3D U-Net. The network takes a 3D patch (cuboid) and outputs the segmentation of lungs and infected regions by COVID-19. 
Skip connections were implemented with concatenation layers. Conv: Convultional layer; ReLU: Rectified linear unit layer; BN: Batch normalization. 
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resulted in the following sampling for a 5-fold cross-validation: 16 
samples as training dataset (Ma et al.), 4 samples as validation dataset 
(Ma et al.) and 100 samples as testing dataset (An et al.). 

Furthermore, we analyzed the impact of the preprocessing and data 
augmentation techniques on model performances for the 5-fold cross- 
validation. We did not configure any hyper parameters afterwards on 
basis of validation results and did not perform any validation monitoring 
based training techniques, which allowed us to utilize our validation 
results for hold-out evaluation, as well. 

2.7. Evaluation metrics 

During the fitting process, we computed the segmentation perfor-
mance for each epoch on randomly cropped and data augmented 
patches from the validation dataset. This allowed for an evaluation of 
the overfitting on the training data. 

After the training, we used mainly four widely popular evaluation 
metrics in the community for medical image analysis to do the inference 
performance measurement on the validation and testing set: Dice simi-
larity coefficient, Intersection-over-Union, sensitivity, and specificity. 
Furthermore, we computed the accuracy and precision as supplemen-
tary metrics for the Appendix. The performance measurement was based 
on the segmentation overlap between prediction and ground truth, 
which was manually annotated through the consensus of multiple ra-
diologists, as described in the dataset section. For the Ma et al. dataset, 
the two lung classes (‘lung left’ and ‘lung right’) were averaged by mean 
into a single class (‘lungs’) during the evaluation. 

2.8. Code reproducibility 

In order to ensure full reproducibility and to create a base for further 
research, the complete code of this project, including extensive docu-
mentation, is available in a public Git repository which is referenced in 
the Appendix. 

3. Results 

The sequential training of the complete cross-validation on 2 NVIDIA 
QUADRO RTX 6000 with 24 GB VRAM, an Intel Xeon Gold 5220R using 
4 CPUs and 20 GB RAM took around 182 h. All models did not require 
the entire 1000 epochs for training and instead were early stopped after 
an average of 312 epochs. 

After the training, the inference revealed a strong segmentation 
performance for lungs and COVID-19 infected regions. Overall, the k- 
fold cross-validation models achieved a DSC and IoU of around 0.971 
and 0.944 for lungs, as well as 0.804 and 0.672 for COVID-19 infection 
segmentation on the Ma et al. dataset, respectively. On the additional 
testing set from An et al. the models achieved a DSC of around 0.661 and 
an IoU of around 0.494 for COVID-19 infection segmentation. Further-
more, the models obtained a sensitivity and specificity of 0.778 and 
0.999 on the validation set, as well as 0.580 and 0.999 on the testing set 
for COVID-19 infection, respectively. More details on inference perfor-
mance are listed in Table 1 and visualized in Fig. 4. 

For the sensitivity analysis, average evaluation metrics were calcu-
lated for each k-fold cross-validation (Table 1) as well as for each data 
augmentation and preprocessing configuration (Table 2). The 5-fold 
cross-validation revealed the best performance on all evaluation met-
rics on the validation set, whereas the 4-fold cross-validation was su-
perior on the testing set. The Dice similarity coefficient difference 
between the best k-fold cross-validation and the worst is 0.093 on 
validation and 0.106 on testing for COVID-19 lesion segmentation. The 
inclusion of data augmentation and preprocessing increased the pipeline 
performance on average by 0.647 for lung and by 0.630 for COVID-19 
lesion segmentation based on the Dice similarity coefficient, which is 
summarized in Table 2. 

Through validation monitoring, no overfitting was observed. The 
training and validation loss function revealed no significant distinction 
from each other, which can be seen in Fig. 5. During the fitting, the 
performance settled down at a loss of around 0.383 for the 5-fold cross- 
validation (Fig. 5-D) which is a generalized DSC (average of all class- 
wise DSCs) of around 0.919. Because of this robust training process 
without any signs of overfitting, we concluded that fitting on randomly 
generated patches via extensive data augmentation and random crop-
ping from a variant database, is highly efficient for limited imaging data. 

Exemplary for model performance of the 5-fold cross-validation, 4 
samples with annotated ground truth and predicted segmentation are 
visualized in Fig. 6. The performance evaluation of our sensitivity 
analysis revealed that there is only a marginal but notable difference 
between the k-fold cross-validations. As example, the 3-fold cross- 
validation with a training dataset size of only 13 samples achieved ac-
curate segmentation results on the validation as well as testing set. 
Interestingly, the 4-fold cross-validation (15 training samples) obtained 
the best DSC and IoU and the 3-fold cross-validation the best sensitivity 
on the larger testing set. This demonstrated that generalizability is one 
of the most important hallmarks of a model, especially if trained on a 
limited dataset. If all important visual features for the medical condition 
are present in the training set, a low number of samples can be sufficient 
by using extensive image augmentation and preprocessing techniques as 
our pipeline for creating a powerful model. However, if too many 
samples share similar morphological features without any variation, the 
risk of overfitting or generating a less generalized model is still present. 

4. Discussion 

From a medical perspective, detection of COVID-19 infection is a 
challenging task and one of the reasons for the weaker segmentation 
accuracy in contrast to the lung segmentation. The reason for this is the 
variety of GGO and pulmonary consolidation morphology. In contrast to 
the specificity, the dice similarity coefficient as well as the sensitivity are 
showing a lower but more reliable performance evaluation comparable 
with the visualized segmentation correctness. The reason for this is that 
false negative predictions have a strong impact on these two metrics. 
Especially, in medical image segmentation, in which ROIs are quite 
small compared to the remaining image, a few incorrect predicted pixels 
have a large impact on the resulting score. Such strict metrics are 
required in order to compensate the class unbalance between mostly 

Table 1 
Achieved results showing the median Dice similarity coefficient (DSC), the Intersection-over-Union (IoU) the sensitivity (Sens) and specificity (Spec) on Lung and 
COVID-19 infection segmentation for each k-fold cross-validation of the sensitivity analysis for the Ma et al. and An et al. dataset. Standard deviation is included for 
DSC and IoU.   

Dataset: Ma et al. Dataset: An et al. 

Lungs COVID-19 Lesion COVID-19 Lesion 

k-fold CV DSC IoU Sens. Spec. DSC IoU Sens. Spec. DSC IoU Sens. Spec. 

k¼2 0.960 ± 0.06 0.923 ± 0.10 0.970 0.998 0.775 ± 0.20 0.635 ± 0.19 0.747 0.999 0.555 ± 0.07 0.386 ± 0.07 0.485 0.998 
k¼3 0.966 ± 0.07 0.934 ± 0.10 0.968 0.999 0.778 ± 0.19 0.636 ± 0.18 0.730 0.999 0.598 ± 0.10 0.426 ± 0.11 0.580 0.999 
k¼4 0.951 ± 0.22 0.907 ± 0.29 0.948 0.999 0.711 ± 0.27 0.552 ± 0.25 0.731 0.999 0.661 ± 0.07 0.494 ± 0.09 0.561 0.999 
k¼5 0.971 ± 0.07 0.944 ± 0.11 0.971 0.999 0.804 ± 0.20 0.672 ± 0.19 0.778 0.999 0.623 ± 0.04 0.453 ± 0.04 0.513 0.998  
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background and small ROIs in medical imaging. Nevertheless, our 
medical image segmentation pipeline allowed fitting a model which is 
able to segment COVID-19 infection with state-of-the-art accuracy that 
is comparable to models trained on large datasets. 

In order to provide further insights on the influence of our method-
ology on the achieved performance, we run and analyzed our pipeline 
through a sensitivity analysis based on cross-validation and variable 
data augmentation as well as applied preprocessing configuration. All 
other configurations as well as the neural network architecture 
remained the same as described in the methods section. Thus, this 
experiment resulted into 30 models (14 models from cross-validation 
ranging from k-fold 2 up to 5 and 15 models from three 5-fold cross- 
validation runs with variable data augmentation as well as preprocess-
ing configuration). 

The fitting process of the different runs revealed that extensive data 
augmentation plays an important role for avoiding overfitting and to 
improve model robustness, as it can be seen in the fitting curves of Fig. 5. 
Therefrom, the model overfitted on the training data. The on-the-fly 
data augmentation helped the model to learn a more generalized 
pattern for recognizing the lungs and infected regions instead of just 
memorizing the training data. In contrast, the preprocessing methods 
increased the overall performance of the model by simplifying the 
computer vision task. The applied methods like resampling or clipping 
led to a search space reduction which increased the chances of the model 
to identify patterns in the imaging data. This advantage was also shown 

in the resulting performances, which can be seen in Table 2. As expected, 
the pipeline run with no data augmentation as well as no preprocessing 
appeared to be the worst model. In contrast, the preprocessing tech-
niques demonstrated the highest performance increase on the testing 
data of the 5-fold cross-validation. Therefore, the final pipeline build 
combined data augmentation, for improving robustness, and pre-
processing techniques, for increasing performance, in order for opti-
mizing inference quality. 

4.1. Comparison with prior work 

For further evaluation, we compared our pipeline to other available 
COVID-19 segmentation approaches based on CT scans. Information and 
further details of related work was structured and summarized in 
Table 3. The authors (Ma et al.), who also provided the dataset we used 
for our analysis, implemented a 3D U-Net approach as a baseline for 
benchmarking [16]. They were able to achieve a DSC of 0.70355 and 
0.6078 for lungs and COVID-19 infection, respectively. With our model, 
we were able to outperform this baseline. It is important to mention that 
the authors of this baseline trained with a 5-fold cross-validation sam-
pling of 20 % training and 80 % validation, whereas we used the 
inverted distribution for our k-fold cross-validations (k-1 folds for 
training and the k’s fold for validation). Based on the Ma et al. dataset, 
Wang et al. [44] gathered more samples, expanded the dataset and also 
applied a 3D U-Net which resulted in a DSC of 0.704. Another approach 

Fig. 4. Summaries showing the Dice similarity coefficient distributions from validation and testing on the Ma et al. and An et al. datasets. A: Boxplot showing the 
results of the 5-fold cross-validation on the Ma et al. dataset. B: Boxplots and bar plots showing the average Dice similarity coefficient for each k-fold cross-validation 
run on the Ma et al. dataset. C: Boxplots for each model of the k-fold cross-validation on the An et al. testing dataset. 

Table 2 
The segmentation pipeline was applied four times with in-/excluded preprocessing and data augmentation in order to evaluate their performance influence on the 
model. Achieved results showing the median Dice similarity coefficient (DSC) on Lung and COVID-19 infection segmentation for each CV fold of the 5-fold cross- 
validation and the global average (AVG) based on the Ma et al. dataset.   

Data Augmentation:Excluded 
Preprocessing: Excluded 

Data Augmentation: Included 
Preprocessing: Excluded 

Data Augmentation: Excluded 
Preprocessing: Included 

Data Augmentation: Included 
Preprocessing: Included 

Fold Lungs COVID-19 Lungs COVID-19 Lungs COVID-19 Lungs COVID-19 

1 0.711 0.031 0.397 0.166 0.867 0.530 0.907 0.556 
2 0.046 0.186 0.275 0.050 0.979 0.819 0.977 0.801 
3 0.190 0.241 0.168 0.057 0.951 0.814 0.952 0.829 
4 0.080 0.005 0.175 0.114 0.979 0.819 0.979 0.853 
5 0.520 0.194 0.360 0.201 0.964 0.798 0.967 0.765 
AVG 0.309 0.131 0.275 0.118 0.948 0.756 0.956 0.761  

D. Müller et al.                                                                                                                                                                                                                                  



Informatics in Medicine Unlocked 25 (2021) 100681

8

from Yan et al. [65] developed a novel neural network architecture 
(COVID-SegNet) specifically designed for COVID-19 infection segmen-
tation with limited data. The authors tested their architecture on a 
limited dataset consisting of ten COVID-19 cases from Brainlab Co. Ltd 
(Germany) and were able to achieve a DSC of 0.987 and 0.726 for lungs 
and infection, respectively. Hence, COVID-SegNet as well as our 
approach achieved similar results. This raises the question, if it is 
possible to further increase our performance by switching from the 
standard U-Net of our pipeline to an architecture specifically designed 
for COVID-19 infection segmentation like COVID-SegNet. Further ap-
proaches, with the aim to utilize specifically designed architectures, 
were Inf-Net (Fan et al.) [41] and MiniSeg (Qiu et al.) [43]. Both were 
trained on 2D CT scans and achieved for COVID-19 infection segmen-
tation DSCs of 0.764 and 0.773, respectively. Although diverse datasets 
were used for training, which leads to incomparability of the results, it is 
highly impressive that they achieved similar performance as approaches 
based on 3D imaging data. The 3D transformation of these architectures 
and the integration into our pipeline would be an interesting experiment 
to evaluate improvement possibilities. Other high-performance 2D ap-
proaches like Saood et al. [37] and Pei et al. [38] were difficult to 
compare due to these models are purely trained and evaluated on 2D 
slices with COVID-19 presence [66]. 

4.2. Limitations 

However, it is important to note that the majority of current seg-
mentation approaches in research are not suited for clinical usage. The 
bias of current models is that the majority are only trained with COVID- 
19 related images. Therefore, it is not certain how good the models can 

differentiate between COVID-19 lesions and other pneumonia, or 
entirely unrelated medical conditions like cancer. Furthermore, iden-
tical to COVID-19 classification, the models reveal huge differences 
depending on which dataset they were trained on. Segmentation models 
purely based on COVID-19 scans are often not able to segment accu-
rately in the presence of other medical conditions [16]. Additionally, 
there is a high potential for false positive segmentation of pneumonia 
lesions that are not caused by COVID-19. This demonstrates that these 
models could be biased and are not suitable for COVID-19 screening. 
Nevertheless, current infection segmentation models are already highly 
accurate for confirmed COVID-19 imaging. This offers the opportunity 
for quantitative assessment and disease monitoring as applications in 
clinical studies. 

Despite that our model and those of others, which are based on 
limited data, are capable for accurate segmentation, it is essential to 
discuss their robustness. Currently, there are only a handful annotated 
imaging datasets publicly available for COVID-19 segmentation. More 
imaging data with especially more variance (different COVID-19 states, 
other pneumonia, healthy control samples, etc.) need to be collected, 
annotated, and published for researchers. Similar to Ma et al. [16,45], 
community accepted benchmark datasets have to be established in order 
to fully ensure robustness as well as comparability of models. 

5. Conclusions 

Even so, neural networks are capable of accurate decision support, 
their robustness is highly dependent on dataset size for training. Various 
medical conditions like rare or novel diseases lack available data for 
model training which decreases generalizability and increases the risk of 

Fig. 5. The illustration showing the loss course during the training process for training (red) and validation (cyan) data for the 5-fold cross-validation from four 
pipeline runs including (‘on’) or excluding (‘off’) data augmentation (Data Aug) and preprocessing (PreProc) techniques. The lines were computed via Gaussian 
Process Regression and represent the average loss across all folds for each 5-fold cross-validation pipeline run. The final pipeline fitting curve is illustrated in the 
bottom-right corner (D). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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overfitting. In this paper, we developed and evaluated an approach for 
automated as well as robust segmentation of COVID-19 infected regions 
in CT volumes based on a limited dataset. Our method focuses on on-the- 
fly generation of unique and random image patches for training by 
performing several preprocessing methods and exploiting extensive data 
augmentation. Thus, it is possible to handle limited dataset sizes which 
act as variant database. Instead of novel and complex neural network 
architectures, we utilized the standard 3D U-Net. We proved that our 
medical image segmentation pipeline is able to successfully train accu-
rate and robust models without overfitting on limited data. Further-
more, we were able to outperform current state-of-the-art semantic 
segmentation approaches for COVID-19 infected regions. Our work has 

great potential to be applied as a clinical decision support system for 
COVID-19 quantitative assessment and disease monitoring in a clinical 
environment. As further research, we are planning to integrate ensemble 
learning techniques in our pipeline to combine the predictive strengths 
of the k-fold cross-validation models. Additional, clinical studies are 
needed for robust validation on clinical performance and generaliz-
ability of models based on limited data. Also, we are going expand our 
testing data and evaluation by adding cases with non-COVID-19 con-
ditions like bacterial pneumonia or lung cancer. 

Fig. 6. Visual comparison of the segmentation between ground truth from radiologist annotations and our model (5-fold cross-validation) on four slices from 
different CT scans of the Ma et al. dataset. Visualization for all samples for both datasets is provided in the appendix. 

Table 3 
Related work overview for COVID-19 segmentation and comparison of resulting segmentation performances. The table categories the related work in terms of model 
architecture, training dataset information for comparability like source, dimension (Dim.), sample size as well as the presence of non-COVID-19 slices (Control) and 
their performance on a validation/testing set.  

Related Work Training Dataset Validation/Testing Performance 

Author Model Architecture Source Dim. Sample Size Control DSC – COVID-19 Sample Size 

Amyar et al. [5] U-Net (Standard) Amyar et al. [5] 2D 1219 Yes 0.78 150 
Fan et al. [41] Inf-Net (Attention U-Net) Fan et al. [41] 2D 1650 Yes 0.764 50 
Qiu et al. [43] MiniSeg (Attention U-Net) Qiu et al. [43] 2D 3558 Yes 0.773 3558 
Saood et al. [37] U-Net (Standard) SIRM [66] 2D 80 No 0.733 20 
Saood et al. [37] SegNet SIRM [66] 2D 80 No 0.749 20 
Pei et al. [38] MPS-Net (Supervision U-Net) SIRM [66] 2D 300 No 0.833 68 
Zheng et al. [39] MSD-Net Zheng et al. [39] 2D 3824 Yes 0.785 956 
Wang et al. [40] COPLE-Net (enhanced U-Net) Wang et al. [40] 2D 59,045 Yes 0.803 17,205 
Ma et al. [16] U-Net (Standard) Ma et al. [16] 3D 20 Yes 0.608 20 
Ma et al. [16,57] nnU-Net Ma et al. [16] 3D 20 Yes 0.673 20 
Wang et al. [44] U-Net (Standard) Wang et al. [44] 3D 211 Yes 0.704 211 
Yan et al. [65] COVID-SegNet Yan et al. [65] 3D 731 Yes 0.726 130 
He et al. [42] M2UNet (Segmentation only) He et al. [42] 3D 666 Yes 0.759 666 
Our Pipeline U-Net (Standard) Ma et al. [16] 3D 20 Yes 0.804/0.661 20/100  
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[35] Gaál G, Maga B, Lukács A. Attention U-net based adversarial architectures for chest 
X-ray lung segmentation. 2020. p. 1–7. http://arxiv.org/abs/2003.10304. 

[36] Zhou T, Canu S, Ruan S. An automatic COVID-19 CT segmentation based on U-Net 
with attention mechanism. 2020. p. 1–14. http://arxiv.org/abs/2004.06673. 

[37] Saood A, Hatem I. COVID-19 lung CT image segmentation using deep learning 
methods: U-Net versus SegNet. BMC Med Imag 2021;21:19. https://doi.org/ 
10.1186/s12880-020-00529-5. 

[38] Pei HY, Yang D, Liu GR, Lu T. MPS-net: multi-point supervised network for ct 
image segmentation of covid-19. IEEE Access 2021;9:47144–53. 

[39] Zheng B, Liu Y, Zhu Y, Yu F, Jiang T, Yang D, et al. Msd-net: multi-scale 
discriminative network for covid-19 lung infection segmentation on CT. IEEE 
Access 2020;8:185786–95. 

[40] Wang G, Liu X, Li C, Xu Z, Ruan J, Zhu H, et al. A noise-robust framework for 
automatic segmentation of COVID-19 pneumonia lesions from CT images. IEEE 
Trans Med Imag 2020;39:2653–63. 

[41] Fan D-P, Zhou T, Ji G-P, Zhou Y, Chen G, Fu H, et al. Inf-Net: automatic COVID-19 
lung infection segmentation from CT scans. 2019 IEEE Trans Med Imag 2020:1–11. 
https://doi.org/10.1109/tmi.2020.2996645. 

[42] He K, Zhao W, Xie X, Ji W, Liu M, Tang Z, et al. Synergistic learning of lung lobe 
segmentation and hierarchical multi-instance classification for automated severity 
assessment of COVID-19 in CT images. 2020. http://arxiv.org/abs/2005. [Accessed 
2 November 2020]. 03832. Accessed. 

[43] Qiu Y, Liu Y, Xu J. MiniSeg: an extremely minimum network for efficient COVID-19 
segmentation. 2020. p. 1–10. http://arxiv.org/abs/2004.09750. 

[44] Wang Y, Zhang Y, Liu Y, Tian J, Zhong C, Shi Z, et al. Does non-COVID-19 lung 
lesion help? investigating transferability in COVID-19 CT image segmentation. 
Comput Methods Progr Biomed 2021;202:106004. 

D. Müller et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.imu.2021.100681
https://doi.org/10.1016/j.imu.2021.100681
https://doi.org/10.1016/S1473-3099(20)30120-1
https://doi.org/10.1016/S1473-3099(20)30120-1
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://doi.org/10.1016/j.ijsu.2020.02.034
https://doi.org/10.1016/j.ijsu.2020.02.034
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html
https://doi.org/10.1101/2020.04.16.20064709
https://doi.org/10.1101/2020.04.16.20064709
https://doi.org/10.1016/j.tmaid.2020.101623
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref7
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref7
https://doi.org/10.2214/AJR.20.23034
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref9
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref9
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref9
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref10
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref10
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref10
https://doi.org/10.1148/radiol.2020201365
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref12
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref12
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref12
https://doi.org/10.1148/ryct.2020200034
https://doi.org/10.1148/radiol.2020200432
https://doi.org/10.1148/radiol.2020200432
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref15
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref15
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref15
http://arxiv.org/abs/2004.12537
http://arxiv.org/abs/2004.12537
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref17
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref18
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref18
http://arxiv.org/abs/1706.00120
http://arxiv.org/abs/2003.11336
http://arxiv.org/abs/2003.11336
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1608.06993
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref26
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref26
https://doi.org/10.1101/2020.03.19.20039354
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1038/s41467-020-18685-1
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref30
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref30
https://doi.org/10.1088/1361-6560/abbf9e
http://arxiv.org/abs/2003.05037
http://arxiv.org/abs/2004.05645
http://arxiv.org/abs/2004.05645
http://arxiv.org/abs/2004.02640
http://arxiv.org/abs/2004.02640
http://arxiv.org/abs/2003.10304
http://arxiv.org/abs/2004.06673
https://doi.org/10.1186/s12880-020-00529-5
https://doi.org/10.1186/s12880-020-00529-5
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref38
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref38
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref39
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref39
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref39
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref40
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref40
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref40
https://doi.org/10.1109/tmi.2020.2996645
http://arxiv.org/abs/2005
http://arxiv.org/abs/2004.09750
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref44
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref44
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref44


Informatics in Medicine Unlocked 25 (2021) 100681

11

[45] Jun M, Cheng G, Yixin W, Xingle A, Jiantao G, Ziqi Y, et al. COVID-19 CT lung and 
infection segmentation dataset. 2020. https://doi.org/10.5281/zenodo.3757476. 

[46] Müller D, Kramer F. MIScnn: a framework for medical image segmentation with 
convolutional neural networks and deep learning. arXiv. 2021. https://doi.org/ 
10.1186/s12880-020-00543-7. 

[47] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: large- 
scale machine learning on heterogeneous systems. 2015. https://www.tensorflow. 
org/. 

[48] An P, Xu S, Harmon S, Turkbey E, Sanford T, Amalou A, et al. CT images in COVID- 
19 - the cancer imaging archive. TCIA); 2020. https://doi.org/10.7937/tcia.2020. 
gqry-nc81. 

[49] Harmon SA, Sanford TH, Xu S, Turkbey EB, Roth H, Xu Z, et al. Artificial 
intelligence for the detection of COVID-19 pneumonia on chest CT using 
multinational datasets. Nat Commun 2020;11:1–7. https://doi.org/10.1038/ 
s41467-020-17971-2. 

[50] COVID-19 lung CT lesion segmentation challenge. 2020. Grand Challenge, 
https://covid-segmentation.grand-challenge.org/COVID-19-20/. [Accessed 29 
May 2021]. 

[51] Toennies KD. The analysis of medical images. In: Guide to medical image analysis. 
Springer London; 2012. p. 1–19. 

[52] Roy S, Carass A, Prince JL. Patch based intensity normalization of brain MR 
images. In: Proceedings - international symposium on biomedical imaging; 2013. 

[53] Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep 
learning. J Big Data 2019;6. https://doi.org/10.1186/s40537-019-0197-0. 

[54] Perez L, Wang J. The effectiveness of data augmentation in image classification 
using deep learning. 2017. http://arxiv.org/abs/1712.04621. [Accessed 23 July 
2019]. Accessed. 

[55] Taylor L, Nitschke G. Improving deep learning using generic data augmentation. 
2017. http://arxiv.org/abs/1708.06020. [Accessed 23 July 2019]. Accessed. 
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[61] Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-net: learning 
dense volumetric segmentation from sparse annotation. 9901 LNCS Lect Notes 
Comput Sci 2016:424–32. 

[62] Zhang Z, Liu Q, Wang Y. Road extraction by deep residual U-net. Geosci Rem Sens 
Lett IEEE 2018. 

[63] Seyed SSM, Erdogmus D, Gholipour A, Salehi SSM, Erdogmus D, Gholipour A. 
Tversky loss function for image segmentation using 3D fully convolutional deep 
networks. In: Lecture notes in computer science. Springer Verlag; 2017. p. 379–87. 
https://doi.org/10.1007/978-3-319-67389-9_44. 

[64] Kingma DP, Lei Ba J. Adam: a method for stochastic optimization. 2014. https:// 
arxiv.org/abs/1412.6980. 

[65] Yan Q, Wang B, Gong D, Luo C, Zhao W, Shen J, et al. COVID-19 chest CT image 
segmentation – A deep convolutional neural network solution. 2020. p. 1–10. htt 
p://arxiv.org/abs/2004.10987. 

[66] Italian Society of Medical and Interventional Radiology. COVID-19 - medical 
segmentation. 2020. http://medicalsegmentation.com/covid19/. [Accessed 29 
May 2021]. Accessed. 

D. Müller et al.                                                                                                                                                                                                                                  

https://doi.org/10.5281/zenodo.3757476
https://doi.org/10.1186/s12880-020-00543-7
https://doi.org/10.1186/s12880-020-00543-7
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.7937/tcia.2020.gqry-nc81
https://doi.org/10.7937/tcia.2020.gqry-nc81
https://doi.org/10.1038/s41467-020-17971-2
https://doi.org/10.1038/s41467-020-17971-2
https://covid-segmentation.grand-challenge.org/COVID-19-20/
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref51
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref51
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref52
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref52
https://doi.org/10.1186/s40537-019-0197-0
http://arxiv.org/abs/1712.04621
http://arxiv.org/abs/1708.06020
https://doi.org/10.5281/zenodo.3632567
https://doi.org/10.5281/zenodo.3632567
https://arxiv.org/abs/1904.08128
https://arxiv.org/abs/1904.08128
http://arxiv.org/abs/2001.05566
http://arxiv.org/abs/2001.05566
https://doi.org/10.1007/s10462-020-09854-1
http://arxiv.org/abs/2005
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref61
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref61
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref61
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref62
http://refhub.elsevier.com/S2352-9148(21)00166-0/sref62
https://doi.org/10.1007/978-3-319-67389-9_44
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2004.10987
http://arxiv.org/abs/2004.10987
http://medicalsegmentation.com/covid19/

