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A viral outbreak with a lower respiratory tract febrile illness causes pulmonary syndrome named COVID-

19. Pulmonary consolidations developed in the lungs of the patients are imperative factors during prognosis 
and diagnosis. Existing Deep Learning techniques demonstrate promising results in analyzing X-ray images 
when employed with Transfer Learning. However, Transfer Learning has its inherent limitations, which can 
be prevaricated by employing the Progressive Resizing technique. The Progressive Resizing technique reuses old 
computations while learning new ones in Convolution Neural Networks (CNN), enabling it to incorporate prior 
knowledge of the feature hierarchy. The proposed classification model can classify pulmonary consolidation 
into normal, pneumonia, and SARS-CoV-2 classes by analyzing X-rays images. The method exhibits substantial 
enhancement in classification results when the Transfer Learning technique is applied in consultation with the 
Progressive Resizing technique on EfficientNet CNN. The customized VGG-19 model attained benchmark scores 
in all evaluation criteria over the baseline VGG-19 model. GradCam based feature interpretation, coupled with 
X-ray visual analysis, facilitates improved assimilation of the scores. The model highlights its strength to assist 
medical experts in the COVID-19 identification during the prognosis and subsequently for diagnosis. Clinical 
implications exist in peripheral and remotely located health centers with the paucity of trained human resources 
to interpret radiological investigations’ findings.
1. Introduction

World Health Organization (WHO) reported viral emergences over 
numerous occurrences, which epitomizes a severe concern for pub-

lic health. In the last two decades, viral epidemics like Severe Acute 
Respiratory Syndrome Coronavirus (SARS-CoV), H1N1 influenza, and 
the Middle East Respiratory Syndrome CoronaVirus (MERS-CoV) have 
drawn significant attention. In November 2019, a similar viral outbreak 
with a lower respiratory tract febrile illness was reported in China. 
Bronchoalveolar lavage (BAL) test analysis highlighted an unfamiliar 
coronavirus strain responsible for the outbreak. The World Health Orga-

nization named the pulmonary syndrome “COronaVIrus Disease 2019” 
(COVID-19) or severe acute respiratory syndrome coronavirus2 (SARS-

CoV-2). The cumulative number of confirmed cases crossed 14,79,168 
globally, with approximately 87,987 virus-related deaths as of April 09, 
2020, with a significant spread worldwide [1].
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Etiological tests, Reverse-Transcription Polymerase chain reaction 
test, Chest X-rays, and Chest Computed Tomography Scans (CT-Scans) 
are the tests/techniques which can identify the infection. A nasopharyn-

geal Exudate swab sample is screened in the RT-PCR test. However, the 
RTPCR test’s reliability with higher turnaround time poses a challenge 
in diagnosis, especially in developing nations due to limited medical fa-

cilities. As the infections in the lungs can be screened with radiographs, 
the radiographs are being used in the diagnostic workup, check disease 
progression, and follow-up of the pulmonary consolidations. Since the 
coronavirus consolidation is dissimilar to bacterial or viral pneumonia 
consolidation, the radiographs help identify the COVID-19 infection. 
The chest X-ray findings can improve the diagnosis time-cycle with en-

hanced screening capability. It also helps to prioritize the treatments 
of the patients at hospitals. Hence, X-ray analysis is a discriminative 
element that assists in the timely identification of COVID-19 infec-

tions.
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Fig. 1. The figure shows Chest X-rays from the dataset indicating typical subpleural peripheral Opacities [9].

Table 1. The table illustrates essential aspects of the existing literature for detection of 
COVID-19 consolidation are shown in the table, which uses various approaches. (Abbre-

viations: CNN- Convolution Neural Network, SVM- Support Vector Machine, VGG- Visual 
Geometry Group, and Acc- Accuracy.)

Literature COVID Pneumonia Normal 
others

Class CNN/Algo Acc %

[10] 127 500 500 3 DarkNet 87.02

[11] 142 – 142 2 nCOVnet 88.10

[12] 25 – 25 2 InceptionV3, 
VGG19, Xception, 
MobileNetV2, 
DenseNet201, 
InceptionResNetV2, 
ResNetV2,

90.00

[13] 105 11 80 3 DeTraC 95.12

[14] 168 - 168 2 Custom CNN 96.13

[15] 162 – 1583 2 ResNet50, 
InceptionV3, 
Truncated Inception

94.04

[16] 130 99 31 3 Shallow ConvNet 96.92

[17] 295 98 65 3 MobileNetV2, 
SqueezeNet, SVM

99.27
Since the etiologic and clinical physiognomies of the illness are anal-

ogous to those of SARS and MERS, the experience of these pulmonary 
syndromes can be helpful during the diagnosis of the COVID-19 [2, 3, 
4, 5, 6]. The X-ray images with an exposure of SARS, MERS, pneu-

monia, and COVID-19 have been taken to develop the X-ray analysis 
model using Convolution Neural Networks to identify COVID-19 chest 
infections. The findings are referred to as Ground Glass Patterned areas, 
which indicate COVID-19 infection. The infections affect both lungs, 
particularly the lower lobes, especially the posterior segments, with a 
fundamentally peripheral and subpleural distribution. With visuals of 
Lesions progression, septal thickening, and formation of Crazy Paving 
Pattern or Ground Glass Pattern (rounded morphology), the X-ray can 
indicate the infection [7, 8]. Fig. 1 shows the visual distinction in the 
same patient’s chest X-rays with typical subpleural peripheral opacities 
developed due to COVID-19 infections.

Our work is motivated by Convolution Neural Network models’ con-

vincing performance and the prevailing need for an alternate screening 
methodology for an efficient healthcare ecosystem for timely detec-

tion of COVID-19. We carried out studies on the work published by 
various research groups. We have carried out a comparative analysis, 
which brings out the dataset insights, a number of classes, type of Deep 
Learning models, and performance of these experiments, and details 
are covered in Table 1. Most of the work has been done on small-sized 
datasets due to the inadequate availability of annotated Chest X-Rays. 
However, some of these research groups have used augmented/selec-

tive Chest X-Ray images. We also studied data augmentation techniques 
used in different variants of the investigation.

The majority of the published work incorporates two or three-class 
classification with binary classification. We have analyzed various CNN 
models by studying their performance scores and the methodology. 
Since the Convolution Neural Networks (CNN) do not have predefined 
kernels and learn locally from connected neurons representing data-
2

specific kernels, the CNN filters can be applied repeatedly to the images 
to classify the X-ray images. We conclude from the study that suitable 
CNNs can be employed to carry out multi-class classification with an 
unskewed balanced dataset. We propose the Transfer learning tech-

nique’s employment on the X-Ray databases. The technique enhances 
learning new tasks and enables improved classification by transferring 
learned knowledge from relevant classification datasets. We first train 
a baseline COnvolution Neural Network on a base dataset with the 
defined task. After obtaining the weights, we repurpose the learned fea-

tures by transferring this knowledge to a target (X-ray analysis) model, 
which will be trained on the X-ray dataset. Transfer Learning helped re-

duce training time and improve neural network performance. However, 
this technique also suffers from inherent limitations of negative trans-

fer and overfitting. We propose a novel implementation methodology 
by amalgamating the Progressive Learning technique with the Transfer 
Learning technique to circumvent the limitations. The Progressive Re-

sizing technique reuses old computations while learning new ones in 
Convolution Neural Networks (CNN), which enables it to incorporate 
prior knowledge of the feature hierarchy [18]. The paper proposes a 
novel methodology to detect the COVID-19 pulmonary consolidations 
in X-ray images with a method to interpret the CNN analysis with in-

tuitive Saliency maps (GradCam) Visualisation. Our contributions are 
listed as follows:

• We present a novel Classification Model to detect COVID-19 pul-

monary consolidations in chest X-ray, achieving the best specificity 
and sensitivity score.

• We propose a modified VGG-19 architecture that shows promis-

ing results over the Baseline VGG-19 model when applied with the 
Transfer Learning technique.

• We demonstrate a comparative analysis of the results generated by 
CNN models with various techniques.
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Fig. 2. The figure illustrates the implementation methodology and the inference pipeline with the employment of Transfer Learning and Progressive Resizing 
Techniques on ConvNets to detect COVID-19, Pneumonia consolidations in the X-rays with the saliency maps.
• The classification models classify the X-ray in Pneumonia, SARS-

CoV-2, and Normal X-ray with GradCAM Saliency Maps for en-

hanced assimilation.

2. Datasets

The classification scores are impacted by volumetric data of one 
class and may skew away from the severity of coronavirus influence 
while analyzing the radiology images. Hence, the use of multitudinal

and multimodal is done while designing a robust AI model [14]. There 
is a bright possibility of increasing diagnostic results using different 
clinical data of the same patients, i.e., Electronic Health Record (EHRs), 
computerized tomography (CT) scans, and Chest X-rays. However, the 
availability of such a dataset for making an AI model is a challenge. 
Hence, we have carefully studied the chest X-Rays to formulate our ex-

periments. We used the X-ray Imaging dataset of the COVID-19 patients 
for the experiments, which was curated by Dr. Joseph Cohen of the 
University of Montreal, Canada [9]. The dataset incorporates Normal, 
and COVID-19 infected X-Ray images. We used the COVIDx Dataset of 
the COVID-Net Team (Vision and Image Processing Research Group), 
University of Waterloo, and Darwin AI Corp, Canada [19]. The X-Ray 
imaging dataset consists of 16,756 chest radiography images, including 
66 X-ray images of COVID-19. High skewing observed in the quantity of 
X-ray appertaining to Normal, Pneumonia, and COVID-19 classes may 
impact the classification scores while training CNNs. Hence, we created 
a balanced, relevant dataset in consultation with a radiologist to carry 
out experiments for multi-class classification. The composite dataset has 
100 X-rays each in healthy and pneumonia classes and 104 X-ray im-

ages of the COVID-19 class.

3. Implementation and methodology

We conducted our experiments on Dr. Joseph Cohen’s and amalga-

mated datasets for binary and multi-class classifications. We conducted 
the experiments on Convolution Neural Network models, i.e., VGG-19 
(baseline) and customized VGG-19 [20], and EfficientNet-B3 Neural 
Network [21]. To improve the baseline models’ results, we incorpo-

rated modifications in the final layers of these CNNs. We employed the 
Transfer Learning technique by transferring pre-trained weights from 
the ImageNet dataset [22, 23] and then superimposed the Progressive 
Resizing technique while training the designated CNN models on X-ray 
imaging datasets. Finally, the classification experiments demonstrated 
improvements in the results for both datasets. GradCam based Saliency 
maps facilitate X-ray imaging analysis by highlighting relevant visual 
3

information with classification scores. Fig. 2 illustrates the proposed 
Methodology to detect COVID-19 and Pneumonia in X-ray imaging and 
generate Saliency Map. We conducted our experiments on Nvidia GTX 
2080Ti GPU (4352 CUDA cores). Our experiments and implementation 
methodology incorporates four stages, i.e., Data Preprocessing, Model 
Implementation, Training Strategy, and Testing.

3.1. Data preprocessing

We have employed data augmentation techniques to generate X-ray 
variations from the available X-ray imaging due to the limited avail-

ability of annotated X-ray images of COVID-19 infected patients. The 
variations were incorporated into the dataset during the training and 
validation phases. During data processing phase, we used the value of 𝜃
= -60 to 60 degrees, 𝛼 = 1.0 - 1.1, PA = 0.75 and PB = 0.5. We used 
the following techniques to process the data and augment the datasets:

• Horizontal Flipping of the X-rays imaging with a probability of PB.

• X-Ray rotations were carried out due to rotational invariance.

• Random scaling of 𝛼 was applied with a probability of PA.

3.2. Model customization and implementation

COVID-19 Chest X-ray exposes palpable white patches in the lungs 
– referred to as Ground-Glass-Windows. The proposed CNN approach 
deliberates on varied patterns like Consolidation, Interstitial, Nod-

ules/masses, and Atelectasis observed in the X-rays. Transfer learning 
and domain adaptation help to use the knowledge learned in one setting 
to improve generalization in another setting. During the employment of 
Transfer Learning, we used pre-trained weights obtained after train-

ing the model on a large dataset (i.e., ImageNet) while re-training 
the model on the COVID-19 datasets. We carefully optimized relevant 
Hyperparameters, which govern the training process and affect net-

work structure. Learning Rate was optimized after each epoch using 
an LR finder that identified the optimal learning rate for the subsequent 
epochs. Various experimental results determined the number of Epochs. 
We explored various activation functions during the experiments, i.e., 
ReLU, SoftMax, and TanH. The values of the hyperparameters were op-

timized during experiments. The Progressive Resizing technique was 
used repeatedly with a progressive increase of the size of the x-ray im-

ages. The methodology facilitated the effective extraction of the features 
in each iteration, thereby attaining the optimum weights. The same 
methodology was applied while carrying out multi-class classification 
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Fig. 3. The figure illustrates Customized VGG-19 Architecture tailored to detect COVID-19, Pneumonia Consolidation in Chest X-Ray Imaging. The modified ‘Head’ 
block in the architecture conserves stability between computational efficiency and representational capacity during binary and multi-class classification.
on the amalgamated dataset, containing images with pneumonia con-

solidation.

3.2.1. Customized VGG-19

We used the Baseline VGG-19 model for our experiments on both 
datasets. We have carried out binary and multi-class classification. We 
carried out modifications to the baseline VGG-19 model to attain im-

proved results. In VGG-19 baseline model, ‘Backbone’- convolution lay-

ers analyse the X-ray consolidation features. These layers are dovetailed 
by culminating linear layers, referred to as ‘Head.’ ‘Head’ translates the 
analyzed features during generating prediction scores for two classes 
in binary classification. To reduce the learning time and optimize the 
learning of the CNNs, we employed differential learning rates. We split 
the head from the rest of the architecture layers and ran the experi-

ments on ‘Backbone.’ To carry out relevant modifications in VGG-19 
architecture, we replaced the ‘Head’ with the AdaptiveConcatPool layer 
with Flatten Layer, blocks of Batch Normalization, Dropout, Linear, 
and ReLU layers. We appended two units with softmax activation as 
a fully connected layer referenced as - ‘Final Classification Layer.’ This 
AdaptiveConcatPool Layer effectively preserves the backbone’s feature 
representations compared to using only the MaxPool Layer or the Av-

eragePool Layer in the ‘Head.’ Fig. 3 shows a novel modified VGG-19 
architecture which demonstrated a substantial upsurge in outcomes.

3.2.2. EfficientNet B3

EfficientNet is a CNN architecture and has several variants. It is 
a scaling method that uniformly scales all dimensions using a com-

pound coefficient. Since the more extensive networks with greater 
width, depth, or resolution tend to achieve higher accuracy, we used 
EfficientNet for carrying out multi-class classification. These models 
demonstrated enhanced performance during the experiments. Output 
layers of these CNN variants were suitably modified for classification 
experiments on both datasets.

3.3. Training strategy

We used pre-trained weights while employing Transfer Learning 
to train the VGG-19 and Customised VGG-19 CNN models. We ex-

perimented with the proposed novel methodology using the Transfer 
Learning technique followed by the Progressive Resizing while train-

ing EfficientNetB3 models. We carried out experiments on the datasets 
with training to test subsets as 80:20. We used the Discriminative Learn-

ing strategy to extract relevant features’ information while training the 
models. We used Weight decay (Wd) to guard against overfitting, which 
prevents the weights from growing too large. We used Binary Cross En-

tropy as the loss function. We changed the learning rates iteratively 
by using the LR Finder [24] on each set of experiments. We used a 
4

1-cycle policy to optimize the learning rates, which helped achieve 
Super-Convergence with faster training, ensuring optimum regulariza-

tion [25, 26].

3.3.1. VGG-19 models

The baseline model of Very Deep Convolutional Networks is used 
in our multi-class classification. It attains a significant accuracy on im-

age classification and localization tasks. Due to its inherent strength in 
processing X-Ray image recognition, we used it for our experiments. 
We implemented the Transfer Learning technique on the VGG-19 (base-

line) and customized the VGG-19 model during the training on X-Ray 
datasets. Pre-trained weights of the ImageNet dataset were used. We 
used discriminative learning rates to preserve the lower-level features 
and regulate the higher-level features for optimum results.

3.3.2. EfficientNetB3

We conducted our experiments on variants of the EfficientNet, i.e., 
EfficientNetB0, B1, B2, B3, and B4. The EfficientNet higher variants, 
i.e., EfficientNet B4, B5, B6, and B7, have extensive width, depth, or 
resolution. However, the accuracy gain was observed saturating/sta-

ble while experimenting with the X-ray datasets. In comparison to the 
EfficientNet-B3 model, the higher versions do not yield any relevant 
outcomes. Hence, detailed experiments were undertaken with the Ef-

ficientNet B1, EfficientNet B2, and EfficientNet B3 architectures. Due 
to significant yield accrued while experimenting on the EfficientNet-

B3, we carried out binary and multi-class classification on both X-ray 
datasets. We trained EfficientNet CNN on 64x64 sized X-ray imaging 
dataset initially to obtain the weights using Progressive resizing tech-

nique [27]. These weights were transferred to the resized 128 x 128 
Imaging dataset and followed by this; similar iterations were conducted 
repetitively by gradually increasing X-ray sizes to 256 x 256, 512 x 
512. As each larger-scale model incorporated the weights from the 
previous iteration, it could extract more relevant features and hence 
demonstrated improved classification scores. This methodology yields 
significant results by following the strategy. Fig. 4 illustrates the imple-

mentation methodology of Transfer Learning and Progressive resizing 
techniques on the X-ray Images and applying the obtained weights iter-

atively to the forthcoming next training model with scaled-up images.

3.4. Testing

To carry out the testing, resized (H×W) size input images were given 
to the network to predict the output class. During testing, we used 
Leave-one-out (LOO) cross-validation method. In LOO-CV, the number 
of folds equals the number of instances in the data set. Thus, the method 
applied the learning iteration once for each instance while taking all 
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Fig. 4. The figure shows an illustrative representation of the methodology to employ the Transfer Learning technique in consultation with the Progressive Resizing 
Technique on the EfficientNet-B3 model. Pre-trained weights (ImageNet Dataset) transfer on the EfficientNet-B3 model with (a) (i.e., Imaging input size of 128 x 
128 pixels initially), and then carry forward the obtained weights to subsequent models (b) and (c) (i.e., Imaging input size to 256 x 256 pixels and 512x512 pixels 
respectively).
other instances as its training set. Hence, the method ensured low bias 
and prevented over-fitting.

4. Discussion

4.1. Evaluation parameters

We carried out the evaluation of the model performance based on 
the performance metrics. The performance of the model is ascertained 
by the various scores, i.e., Accuracy (Acc), Precision, Sensitivity (Sens), 
Specificity (Spec), H-Mean, F1-score, or F-Beta. Accuracy is the overall 
percentage of correctly identifying COVID-19, Pneumonia, and Normal 
images. Sensitivity or recall measures the number of correct positive 
COVID-19 or specific class results to the number of all relevant sam-

ples (all positive samples). Specificity shows the ratio of the actual 
COVID-19 negatives to the correctly predicted as such (i.e., the patients 
correctly identified as not having COVID-19 consolidations). F1 Score 
is the Harmonic Mean between precision and recall. Kappa Score [28, 
29] is a statistical measure for measuring ‘Intra-rater Reliability’. We 
used the following measures as evaluation criteria (Abbreviations: TP-

True Positive, TN- True Negative, FP- False Positive, FN- False Nega-

tive):

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑆𝑒𝑛𝑠∕𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1 − 𝑆𝑐𝑜𝑟𝑒= 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

= 2 ∗ 𝑇𝑃
2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

4.2. Quantitative results

We discuss the results obtained for binary and multi-class classifica-

tion in this section. We used VGG-19 (Baseline) for binary classification 
and customized the VGG-19 model with Transfer Learning with pre-

trained weights from Imagenet. Customized VGG-19 results superseded 
5

the VGG-19 (Baseline) model (with an accuracy of 89.58%) with a 
perfect score of 100% under all evaluation criteria. We used Transfer 
Learning with Progressive resizing on the EfficientNet-B3 model by pro-

gressively giving the images in 128x128, 256x256, and 512x512 sizes, 
and obtained an ideal score of 100% for these experiments. Table 2 il-

lustrates the quantitative scores of the VGG-19 (baseline) viz-a-viz of 
VGG-19 (Customized) using transfer learning and EfficientNetB3 mod-

els’ when using Transfer Learning with Progressive resizing of the X-ray 
images. The graphs in Fig. 5 show performance comparison under loss 
functions’ values during the training and testing process along with Ac-

curacy, Specificity, Sensitivity, and F1-Scores for binary classification.

Significant improvements in results were observed in feature ex-

traction and computation efficiency when progressive resizing was 
used to carry out multi-class classification. We applied Transfer Learn-

ing on VGG-19 Baseline and Customised VGG-19. We experimented 
on EfficientNet B3 with pre-trained weights and trained them on 
256x256, 512x512, and 1024 x 1024 sized progressively. The LOO 
cross-validation inherent zero randomnesses ensured lower bias which 
most negligible chances of overestimation in error rate. Hence, the 
results reflect no overfitting while training. Table 3 highlights the quan-

titative comparison of the proposed models for multi-class classification 
wherein the Customised VGG-19 demonstrated substantial improve-

ment over Baseline VGG-19. The EfficientNetB3 (1024x1024) model 
attained the highest scores progressively and achieved perfect Preci-

sion, Recall, F1 Score, and Kappa Score (Fig. 6).

4.3. Clinical implications

Radiographs are non-invasive clinical adjuncts that play an essen-

tial role in the preliminary investigation of various pulmonary abnor-

malities. Especially in the COVID-19 infections, the Chest X-rays can 
be helpful in investigations. The exponential rise in pandemic spread 
makes it challenging for medical experts to carry out RT-PCR / screen-

ing tests to complete the diagnosis in time, leading to high morbidity 
and mortality. Since the studies reveal that the COVID-19 infected pa-

tients exhibit distinct multi-focal/bilateral ground-glass opacities and 
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Table 2. The table illustrates the results of the implemented models, namely VGG19 (Baseline), VGG-19 
(Customized), and EfficientNetB3 with LOO and 5-Fold Cross-validation in terms of evaluations criteria 
(performance metrics) for Binary COVID-19 Consolidations’ predictions.

Model Acc 
%

Precision 
%

Sens 
%

Spec 
%

H-Mean 
%

F-Score 
%

AUROC 
%

VGG19 
(Baseline)

89.58 100.0 100.0 78.26 87.80 90.91 99.30

VGG19 
(Customised)

100.0 100.0 100.0 100.0 100.0 100.0 100.0

EfficientNetB3 
(128x128)

100.0 100.0 100.0 100.0 100.0 100.0 100.0

EfficientNetB3 
(256x256)

100.0 100.0 100.0 100.0 100.0 100.0 100.0

EfficientNetB3 
(512x512)

100.0 100.0 100.0 100.0 100.0 100.0 100.0

Fig. 5. The graphs illustrate the performance of the models for Binary classification for VGG-19, Customized VGG-19, and EfficientNetB3 model with (128x128), 
(256x256), and (512x512) resizing. From left to right, The Loss function convergence while training, and validation phase, with accuracy score shown (a). From left

to right, Precision, Specificity, Sensitivity, and F1 Score indicates the enhancements achieved by the Progressive Resizing technique on EfficientNet-B3 model at (b). 
EfficientNet-B3 (256x256) and Customised VGG19 yield nearly perfect scores on all evaluation criteria, while baseline VGG-19 suffered overfitting.

Table 3. The table illustrates the results of the implemented models attained on VGG-19 (Cus-

tomized) by applying Transfer Learning and EfficientNetB3 by applying the Progressive Resizing 
Technique with 128x128, 256x256, and 512x512 pixel sized Imaging, in terms of performance 
scores for Multi-class Consolidations’ predictions.

Model Imaging 
dimension

Acc 
%

Precision 
%

Recall 
%

F-Score 
%

Kappa 
score %

VGG19 
(Baseline)

- 64.58 65.33 52.54 44.38 69.64

VGG19 
(Customised)

- 97.37 97.37 97.33 97.33 97.28

EfficientNetB3 256 x 256 98.36 97.22 98.41 98.17 98.96

EfficientNetB3 512 x 512 96.72 97.10 97.10 97.10 97.40

EfficientNetB3 1024x1024 100.0 100.0 100.0 100.0 100.0
patchy reticular (or reticulonodular) opacities with ground glass pat-

terns, a well trained ConvNet model can act as an alternative screening 
modality for identifying COVID-19 and validation during diagnosis. The 
proposed methodology has demonstrated enhancements in identifying 
COVID-19 consolidations, prioritizing patient care, and allotment of re-

sources.
6

4.4. Saliency maps

We used Grad-CAM, which uses the gradients of any target class con-

cept, e.g., COVID-19 consolidations, flowing into the final convolutional 
layer. Finally, it produces a coarse localization map highlighting the 
important regions in the X-ray image for predicting the class. Gradient-
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Fig. 6. The graphs illustrate the performance of the models for Multi-class classification for VGG-19, Customized VGG-19, and EfficientNetB3 model with (128x128), 
(256x256), and (512x512) resizing. From left to right, The Loss function convergence while training, and validation phase, with the accuracy score shown at (a). 
From left to right, Precision, Recall, F-beta, and Kappa Score indicates the enhancements achieved by the Progressive Resizing technique on EfficientNet-B3 model 
at (b). The results demonstrated that Customised VGG19 supersedes Baseline VGG-19 and EfficientNet-B3 (256x256) and EfficientNet-B3 (1024x1024) yield nearly 
perfect scores on all evaluation criteria.

Fig. 7. The figure illustrates the input Chest X-Ray Imaging with Model generated Gradient-weighted Class Activation Maps below the inputs, respectively. Input 
X-Ray Imaging and Saliency Map at (a) Predicts in class ‘Normal,’ (b), and (c) show the predictions of Pneumonia, while (d) and (e) show the predictions of COVID-19 
consolidations.
weighted Class Activation Map (Grad-CAM) enhances the assimilation 
of the results by highlighting the relevant regions from which the re-

sults have been predicted [30]. We took the average of all the 1x1x512 
channels in Adaptive Average Pooling to generate the Saliency maps, 
followed by conversion to a tensor of 512. The generated tensor was 
then multiplied with a matrix of size (512 x no. of classes) to obtain the 
final visualization output. In our multi-class experiments, the 512 val-

ues represented the features extracted in the form of matrices for three 
different classes. We took the first class’s average across every channel 
to show activated area when the final layer has produced a prediction 
for any specific class. The activated area is shown with yellow, cyan, 
and magenta color in decreasing order of values, which contributed 
to the X-ray image classification. Fig. 7 shows the Grad-CAM activa-
7

tion area for various class inputs by highlighting the relevant features 
learned from opacities in X-rays.

5. Conclusion

We proposed a novel methodology to enhance the classification 
pipeline to identify pneumonia and COVID-19 infections by analyzing 
pulmonary consolidations in Chest X-rays. Our experiments highlight 
the novel employment of Progressive Resizing techniques on CNNs to 
carry out effective medical imaging-based diagnostics. The developed 
models can act as a second opinion aid in prioritizing the patients’ 
care. The proposed novel approach on Deep Neural Network models 
enhances the performance significantly. The proposed pipeline starts 
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with the Chest Consolidation recognition stage, where we used VGG-

19 (Baseline) and EfficientNet-B3 (Baseline) models to carry out bi-

nary and multi-class classifications on both datasets. We modified and 
fine-tuned the Baseline VGG-19 architecture, demonstrating a signifi-

cant increase in performance scores in binary classification. In binary 
and multi-class classification experiments, the Customized VGG-19 and 
EfficientNet-B3 attained unity scores. Later, we used Transfer Learning 
and Progressive Resizing techniques on EfficientNet-B3 for multi-class 
classification, which showed promising results by achieving benchmark 
scores on X-ray images, i.e., 100% accuracy, 100% precision, 100% re-

call, 100% specificities, and 100% F-Beta score. The GradCam based 
visualization, with the help of saliency maps, extends transparency in 
correlating model predictions. Clinical implications exist in peripheral 
health centers with a lack of trained human resources to interpret ra-

diological investigations’ for classifying SARS, MERS, pneumonia, and 
COVID-19.
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