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Abstract

Purpose To describe the clinical and genetic find-

ings in a patient with autosomal recessive

bestrophinopathy (ARB) and his healthy parents.

Methods The patient and his healthy non-consan-

guineous parents underwent detailed ophthalmic eval-

uations including electro-oculography (EOG), spec-

tral-domain optical coherence tomography (SD-OCT),

and fundus autofluorescence (FAF) imaging. Mutation

analysis of the BEST1 gene was performed by Sanger

sequencing.

Results The FAF images showed multiple spots of

increased autofluorescence, and the sites of these spots

corresponded to the yellowish deposits detected by

ophthalmoscopy. SD-OCT showed cystoid macular

changes and a shallow serous macular detachment.

The Arden ratio of the EOG was markedly reduced to

1.1 in both eyes. Genetic analysis of the proband

detected two sequence variants of the BEST1 gene in

the heterozygous state: a novel variant c.717delG,

p.V239VfsX2 and an already described c.763C[T,

p.R255W variant associated with Best vitelliform

macular dystrophy and ARB. The proband’s father

carried the c.717delG, p.V239VfsX2 variant in the

heterozygous state, and the mother carried the

c.763C[T, p.R255W variant in the heterozygous

state. The parents who were heterozygous for the

BEST1 variants had normal visual acuity, EOG, SD-

OCT, and FAF images.

Conclusions In a truncating BEST1 mutation, the

phenotype associated with ARB is most likely due to a

marked decrease in the expression of BEST1 promoted

by the nonsense-mediated decay surveillance mecha-

nism, and it may depend on the position of the

premature termination of the codon created.
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Introduction

BEST1 (VMD2) is a gene located on chromosome 11

(11q12.3) that encodes for the 585 amino acid

transmembrane protein bestrophin 1 which is located

on the basolateral aspect of retinal pigment epithelial

(RPE) cells [1, 2]. Although the functional role of

bestrophin-1 within the RPE has not been determined

definitively, it has been postulated to function as a

Ca2?-activated Cl- channel [3], a regulator of voltage-

gated Ca2? channels [4], and a HCO3
- channel [5].

Mutations in BEST1 therefore affect the RPE meta-

bolism and consequently the outer retinal function

with which the RPE is intimately associated.

Mutations of the BEST1 gene have been associated

with different ocular phenotypes [6]. The first disease

shown to be caused by BEST1 sequence variants was

Best vitelliform macular dystrophy (BVMD) [1], a

retinal disease characterized bybilateral yellowish yolk-

colored lesion in the macula. BEST1 mutations are also

associated with several other eye diseases including

adult-onset vitelliform macular dystrophy (AOVMD)

[7], autosomal dominant vitreo-retinochoroidopathy

(ADVIRC) [8], retinitis pigmentosa [9], and the micro-

cornea, retinal dystrophy, cataract, and posterior staphy-

loma (MRCS) syndrome [10].

Autosomal recessive bestrophinopathy (ARB), first

described in detail in 2008, is another member of the

phenotypic spectrum associated with mutations in

the BEST1 gene [11]. The characteristics of this

disorder include a progressive reduction in central

vision, absence of the electro-oculographic (EOG)

light rise, and reduced full-field electroretinograms

(ERGs). None of the patients have the vitelliform

lesions typical of Best disease, but have a diffuse

irregularity of the reflex from the RPE including

dispersed punctate flecks [11]. All of the patients have

an accumulation of fluid within and/or beneath the

neurosensory retina in the macular area [11].

ARB has been reported to be due to either

compound heterozygous or homozygous BEST1 gene

mutations [6, 11]. A recent manuscript described an

ocular phenotype similar to ARB associated with a

single heterozygous mutation of the BEST1 gene [12].

Several mutations associated with ARB have been

reported to be involved in causing dominant Best

disease when they were present in the heterozygous

state [6, 7, 13–15]. The clinical phenotype of some

patients with recessive bestrophinopathy is distinct

from that seen in Best disease, while in others it is

similar to the typical phenotype observed in autosomal

dominant vitelliform dystrophy [16, 17]. Identification

of additional families with recessive bestrophinopathy

and detailed characterization of the clinical phenotypes

of homozygous and heterozygous individuals will

assist in establishing the phenotype–genotype correla-

tions in patients with BEST1-associated diseases.

Methods

The protocol of this study conformed to the tenets of

the Declaration of Helsinki and was approved by the

Institutional Review Board of the Nippon Medical

School. A signed written informed consent was

obtained from the patient and his parents after the

nature and possible consequences of the study were

explained.

Blood samples were collected from the patient and

his parents, and genomic DNA was isolated from the

peripheral white blood cells using a blood DNA

isolation kit (NucleoSpin Blood XL; Macherey–

Nagel, Germany). The DNA was used as the template

to amplify the BEST1 gene. The coding regions and

flanking introns of the BEST1 gene were amplified by

polymerase chain reaction (PCR) using primers syn-

thesized by Greiner Bio-One (Tokyo, Japan). The PCR

products were purified (ExoSAP-IT; USB Corp.,

USA) and were used as the template for sequencing.

Both strands were sequenced on an automated

sequencer (Bio Matrix Research; Chiba, Japan).

The ophthalmological examinations included mea-

surements of the best-corrected visual acuity (BCVA),

refractive error and axial length, slit-lamp biomi-

croscopy, ophthalmoscopy, fundus photography, fun-

dus autofluorescence (FAF) imaging, fluorescein

angiography (FA), SD-OCT, full-field electroretinog-

raphy (ERG), multifocal ERGs (mfERGs), and elec-

tro-oculography (EOG). The EOGs and ERGs were

recorded using an extended testing protocol conform-

ing to the International Society for Clinical Electro-

physiology of Vision standards. The ERGs were

elicited and recorded with a LED built-in electrode

(LE2000, Tomey, Japan). The mfERGs were recorded

using a commercial mfERG system (VERIS Science;

Electro-Diagnostic Imaging, Inc. Redwood City, CA,

USA). The FAF images were acquired with the TRC-

NW8Fplus retinal camera (TOPCON, Tokyo, Japan),
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Fig. 1 Fundus photographs, autofluorescence images, fluores-

cein angiograms, and SD-OCT images from patient with

autosomal recessive bestrophinopathy (ARB) (proband, II-1).

Fundus photographs (a, b), autofluorescence images (c, d),
fluorescein angiograms (e, f), and SD-OCT images (g, h) are
shown. Results from the right eye (a, c, e, g) and left eye (b, d, f,
h) are shown. Fundus photograph shows cystoid macular lesions

and multiple yellowish deposits throughout the posterior pole of

both eyes. FAF images show multiple hyper-autofluorescent

regions in the peripheral retina of both eyes. FAF images also

show a hypo-autofluorescent lesion in the macular of both eyes.

Fluorescein angiograms show widespread patchy hyper-fluo-

rescence. The SD-OCT images show cystoid macular changes

and shallow serous retinal detachments in both eyes. There is

also a thickening and hyper-reflectivity at the areas correspond-

ing to the ellipsoid and interdigitation zones
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and the SD-OCT images were acquired with a Cirrus

HD-OCT (Carl Zeiss Meditec).

Results

The patient was a 25-year-old man whose decimal

best-corrected visual acuity (BCVA) was 0.9 in the

right eye and 0.3 in the left eye. His refraction was

S ? 0.5 C-1.25 at 180 in the right eye and S ? 0.5

C-2.0 at 175 in the left eye. Axial length was

23.71 mm in the right eye and 23.85 mm in the left

eye. The intraocular pressure and anterior ocular

segments were within normal limits in both eyes.

Fundus examinations revealed a cystoid macular

lesion and multiple yellowish deposits throughout

Fig. 2 Full-field electroretinograms (ERGs). Full-field ERGs

recorded from the right eye (top) and left eye (middle) of the

proband (II-1) are shown. The ERGs recorded from a normal

control are also shown (bottom). The dark-adapted 0.01, dark-

adapted 3.0, light-adapted 3.0, and light-adapted 3.0 flicker

ERGs are shown. The results of all the responses show a slight

reduction of the b-wave amplitudes in both eyes

Fig. 3 Multifocal ERGs. The mfERGs, topographic map, and average densities of the rings of the multifocal ERGs of right eye (a) and
left eye (b) of the proband are shown. The amplitudes of the mfERGs in the foveal area are severely reduced in both eyes
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the posterior pole of both eyes (Fig. 1). The vitelliform

lesions that are typical of Best disease were not

observed (Fig. 1). FAF imaging showed multiple

hyper-autofluorescent spots in the peripheral retina

of both eyes, and the site of the spots corresponded

with the yellowish deposits observed by ophthal-

moscopy (Fig. 1). FAF imaging also detected a hypo-

autofluorescent lesion in the macula of both eyes

(Fig. 1). FA showed widespread patchy hyper-fluo-

rescence (Fig. 1). The SD-OCT images showed cys-

toid changes in the macula and shallow serous retinal

detachments in both eyes. There was a thickening and

hyper-reflectivity at the areas corresponding to ellip-

soid and interdigitation zones of the photoreceptors in

the SD-OCT images (Fig. 1).

The amplitudes of both the cone and rod full-field

ERGs were reduced, and the waveforms were similar

in both eyes (Fig. 2). The amplitudes of the mfERGs

were reduced in the central and peripheral sectors of

both eyes (Fig. 3). The Arden ratio of the EOGwas 1.1

in both eyes with a dark trough 15 min after beginning

the measurements and a light peak 15 min from the

beginning of the light phase (Fig. 4).

Mutation analysis of the BEST1 gene in the proband

showed two heterozygous sequence variants. One was

a novel variant, c.717delG, p.V239VfsX2, and the

other was a variant previously reported, c.763C[T,

p.R255W. Both variants were found in exon 7 (Fig. 5).

The proband’s father (I-1, 57 years old) and mother

(I-2, 57 years old) had normal visual acuity, and their

fundus, FAF, and SD-OCT images were also within

normal limits (Fig. 6). The EOGs of both parents had a

normal light rise with normal Arden ratio in both eyes

(Fig. 5). Mutation analyses of the parents identified a

c.717delG, p.V239VfsX2 variant in the father and a

c.763C[T, p.R255W variant in the mother in the

heterozygous state.

Discussion

The imaging and functional data obtained on our

patient are in good agreement with the findings from

previous reports of ARB. The characteristic features of

ARB are a clinically recognizable retinal dystrophy

with yellowish subretinal lesions scattered in the

posterior pole that have marked diffuse fundus

autofluorescence abnormalities [18–24]. The SD-

OCT findings of previous ARB cases included diffuse

intraretinal cystic spaces across both the inner and

Fig. 4 Electro-oculograms (EOGs). The EOGs of the right eyes

of the proband, proband’s parents, and normal control are

shown. The Arden ratio of the EOG of the proband is markedly

reduced with an absence of the light rise. The EOGs of the

parents have a normal Arden ratio and light rise
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Fig. 5 Molecular genetic findings and a pedigree chart.

Sequence chromatograms of the proband’s father (I-1; a, b),
mother (I-2; c, d), and the proband (II-1; e, f) are shown.

Sequence chromatograms around the amino acid position 255 (a,
c, e) and 240 (b, d, e) are shown. Results of reverse strand of the

sequence chromatograms are shown (a–f). A single-nucleotide

mutation (c.763C[T) results in the substitution of tryptophan for

arginine at amino acid position 255 (p.R255W) in the mother and

proband (c, e). A deletion mutation (c.717delG) results in the

synonymous substitution of valine for valine at amino acid

position 239 and a frame shift that leads to a premature

termination codon at two amino acid residues downstream from

the mutation (p.V239VfsX2) in the father and proband (b, f).
Pedigree charts for the segregation analysis are shown (g).
Schematic diagram of the deletion mutation (c.717delG) in the

proband (bottom) and wild type (top) are shown (h). A frame shift

mutation leads to a premature termination codon at two amino

acid residues downstream from the mutation
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Fig. 6 Fundus

photographs, fundus

autofluorescence image, and

SD-OCT images from the

parents of the proband.

Fundus photographs (a, b, g,
h), autofluorescence (c, d, i,
j), and SD-OCT images (e, f,
k, l) are shown. Results from
the father (a–f) and mother

(g–l) are shown. Fundus
appearance, FAF, and SD-

OCT of the proband’s

parents are normal
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outer plexiform layers, subretinal fluid with shallow

serous retinal detachment, and thickening and hyper-

reflectivity of the ellipsoid and interdigitation zones

which may represent an elongation of the photorecep-

tors [21, 24, 25]. The Arden ratio of the EOGs of

patients with ARB is reported to be low with an

absence of the light rise [11, 19, 23]. The imaging and

functional findings in our patient are typical of ARB.

The BEST1 mutation, c.717delG, p.V239VfsX2,

has not been reported and not included in the SNP

database. The allele frequency of the variant was

estimated from two databases; the Human Genetic

Variation Database (HGVD; http://www.genome.

med.kyoto-u.ac.jp/SnpDB/about.htm) which is speci-

fic for the Japanese population, and the ExACBrowser

(Beta)(http://exac.broadinstitute.org) database. Both

of these databases did not contain the allele frequency

of the variant, which indicates that this variant is very

rare.

Although most mutations associated with BVMD

are missense mutations that do not compromise

protein synthesis, the few ARB-causing mutations

reported to date are premature truncations or non-

sense substitutions that lead to early transcript

degradation or non-functional proteins. These are

associated with a null phenotype (Table 1). In

truncating BEST1 mutations, the null phenotype

associated with ARB is attributed to a severe

decrease in BEST1 expression promoted by the

nonsense-mediated decay (NMD) surveillance mech-

anism [26]. Recent evidence supports the idea that

NMD degradation depends on the position of the

premature translation termination codons. Pomares

et al. [26] reported that the BEST1 transcripts in a

patient who carried the premature stop codon at

position 230 are preserved in only 13 % of the case,

while the BEST1 transcripts of a patient who carry a

premature stop codon in position 349 are preserved in

22 % of the case. Patients who carry the premature

stop codon in position 230 have a characteristic ARB

phenotype, while patients who carry a premature stop

codon in position 349 have ophthalmological fea-

tures resembling both ARB and BVMD [26]. Thus,

the residual amount of aberrant protein can promote a

negative effect causing a mixed phenotype of both

ARB and BVMD traits. This hypothesis was sup-

ported by previous reports of biallelic BEST1 muta-

tions with at least a premature termination codon

(Table 1). Although patients 2 and 6 of Table 1 had

the BVMD phenotype which is not consistent with

the hypothesis, the same second allele mutation

(R141H) may be associated with the BVMD pheno-

type [21, 27]. Our patient with a premature termina-

tion codon at position 240 is consistent with the

hypothesis that the patient should have an ARB

phenotype.

The other mutation found in this study (R255W)

was reported to be present in both a BVMD family in

the heterozygous state and two ARB families in the

compound heterozygous state [28, 29]. In the BVMD

family with the R255W mutation, the parents of the

proband were not genetically examined [28]. In the

ARB families with the R255W mutation, each parent

of the proband was heterozygous carriers of the

R255Wmutation and they were healthy [29]. Our data

do not explain why the mother of our patient who

carried the heterozygous R255W mutation did not

have BVMD. One possibility is that the mutation

exhibits reduced penetrance for the phenotype. The

other possibility is that the previously described

BVMD patient who had heterozygous c.763C[T,

p.R255W mutation may have had an undiscovered

second allele mutation such as a large deletion.

In some cases, it is difficult to differentiate ARB

from BVMD and to speculate on the prognosis of the

disease. Identifying the genetic defect of BEST1 gene

and position of the premature termination codon may

help in differentiating the ARB from BVMD and

predict the prognosis of the disease.
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analysis of retinal function and morphology in a patient with

autosomal recessive bestrophinopathy (ARB). Doc Oph-

thalmol 118:239–246

26. Pomares E, Burés-Jelstrup A, Ruiz-Nogales S, Corcóstegui
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