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Short chain fatty acids (SCFAs) are known to be actively involved in multiple brain
disorders, but their roles in sepsis-associated encephalopathy (SAE) remain unclear.
Here, we investigated the neuroprotective effects of SCFAs on SAE in mice. Male C57BL/
6 mice were intragastrically pretreated with SCFAs for seven successive days, and then
subjected to SAE induced by cecal ligation and puncture. The behavioral impairment,
neuronal degeneration, and levels of inflammatory cytokines were assessed. The
expressions of tight junction (TJ) proteins, including occludin and zoula occludens-1
(ZO-1), cyclooxygenase-2 (COX-2), cluster of differentiation 11b (CD11b), and
phosphorylation of JNK and NF-kB p65 in the brain, were measured by western blot
and Immunofluorescence analysis. Our results showed that SCFAs significantly
attenuated behavioral impairment and neuronal degeneration, and decreased the levels
of IL-1b and IL-6 in the brain of SAE mice. Additionally, SCFAs upregulated the
expressions of occludin and ZO-1 and downregulated the expressions of COX-2,
CD11b, and phosphorylation of JNK and NF-kB p65 in the brain of SAE mice. These
findings suggested that SCFAs could exert neuroprotective effects against SAE in mice.

Keywords: sepsis-associated encephalopathy, short chain fatty acids, neuroinflammation, behavioral
impairment, neuroprotection
INTRODUCTION

Septic-associated encephalopathy (SAE) is one of the main sequelae of sepsis survivors, affecting
between 8-70% of patients (1, 2). SAE increases the risk of mortality of patients with sepsis (3). The
pathophysiology of SAE is complex; blood–brain barrier (BBB) impairment and neuroinflammation
might be the key processes in the occurrence of SAE (4–6). BBB could control the balance of blood–
brain water, molecules, and ion, and restrain the invasion of immune cells, toxins, and pathogens.
Of note, sepsis is often accompanied by increased permeability of BBB, which leads to SAE.
Following BBB impairment, neuronal degeneration and brain edema aggravate brain injuries and
neuroinflammation (7, 8). Dysfunction of the vascular complex, including endothelial cells,
astrocytes, and the blood-brain barrier, and activation of microglia result in neuroinflammation.
Neuroinflammation in sepsis develops with the activation of brain endothelial cells, the increase of
BBB permeability, and the increase of neutrophil infiltration; these abnormalities can lead to brain
org January 2021 | Volume 12 | Article 6268941
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dysfunction (9). Microglia could be activated in animal models
(10, 11) and patients with sepsis (12, 13). So far, aside from the
application of antimicrobial therapy and timely source control in
sepsis, there are no effective intervention measures to prevent
post-sepsis neurological dysfunctions. Therefore, it is urgent to
explore neuroprotective agents to attenuate SAE.

Recent studies have emphasized the critical impact of natural
products on brain disorders. There is increasing evidence that
short chain fatty acids (SCFAs) are known to be actively involved
in multiple brain disorders. SCFAs including acetate, propionate,
and butyrate are produced by gut microflora metabolizing
dietary fiber. SCFAs could travel from the gut to the brain to
perform a number of effects (14) and modulate CNS functions,
including brain development and behavior (15, 16). Remarkably,
our studies have shown that the levels of SCFAs in SAE model
mice were significantly lower than those of the control group
(Supplementary Figure 1). Our previous study demonstrated
that administration of exogenous SCFA acetate could attenuate
cognitive impairment and decrease the expression of microglial
markers (CD11b) in an Alzheimer’s disease model mice.
Moreover, our previous study demonstrated that SCFA
butyrate could prevent dopaminergic degeneration and
attenuate the disruption of BBB in Parkinson’s disease model
animals. Additionally, SCFA butyrate could reverse the
traumatic-brain-injury-induced decrease of tight junction (TJ)-
associated proteins, such as occludin and ZO-1. These
considerations suggest that SCFAs might help prevent the
behavioral impairment and neuroinflammation found in SAE.

In this study, we explored the effects and underlying
mechanisms of SCFAs on SAE. We revealed that SCFAs’
pretreatment improved the behavioral dysfunction of SAE
model mice. SCFAs also significantly attenuated BBB
impairment and neuroinflammation of sepsis mice. In
addition, we further confirmed that SCFAs could decrease
excessive activation of microglia and production of pro-
inflammatory cytokines, and suppress phosphorylation levels
of JNK and NF-kB p65 in the brain of SAE mice. Thus, SCFAs
might be a novel dietary supplementation for the prevention
of SAE.
MATERIALS AND METHODS

Animal
Male C57BL/6 mice (22 ± 2 g, 6 - 8 weeks old) were purchased
from the SLAC Laboratory Animal Co., Ltd, Shanghai. All
animals were raised in pathogen-free cages at the Experimental
Animal Center of Wenzhou Medical University in a controlled
temperature (22 ± 1°C) environment with relative humidity
(65 ± 5%). The mice were housed under a light/dark cycle, and
water and food were available ad libitum during the experiment.
All experiments were carried out in accordance with the Guide
for Animal Experimentation of Wenzhou Medical University
and approved by the Animal Experimentation Ethics Committee
of Wenzhou Medical University.
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Induction of SAE Mouse Model
SAE was induced in mice by cecal ligation and puncture (CLP)
procedure according to a previous study with a minor
modification (17). Mice were anesthetized intraperitoneally
with 350 mg/kg chloral hydrate and placed on the operating
table. The abdomen was scraped clean and sterilized with
alcohol. The midline skin incision was made about 1.5 - 2 cm
long, and then the cecum was separated. About 50% of the cecum
was ligated from the surface of the anti-mesentery with a 21-
gauge needle and the mesentery vessel was protected. A small
amount of feces was squeezed out of the intestine and the cecum
was moved back to the abdominal cavity. The incision was closed
with surgical suture 4 - 0 and then the mice were resuscitated by
subcutaneous injection of normal saline (5 mL/100g body
weight). In the sham operation group, only laparotomy was
performed without cecal ligation or perforation.

Drug Pretreatment and
Experimental Design
The animals were randomly divided into three groups: Sham
group, SAE group, and SAE + SCFAs group. The Sham group
received the sham operation without drug pretreatment; the SAE
group received the CLP surgery and an equal volume of saline.
The SAE + SCFAs group received the CLP surgery and SCFAs
pretreatment. SCFAs (acetate, propionate, and butyrate) were
purchased from Aladdin, Co. Ltd., China. SCFAs (acetate:
propionate: butyrate at a ratio of 3: 1: 1) at 500 mg/kg body
weight were administrated intragastrically twice a day for seven
consecutive days before CLP surgery.

SHIRPA Test
The SmithKline/Harwell/Imperial College/Royal Hospital/
Phenotype Assessment (SHIRPA) was an effective method to
study the dysfunction of the central nervous system (CNS) in
mice (18). The SHIRPA protocol was used to assess mouse
behavioral changes in mice during sepsis. SHIRPA consisted of a
series of 40 simple tests and was divided into five functional
categories, as described by Jeremias et al. (19). At 12 h after the
CLP operation, the SHIRPA test was started with the viewing jar
(diameter 11 cm, height 25 cm). The mice were placed in the
viewing jar for 5 min to observe defecation, urination, respiration
rate, body position, and spontaneous activity. Then the mice were
transferred to the arena, a 55 × 33 × 18 cm box with a 11 × 11 cm
square grid at the bottom. A series of tests on motor behavior,
autonomous function, and muscle tone and strength were carried
out. Five domain scores and one total score were recorded.

Fluoro-Jade C Staining
Fluoro-Jade C (FJC) staining was found to stain all degenerated
neurons, whether through specific injury or cell death
mechanism. The Fluoro-Jade C staining procedure was
performed as in a previous study (20). At 12 h after the CLP
operation, the mice were euthanized and the brain samples were
fixed with 4% polyformaldehyde for two days. Then the fixed
samples were dehydrated with ethanol, soaked in paraffin, and
made into paraffin blocks. After slicing, the brain sections were
January 2021 | Volume 12 | Article 626894
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rehydrated in a series of reduced gradient ethanol, and then
immersed in a 0.06% potassium permanganate solution for
10 min. Subsequently, the slices were transferred to a 0.0001%
FJC (Millipore, Darmstadt, Germany) working fluid for 20 min.
The sections were sealed and observed with fluorescence
microscope (Leica Microsystems, Wetzlar, Germany).

Immunofluorescence
The mice were sacrificed at 12 h after the CLP operation, and the
brain samples were taken, embedded in paraffin wax, and then
cut into 5 µm sections by rotary microtome. After dewaxing and
rehydrating, the sections were blocked with 5% fetal bovine
serum (FBS) and incubated with primary antibodies (Occludin,
ZO-1 and CD11b) overnight at 4°C. The antibodies details were
as fellow: Occludin (1: 200, Proteinch, Rosemont, IL, USA), ZO-1
(1: 200, Santa Cruz Biotechnology, Dallas, Texas, USA), and
CD11b (1: 200, Bioworld Technology, Bloomington, MN, USA).
The sections were washed three times in PST and incubated with
Alexa fluor 488 anti-mouse secondary antibody (Invitrogen Life
Technologies, Carlsbad, CA, USA) or Alexa fluor plus 546 anti-
rabbit secondary antibody (Invitrogen Life Technologies,
Carlsbad, CA, USA) at 37°C for 30 min. Cell nuclei were
stained with DAPI (SouthernBiotech, Birmingham, AL, USA)
at room temperature (RT) for 10 min. The sections were sealed
with glycerin and observed under fluorescence microscope (Leica
Microsystems, Wetzlar, Germany).

Western Blot
The mice were deeply anesthetized and sacrificed at 12 h after the
CLP operation. The brain samples were quickly harvested and
stored at -80°C for further use. The samples were cracked with
RIPA lysis buffer (Beyotime Biotechnology, Shanghai, China)
and the homogenate was centrifuged at 12, 000 × g at 4 °C for
20 min. The centrifugal supernatant was treated with BCA kit
(Beyotime Biotechnology, Shanghai, China) and the absorbance
were measured at 540 nm to draw the standard curve. The
protein concentration of the samples was controlled at 2 µg/µL.
Equal protein (10 µg) was added to the 10% SDS-PAGE and
electrotransferred to a nitrocellulose (NC) membrane (Millipore,
MA, USA). The membrane was immersed in 5% skimmed milk
at RT for 2 h and then incubated in primary antibodies
(Occludin, ZO-1, COX-2, CD11b, JNK, JNK1/2/3 (phosphor-
T183/Y185), NF-kB p65, phosphor-NF-kB p65) overnight at
4°C. The antibodies’ details were as follows: Occludin (1: 1000,
Proteinch, Rosemont, IL, USA), ZO-1 (1: 1000, Santa Cruz
Biotechnology, Dallas, Texas, USA), COX-2 (1: 1000, Bioworld
Technology, Bloomington, MN, USA), CD11b (1: 1000,
Bioworld Technology, Bloomington, MN, USA), JNK (1: 1000,
Bioworld Technology, Bloomington, MN, USA), JNK1/2/3 (1:
1000, Bioworld Technology, Bloomington, MN, USA), NF-kB
p65 (1: 1000, Bioworld Technology, Bloomington, MN, USA),
phosphor-NF-kB p65 (1: 1000, Bioworld Technology,
Bloomington, MN, USA), and b-actin (1: 5000, Bioworld
Technology, Bloomington, MN, USA). The membrane was
washed in PBST and incubated in HRP conjugated secondary
antibody (1: 5000, Beyotime Biotechnology, USA) at RT for 1 h.
The membrane was imaged in the Western Bright-ECL gel
Frontiers in Immunology | www.frontiersin.org 3
recording system (Bio-Rad, USA). b-actin was used as a
loading control.

ELISA Assay
The brain samples were collected immediately. Protein was
extracted by homogenizing in ice-cold RIPA lysis buffer with a
mix of the protease inhibitor PMSF. The homogenate was
centrifuged at 12, 000 × g for 20 min, and then the
supernatant was obtained. The levels of IL-1b and IL-6 in
brain tissue were measured by ELISA kit (Multi Sciences,
China). The standard curve was constructed to calculate the
concentrations of IL-1b and IL-6 in test samples. Values were
expressed as pg/mg.

SCFAs Analysis
The colon contents (100 mg) were added with 1ml water (0.5%
phosphoric acid and 50 mg/ml 2-ethylbutyric acid). The following
steps were performed: freezing and grinding, ice water bath
ultrasound for 30min, standing at 4 °C for 30min, 13,000×g
centrifugation for 15min (4 °C), adding 500 ml ethyl acetate to the
supernatant, vortex mixing, ice water bath ultrasound for 10min,
13, 000 × g centrifugation for 10min. The supernatant was analyzed
(Agilent Technologies Inc. CA, UAS). The chromatographic
conditions were as follows: HP FFAP capillary column (Agilent
J&W Scientific, Folsom, CA, USA), helium as carrier gas, flow rate
of 1.0 ml/min, injection temperature of 260 °C. The injection
volume was 1 mL. Mass spectrometry conditions were as follows:
electron bombardment ion source, ion source temperature 230 °C,
quadrupole temperature 150 °C, transmission line temperature
230 °C, electron energy 70 eV.

Statistical Analysis
Statistical analysis was carried out in SPSS statistics V19.0 software.
All datawere analyzedbyone-wayANOVAand tested byNewman
Keuls. Valueswere presented asmean± stand error ofmean (SEM).
P < 0.05 was considered to be significant.
RESULTS

Effect of SCFAs on the Survival Rate in
SAE Mice
The survival rate was shown in Supplementary Figure 2. The 7-
day survival rate in the Sham group was almost 100%. At seven
days after the CLP operation, the survival rate (50%) was lower
than that of the Sham group. SCFAs decreased the survival rate
compared with SAE, but did not reach a statistical significance.
SCFAs Ameliorated Behavioral Impairment
in SAE Mice
Behavior changes in five different functional categories were
shown in Figures 1A–F at 12 h after the CLP operation. The
total score of the five functional categories was displayed as total
scores. Compared with Sham mice, the SAE mice showed a
decrease in reflex and sensory function, neuropsychiatric state,
andmotorbehavior,whichwas reversedbySCFAs (Figures1A–C).
January 2021 | Volume 12 | Article 626894
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The autonomic function of SAEmice was significantly higher than
thatof Shammice,while that of SAE+SCFAsmicewas significantly
lower (Figure 1D). There was no significant difference in muscle
tone and strength among the three groups (P > 0.05, Figure 1E).
The total score of SAE mice was significantly lower than that
of Sham mice (P < 0.01, Figure 1F). However, the total score
of SAE + SCFAs mice was significantly higher than that of SAE
mice (P < 0.01, Figure 1F), suggesting that SCFAs could reduce
behavioral disorder in SAE.

SCFAs Ameliorated Neuronal
Degeneration in SAE Mice
At 12 h after the CLP operation, the degeneration of neurons was
observed by FJC staining. The number of FJC-positive neurons
Frontiers in Immunology | www.frontiersin.org 4
was counted and used as an indicator of the severity of neuron
degeneration. In Figure 2, a large number of FJC-positive
neurons were detected in SAE mice, while there was almost no
degeneration in Sham mice (P < 0.01). However, the number of
FJC-positive neurons in SAE + SCFAs mice was significantly less
than that in SAE mice (P < 0.01).

SCFAs Ameliorated BBB Disruption
in SAE Mice
To evaluate the integrity of BBB, the levels of ZO-1 and Occludin
were measured. The fluorescence signal intensity of ZO-1 and
Occludin in the SAE group were lower than those in Sham group
(ZO-1: P < 0.01, Figures 3A, B; Occludin: P < 0.01, Figures 3A, C).
However, the SAE + SCFAs group showed higher intensity
A B

D

E F

C

FIGURE 1 | Effect of SCFAs on behavioral impairment in SAE mice. (A–F) Effect of SCFAs on the behavioral impairment at 12 h after CLP operation. Behavioral
impairment was measured by the SHIRPA protocol in the five distinct functional categories. The sum of the scores of five functional categories was shown as the “total”
score. Error bars indicate mean ± SEM. *P < 0.05 versus Sham group, **P < 0.01 versus Sham group, #P < 0.05 versus SAE group, ##P < 0.01 versus SAE group.
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than those in the SAE group (ZO-1: P < 0.01, Figures 3A, B;
Occludin: P < 0.05, Figures 3A, C). Detected by western blot, the
levels of ZO-1 and Occludin were significantly lower than those
in the Sham group, while the levels of ZO-1 and Occludin were
significantly increased in the SCFAs + SAE group than those in
the SAE group (Figures 3D–F).

SCFAs Ameliorated Neuronal Inflammation
in SAE Mice
Neuronal inflammation plays an important role in the
pathogenesis of SAE. The level of CD11b was significantly
higher in the SAE group than that in the Sham group (P <
0 .01 , Figure s 4A–C ) , wh i ch was de t e rmined by
immunofluorescence and western blot. The SAE + SCFAs
group showed a lower level of CD11b compared with the SAE
group (P < 0.01, Figures 4A–C). Measured by western blot, the
level of COX-2 was remarkably increased in the SAE group
compared with the Sham group, while SCFAs was significantly
decreased it (P < 0.05, Figures 4B, D). The levels of IL-1b and
IL-6 in the SAE group were significantly higher than those in
the Sham group, while those in the SAE + SCFAs group were
significantly lower than those in the SAE group (Figures 4E, F).
The levels of JNK and NF-kB p65 were measured by western
blot. The ratio of p-JNK/JNK and p-p65/p65 were remarkably
Frontiers in Immunology | www.frontiersin.org 5
increased in the SAE group compared with the Sham group,
while SCFAs significantly decreased them (Figures 5A–C).
DISCUSSION

SCFAs are known to be actively involved in multiple brain
disorders, while their roles in SAE remain unclear. In this
study, SCFAs were shown to improve abnormal behavior,
neuronal degeneration, and BBB impairment in the SAE mice,
decrease excessive activation of microglia and production of pro-
inflammatory cytokines, such as IL-1b and IL-6, increase the
expression levels of tight junction-associated proteins, such as
Occludin and ZO-1, and decrease the phosphorylation levels of
JNK and NF-kB p65 in the brain of SAE mice, which elucidated
its underlying molecular mechanism.

Behavioral impairment is one of the main features of SAE
(21). A prospective case control study found that the behavioral
results of children with SAE were significantly worse and there
existed additional problems such as depression, conduct
problems, psychotic behavior, and anxiety (22). Similarly, SAE
mice showed impaired motor performance and decreased
exploratory activity in the early stage (23) and a mouse model
of sepsis induced by lipopolysaccharide displayed long-term
FIGURE 2 | Effect of SCFAs on neuronal degeneration in SAE mice. (A–C) Representative images of immunofluorescence for degenerating neurons (green).
(A) Representative images of immunofluorescence in the Sham group, (B) Representative images of immunofluorescence in the SAE group, (C) Representative
images of immunofluorescence in the SAE+SCFAs group. The degenerating neurons were determined by FJC staining (green). The arrows indicated FJC-positive
cells. Magnification 200 ×. Scale bar = 100 µm. (D) Quantification of immunofluorescence for FJC-positive cells. Error bars indicate mean ± SEM. **P < 0.01 versus
Sham group, ##P < 0.01 versus SAE group.
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depression and anxiety-like behavior (24). The improvement of
cognitive dysfunction is a desirable target for therapies against
SAE. Several SAE animals’models have been established, such as
CLP-induction and LPS-induction (24, 25). In this study, we
established an SAE mice model induced by CLP, which is
Frontiers in Immunology | www.frontiersin.org 6
characterized by morphological and functional changes of the
hippocampus and results in cognitive deficits. SCFAs could affect
inflammation, emotional state, and cognition through the gut-
brain axis (26, 27). Butyrate therapy could significantly improve
learning and memory function by enhancing the expression of
A

B

D

E F

C

FIGURE 3 | Effect of SCFAs on the levels of Occludin and ZO-1 in SAE mice. (A) Representative images of immunofluorescence for Occludin and ZO-1. The arrows
indicated positive proteins. Magnification 400 ×. Scale bar = 50 µm. (B, C) Quantification of immunofluorescence data for Occludin and ZO-1 proteins. (D) Western
blot analysis of Occludin and ZO-1 expression. (E, F) Quantitative analysis of expression of Occludin and ZO-1; the reference value was normalized to the Sham
group. n = 4 per group. Error bars indicate mean ± SEM. *P < 0.05 versus Sham group, **P < 0.01 versus Sham group, #P < 0.05 versus SAE group, ##P < 0.01
versus SAE group.
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C

FIGURE 4 | Effect of SCFAs on the neuronal inflammation in SAE mice. (A) Representative images of immunofluorescence for CD11b. (A) Representative images of
immunofluorescence in the Sham group. (B) Representative images of immunofluorescence in the SAE group. (C) Representative images of immunofluorescence in
the SAE + SCFAs group. The arrows indicated positive proteins. Magnification 400 ×. Scale bar = 50 µm. (D) Quantification of immunofluorescence data for CD11b
proteins. n = 4 per group (B) Western blot analysis of expressions of CD11b and COX-2. (C, D) Quantitative analysis of CD11b and COX-2 expression, the
reference value was normalized to the Sham group, n = 4 per group. (E, F) The levels of IL-1b and IL-6 in the brain, the reference value was normalized to the Sham
group, n = 4 - 8 per group. Error bars indicate mean ± SEM. **P < 0.01 versus Sham group, #P < 0.05 versus SAE group, ##P < 0.01 versus SAE group.
Frontiers in Immunology | www.frontiersin.org January 2021 | Volume 12 | Article 6268947
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learning-related genes in an Alzheimer’s disease model mice
(28). A recent study has shown that SCFAs’ regulation could
reduce neuroinflammation and oxidative stress and improve
cognitive ability in obese rats to some extent (29). Butyrate is
used as an experimental drug in the model of neurological
disorders such as depression, neurodegenerative diseases, and
cognitive impairment (30). Acetate is a kind of SCFA with
neuroprotective activity and could significantly improve the
cognitive impairment of APP/PS1 mice (31). A study
demonstrated that supplementation of SCFAs can lower the
risk of neurodegenerative diseases (32). In this study, the
SHIRPA protocol was used to assess behavioral impairment of
SAE mice, which covers a variety of reflexes and basic
sensorimotor functions (33, 34). Therefore, SCFAs could
improve the behavioral impairment of SAE in mice.

The pathological changes and cognitive deficits occur
simultaneously in SAE; brain pathological damage is also an
important characteristic (35), which is manifested by impaired
perception, consciousness, and cognition, resulting from
multifactorial events (36). There is an association between
brain damage and long-term psychological or cognitive
disorders in SAE (37–39). According to reports, brain
structures such as the neuroendocrine system, hippocampus,
Frontiers in Immunology | www.frontiersin.org 8
limbic system, frontal cortex, and brainstem of patients with
sepsis are damaged (40); this brain damage might be related to
psychological disorders including anxiety and depression, as well
as memory and executive dysfunction, which is related to
cognitive impairment (41). SCFAs have a certain effect on the
changes of brain pathology (42, 43). In addition, Jaworska with
his colleague found that butyrate could restore the number of
neuronal cells by using a neonatal rat model of hypoxia-ischemia
(44). Our previous study showed that SCFA butyrate could
attenuate the pathologic changes and neuronal loss in the
brain of traumatic brain injury model mice accessed by FJC
staining (45). FJC staining is widely used for the specific
detection of all degenerating mature neurons, including
apoptotic, necrotic, and autophagic cells (46). In this study,
SCFAs could decrease the numbers of FJC-positive neurons in
SAE mice, suggesting that SCFAs could improve the pathological
brain damage caused by SAE.

Notably, a key determinant of the development of SAE is the
damage of the BBB (47), which protects the CNS from pathogens
and toxicity (48). BBB dysfunction in sepsis and its association
with clinical features (such as systemic inflammation) has been
reported on (49). Clinical research has revealed cytotoxic or
vasogenic edema as the most consistently reported MRI change
A

B C

FIGURE 5 | Effect of SCFAs on JNK and NF-kB p65 signaling activity in SAE mice. (A) Western blot analysis of expressions of p-JNK and JNK, and phosphor-NF-
kB p65 and NF-kB p65. (B, C) Quantitative analysis of p-JNK/JNK and phosphor-NF-kB p65/NF-kB p65 expression, the reference value was normalized to the
Sham group. n = 4 per group. Error bars indicate mean ± SEM. **P < 0.01 versus Sham group, #P < 0.05 versus SAE group, ##P < 0.01 versus SAE group.
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in septic encephalopathy (50, 51). As is known, the BBB is a
structural and biochemical barrier that regulates the entry of
molecules from the plasma into the brain and preserves ionic
homeostasis within the brain. The BBB is composed of
microvascular endothelial cells which are closely linked
together by TJs, including Occludin, claudins, and ZO-1 (52,
53). The functionally important part of the barrier is formed by
TJs structures between the endothelial cells. Occludin and ZO-1
are key TJs in cerebral endothelial cells, which play an important
role in modulating BBB functions (54, 55). BBB impairment
showed decreased expression of tight junction proteins, such as
occludin, ZO-1, ZO-2, claudin-3, and claudin-5 (56). Studies
have shown that reducing the loss of ZO-1 and occludin proteins
could restore the permeability of the BBB (57, 58). Furthermore,
in an in vitro human cerebral endothelial cell model, pro-
inflammatory cytokines and endotoxin resulted in a significant
decrease in the expression of occludin (59). A recent study
emphasized that SCFA butyrate played a biphasic role after
stroke, reducing BBB permeability and oxidative stress in the
brain (60). Our previous study showed that SCFA
butyrate exerted neuroprotective effects by restoring the BBB
in traumatic brain injury mice (61). In this study, the expression
levels of occludin and ZO-1 were decreased in SAE mice and
reversed by SCFAs, suggesting that SCFAs could restore BBB
impairment caused by SAE.

SAE involves a number of mechanisms, in which
neuroinflammation is critically involved in the pathogenesis of
SAE (62, 63).Neuroinflammation is responsible for the dysfunction
and massive apoptosis of brain cells, including microglial cells,
neurons, and endothelial cells. Both peripheral inflammation and
local inflammation are induced by activation of resident brain
immune cells, such as microglial cells and astrocytes, and
reportedly accounts for the induction of neuroinflammatory
response and worse outcomes due to septic complications. The
overactivation of microglia is involved in the progression of brain
dysfunction by deteriorating the BBB.Microglia, a type of immune
cell in the brain, could become activated upon pathological
st imulation and be the basis of neuroinflammation
(64). Microglia rapidly get activated in response to septic
challenge and these cells produce substantial amounts of pro-
inflammation factors, such as TNF-a, IL-6, and IL-1b, which
could induce the amplified cerebral inflammatory response and
thus exacerbate the brain injury (23). Overactivation ofmicroglia is
one of the main mechanisms of SAE (65). Immunohistochemistry
showed thatmicrogliawerewidely activated in anLPS-inducedSAE
mouse model (66), while inhibiting the overactivation of microglia
could improve long-term cognitive behavior in CLP mice (67).
Furthermore, the study showed that SCFAsaloneor in combination
could reduce the inflammatory response of microglia and regulate
select microglial functions (68). Butyrate attenuated pro-
inflammatory cytokine expression in microglia in aged mice (69),
which could improve neuroinflammation. CD11b is a microglial
marker secreted by activated microglia (70–72). During microglial
activation, the expression of CD11b, the activated marker
of microglia, is increased (73). A recent study revealed that SCFA
butyrate has been shown to modulate the maturation of microglia
Frontiers in Immunology | www.frontiersin.org 9
(74). In this study, SCFAs could decrease the activation ofmicroglia
in SAE mice. It was reported that the levels of inflammatory
cytokines, such as TNF-a, IL-1b, and IL-6, in the hippocampus of
SAEmicewerehigher thannormal (75, 76), anddown-regulationof
neuronal signals inducedbyneuroinflammationmightbeoneof the
causes of cognitive impairment in mice with sepsis-related
encephalopathy (77) . TNF-a , IL-1b , and IL-6 are
proinflammatory cytokines, which could regulate a variety of
physiological functions and play an important role in CNS (78).
IL-1b could activate glial cells to trigger neuroinflammation and
neurodegeneration (79) and might be involved in inducing
neuronal apoptosis in cognitive dysfunction induced by
neuroinflammation (80, 81). Moreover, it was revealed that TNF-
a and IL-6 leve l s might be negat ive ly corre la ted
with cognitive function (82) and blocking of the IL-6 signaling
pathway reduced cognitive flexibility (83). SCFAs could inhibit
fructose-induced hippocampal neuronal inflammation and
neuronal loss in mice (32) and inhibit a neuroinflammatory
response (84). Liu et al. revealed that SCFAs decreased the
production of IL-1 b and IL-6 in LPS-induced RAW264.7
macrophages (85). BBB disruption leads to the activation of
microglial cells and the secretion of proinflammatory cytokines,
which further aggravates brain permeability (86), while
SCFAs could act on their own or in combination to reduce the
inflammatory response ofmicroglia (68), which would then in turn
improve the BBB damage. In this study, our results showed that
SCFAs could reduce levels of IL-1b and IL-6 and suppress the
activation of microglia in SAE mice, suggesting that SCFAs could
suppress the neuroinflammation of SAE.

NF-kB and JNK pathways mediate the transcription of
various proinflammatory genes and play key roles in the neural
inflammatory response (87, 88). In gram-negative sepsis, LPS
induced activation of NF-kB, which translocated to the nucleus
where it promotes transcription of inflammatory mediators,
including COX-2 (89). In the brain tissues of the CLP-induced
mice, the expression of NF-kB was enhanced (90). The study
showed that exogenous SCFAs, especially butyrate, can block the
activation of NF-B in diabetic glomerulonephritis mice (91) and
Usami, M. et al. revealed that butyrate and propionate decreased
the production of TNF-a in LPS-induced monocytes by
inhibiting NF-kB activation (92). It was also indicted that a
certain concentration of sodium acetate attenuates intestinal
inflammation mainly by inhibiting MAPK activation and NF-
kB phosphorylation (93). And Kobayashi et al. revealed that
SCFAs, especially propionate, inhibited the phosphorylation of
p38 and JNK in human renal cortex epithelial cells (94). In this
study, SCFAs could significantly inhibit the phosphorylation of
JNK and NF-kB p65, suggesting the effects of SCFAs against the
neuroinflammation of AD via suppressing JNK and NF-kB
signaling. In this study, our focus was on improving CLP-
induced brain dysfunction. The molecular mechanisms
underlying SCFA on SAE are still unclear. Currently, it is
impossible to provide the overall mechanisms of SCFAs’
neuroprotective effects. SCFAs could cross the BBB and
modulate CNS functions (15). SCFAs might interact with
systemic immune cells, influence systemic inflammation, and
January 2021 | Volume 12 | Article 626894
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then affect microglia involved in neuroinflammation. A further
study to investigate the neuroprotective mechanisms of SCFAs
on SAE is necessary.

In conclusion, this study elucidated that SCFAs could exert
neuroprotective effects against SAE in mice. It is the first study to
reveal the effects of SCFAs on attenuating behavioral
impairment, neuronal degeneration, neuronal inflammation,
and BBB impairment. Collectively, SCFAs might be a novel
dietary supplement against SAE.
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