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Abstract

We aim to synthesize brain time-of-flight (TOF) PET images/sinograms from their

corresponding non-TOF information in the image space (IS) and sinogram space

(SS) to increase the signal-to-noise ratio (SNR) and contrast of abnormalities, and

decrease the bias in tracer uptake quantification. One hundred forty clinical brain
18F-FDG PET/CT scans were collected to generate TOF and non-TOF sinograms.

The TOF sinograms were split into seven time bins (0, ±1, ±2, ±3). The predicted TOF

sinogram was reconstructed and the performance of both models (IS and SS) com-

pared with reference TOF and non-TOF. Wide-ranging quantitative and statistical

analysis metrics, including structural similarity index metric (SSIM), root mean square

error (RMSE), as well as 28 radiomic features for 83 brain regions were extracted to

evaluate the performance of the CycleGAN model. SSIM and RMSE of 0.99 ± 0.03,

0.98 ± 0.02 and 0.12 ± 0.09, 0.16 ± 0.04 were achieved for the generated TOF-PET

images in IS and SS, respectively. They were 0.97 ± 0.03 and 0.22 ± 0.12, respec-

tively, for non-TOF-PET images. The Bland & Altman analysis revealed that the low-

est tracer uptake value bias (�0.02%) and minimum variance (95% CI: �0.17%,

+0.21%) were achieved for TOF-PET images generated in IS. For malignant lesions,

the contrast in the test dataset was enhanced from 3.22 ± 2.51 for non-TOF to 3.34

± 0.41 and 3.65 ± 3.10 for TOF PET in SS and IS, respectively. The implemented

CycleGAN is capable of generating TOF from non-TOF PET images to achieve better

image quality.
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1 | INTRODUCTION

Positron emission tomography (PET) provides a solid foundation for

nuclear medicine and molecular imaging-based examination for in vivo

measurement of the metabolic activity or receptor density at the cel-

lular level. Significant advances in hardware and software develop-

ments enabled the translation of quantitative PET imaging capabilities

in clinical diagnosis, prognosis, and for outcome prediction (Czernin
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et al., 2007). However, the accuracy of PET image quality and quanti-

tative accuracy is affected by several degrading factors, including the

technological limitation of detection modules (spatial/temporal resolu-

tion), annihilation photons interaction (attenuation and scattering)

within the patients' body, and the imperfections of reconstruction

algorithms (Zaidi & Karakatsanis, 2018).

The potential advantages of Time-of-Flight (TOF) were realized

during the early stages of PET instrumentation development. Yet, the

limited performance of available scintillators in terms of decay time of

the scintillating light did not enable their implementation

(Melcher, 2000; Ter-Pogossian et al., 1981). Hypothetically, ideal TOF

information enables localization of the annihilation position along the

Line of Response (LOR) without the need for image reconstruction

(Karp et al., 2008; Kwon et al., 2021). In commercially available TOF

PET scanners, arrival time differences between detected coincident

photons are measured to estimate the localization information, hence

enabling the reduction of noise propagation (Conti, 2011a). The main

advantage of TOF PET imaging lies in the sensitivity gain, which is

defined as the total count ratio of TOF PET versus non-TOF PET

when random noise is similar (Budinger, 1983). It has been demon-

strated that TOF improved the quality of PET images depending on

scanner's coincidence timing resolution and patient's size (Lois

et al., 2010; Vandenberghe et al., 2016). A number of PET scanners

using detector modules based on slow decay time scintillators

(e.g., Bismuth Germanate - BGO) are still being used in the clinic and

there is an interest to use these relatively inexpensive crystals com-

pared with Lutetium (Lu)-based scintillators, such as LSO and LYSO on

new generation PET scanners, provided they can provide similar

image quality without TOF capability. As such, the capability of gener-

ating TOF from non-PET images is of paramount importance to realize

the full potential of this imaging modality.

The introduction of machine/deep learning algorithms in recent

years has revolutionized medical imaging research, particularly in areas

linked to human interpretation/intervention (e.g., segmentation, diag-

nostic, prognostic, radiomics, etc.) as well as other technical areas,

including optimization of image acquisition, reconstruction, quantifica-

tion, motion correction and image denoising (Akhavanallaf

et al., 2021; Arabi et al., 2021; Arabi & Zaidi, 2021; Sanaat

et al., 2020; Sanaat et al., 2022; Sanaat, Mirsadeghi, et al., 2021;

Sanaat, Shiri, et al., 2021; Sanaat & Zaidi, 2020; Shiri et al., 2020;

Zaidi & El Naqa, 2021).

Reader et al. reviewed the potential of deep learning algorithms

in PET image reconstruction (Reader et al., 2021). A number of studies

focused on resolution recovery of PET images using various convolu-

tional neural network architectures (Hu et al., 2019; Song et al., 2020).

Arabi and Zaidi (Arabi & Zaidi, 2020) proposed a novel method to pre-

dict attenuation correction factors from TOF information using a deep

learning method. In another work Sanaat et al. used a similar approach

for generating full-dose TOF information from low-dose TOF images/

sinograms (Sanaat, Shooli, et al., 2021).

In this study, we introduce the concept of PET signal recovery

through estimating TOF information from non-TOF PET signal in both

the image space (IS) and sinogram space (SS) domains. Thereby, a

deep learning algorithm was developed to predict TOF PET images/

sinograms from non-TOF signals for 18F-FDG brain PET/CT images.

The same approach could be expanded for applications in cardiovas-

cular or whole-body PET imaging.

2 | MATERIALS AND METHODS

The current study was applied on a dataset consisting of 140 18F-

FDG brain PET/CT images acquired between June 2017 and May

2019 at Geneva University Hospital, Switzerland. The dataset con-

tained 67 males (73 ± 9 yrs) and 73 females (72 ± 11 yrs) all with cog-

nitive symptoms and possible neurodegenerative disease. Table 1

summarizes the demographic information of the dataset. The study

protocol was approved by the institution's ethics committee and all

patients gave written informed content. PET/CT imaging was per-

formed on a Biograph mCT scanner (Siemens Healthcare, Erlangen,

Germany) using the routine clinical protocol consisting of 20 min PET

acquisition 35 min postinjection of 205 ± 10 MBq of 18F-FDG. An

ultra-low dose CT scan (120 kVp, 20 mAs) was applied for attenuation

correction. The data were acquired in list-mode format. Then, the

TOF sinogram was histogrammed using the e7-tools (Siemens Health-

care) toolkit. The Biograph mCT PET scanner has a coincidence time

resolution of �530 ps (Jakoby et al., 2011) and its generated TOF

sinogram contains 13 time bins (0, ±1, ±2, ±3, ±4, ±5, ±6) in a large

matrix of 400 � 168 � 621 � 13. In most PET images, patients' head

was located at the center of the field-of-view (FOV). However, some

patients with off-center head positioning were used to evaluate the

performance of the model. By considering the average adult's head

size and the scanner's time resolution, seven bins (0, ±1, ±2, ±3) were

selected for the training and reconstruction (to avoid unnecessary

processing time). For non-TOF PET reconstruction, a sinogram con-

taining the summation of the entire seven bins was generated. The

reduced TOF bin sinograms were reconstructed in TOF and non-TOF

mode using the above-mentioned toolkit with a Poisson ordered

subsets-expectation (OP-OSEM) and point spread function modeling

with five iterations and 21 subsets. Gaussian postreconstruction filter-

ing with 2 mm FWHM was applied as in the clinical protocol. The

reconstructed images have a matrix size of 200 � 200 � 109 and

2.03 � 2.03 � 2.2 mm3 voxel size.

Following two scenarios, the performance of a cycle generative

adversarial network (CycleGAN) for synthesizing the TOF information

from non-TOF data in the image and projection space (Figure 1) was

TABLE 1 Demographics of patients included in this study

Training Test

Number 120 20

Male/female 57/63 10/10

Age (Mean ± SD) 72 ± 8 69 ± 9

Indication/diagnosis Cognitive symptoms of possible

neurodegenerative a etiology
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investigated. In the image space implementation, we trained a Cycle-

GAN to estimate TOF directly from non-TOF PET images whereas

implementation in the projection space involved the use of seven

CycleGANs independently trained to generate different time bins

from non-TOF sinogram. The estimated TOF sinograms were recon-

structed and evaluated versus the reference TOF PET images.

2.1 | CycleGAN model

Style transformation is one of the attractive features in the field of

deep learning-assisted medical image analysis. The purpose of style

transfer is mapping an image belonging to domain X to another image

belonging to domain Y. CycleGAN is one of the well-established archi-

tectures to translate domain X to Y while maintaining image consis-

tency. The translated images should be similar to the original ones

with some stylistic variation applied. Our optimized CycleGAN

included a generator for learning a map from non-TOF images/

sinograms to TOF images/sinograms and a discriminator to evaluate

the generated TOF images/sinograms. Since non-TOF and TOF in

both image and sinogram domains have almost similar structures, it is

essential to consider a residual network as the generator of CycleGAN

to learn based on residual images. This emphasizes the variance

between non-TOF and TOF images/sinograms, rather than the global

image patterns. Overall, the goal of the generator is to synthesize a

very precise representation of TOF images/sinograms (decrease the

F IGURE 1 Schematic diagram of TOF PET data generation models. In the first strategy (projection space), seven CycleGAN models were
trained separately to generate the different TOF bin sinograms (�3, �2, �1, 0, 1, 2, 3) from non-TOF sinograms. In the second strategy (image
space), a CycleGAN model was trained to directly generate TOF images from non-TOF PET images. In the lower panel, the generator and
discriminator of the deep learning model is presented.
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error between synthetic and actual images) to fool the discriminator

network (increase the discriminator judgment error) by generating

synthetic or cycle image/sinogram that are indistinguishable from the

input images. The generator and discriminator networks were trained

carefully to reach the plateau of loss error training. In this work, the

number of convolution layers in discriminator architecture is nine,

where eight layers are followed by batch normalization, the last layer

is followed by a sigmoid function. The flowchart of this architecture is

presented in Figure 1. The details of our models are as follows: Batch

size = 20, Learning rate = 4 � 10�4, Linear decay from initial value to

10�7, number of epoch = 288, lambda = 10.0, beta_1 = 0.5 and

beta_2 = 0.999 for Adam optimizer, loss function of discriminator and

generator = Mean Absolute Error, L1 Loss.

A number of pre-developed CycleGAN models are implemented

in different libraries, such as PyTorch and Keras and Tensorflow back-

end. Inspired by the work of (Zhu et al., 2017), we consider all of these

libraries, and developed/optimized a new code on Keras. Supplemen-

tal Table 1 summarizes the network's layers details for both generator

and discriminator. The model and hyperparameter tuning was one of

the main challenges in this study. Both were optimized based on our

previous judgment/experience (Sanaat, Shooli, et al., 2021). The

model accuracy was evaluated and listed for each set of hyperpara-

meters and then the sets with the lowest error were selected.

2.2 | Image normalization

Since retaining the quantitative aspect of PET images when using

deep learning models is one of the most critical parts in model devel-

opment, our model was trained to estimate the standardized uptake

values (SUVs)-based images. For image normalization, we converted

the intensity values to SUV, and then the patient with maximum SUV

among all patients was found and all images divided by this number.

After model training and testing on unseen datasets, the images were

multiplied by the constant normalization factor to recover the

original SUVs.

Model training and evaluation was performed on a NVIDIA

2080Ti GPU with 11 GB memory running under windows 10 operat-

ing system. We did not use cross-validation because the training pro-

cess was time consuming and the sinogram matrix size very large.

2.3 | Quantitative analysis

The performance of our developed models was assessed through

quantitative analysis of the test dataset. Well-established quantitative

metrics, including the root mean squared error (RMSE), peak signal-to-

noise ratio (PSNR), and structural similarity index metrics (SSIM) were

calculated for non-TOF, and predicted TOF PET images in IS and SS

with respect to reference TOF PET images.

In image to image translation tasks, when the goal is to improve

image quality, it is important to have an insight into the differences

between low- and high-quality images. Hence, the mentioned

parameters were calculated for non-TOF PET images to set a baseline

regarding the extent of the model capability in improving signal prop-

erties and spatial resolution.

To assess the performance of our models for lesion detectability,

the SNR, contrast and noise were estimated for reference TOF, non-

TOF, and predicted TOF in IS, and SS. The SNR is defined as the SUV-

mean difference between volumes of interest (VOIs) drawn on lesions/

hot-spots (VOIhot-spot) and background (VOIbackground) divided by the

noise in the background. In this definition, the noise is regarded as the

standard deviation (SD) of VOIbackground and VOIbackground was defined

in a uniform area outside of the lesion/background.

SNR¼VOIhot– spot�VOIbackground
SD VOIbackground

� � ð1Þ

Contrast resolution is crucial in brain PET imaging because it can help

in distinguishing different brain structures, those correlated with the

presence of neurodegenerative disease and healthy membranes from

cancer cells. The contrast was calculated using the following formula

to assess the impact of TOF PET capability.

Contrast¼ VOIhot�spot

VOIbackground
ð2Þ

The statistical noise inherently present in PET images degrades image

quality and might lead to wrong clinical decisions. TOF PET imaging

could enhance image quality by reducing the noise. The noise was

estimated to assess the performance of our models in terms of noise

reduction.

Noise¼ SD VOIbackground
� �
VOIbackground

ð3Þ

Finding a reasonably homogeneous region close to lesion/hot-spot for

background VOI is not straightforward and could be considered as

one of the limitations of our work. Therefore, we selected the center

of the brain (ventricle region) as background where the uptake is

mostly uniform.

Twenty-eight radiomic features were calculated for 83 brain

regions to assess the agreement of radiotracer uptake between pre-

dicted IS, SS, and TOF PET images. The PMOD medical image analysis

software (PMOD Technologies LLC) was used to normalize and regis-

ter TOF, non-TOF, IS, and SS to a standard 18F-FDG brain template.

Subsequently, the LIFEx analysis toolkit was used to quantify 28 radio-

metric features, including seven conventional indices, five first-order

features, six gray-level run-length matrix features, three gray-level co-

occurrence matrix features, and seven gray-level zone length matrix

features (Table 2). The heat map of the relative error was produced

based on Equation 4 for non-TOF, IS, and SS by considering TOF PET

image as reference.

δ %ð Þ¼ α�β
β

ð4Þ
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In Equation (4), α and β denote the actual and predicted value of a

specific radiomic feature calculated in a brain region, respectively. A

pairwise t-test was calculated for statistical analysis of PSNR, RMSE,

and SSIM using the MedCalc software (Schoonjans et al., 1995). The

significance level was set at a p value <0.05 for all comparisons.

3 | RESULTS

The qualitative visual inspection of the results demonstrated the

acceptable performance of the deep learning model for generating

artifact-free, high-quality TOF from non-TOF PET images both in

image and projection space. Figure 2 shows transverse, coronal, and

sagittal views of reference and predicted brain PET images along with

their corresponding bias maps. Although the predicted images (IS and

SS) exhibited good image quality, overestimation of tracer uptake

(positive bias) was observed between IS and SS compared with TOF

PET. The qualitative assessment was supported by quantitative evalu-

ation through calculating RMSE, PSNR, and SSIM (Table 3). The signal

enhancement, noise reduction, and quality improvement are higher

for implementation in image space compared with the one in projec-

tion space.

Figure 3 illustrates an example of the beneficial impact of TOF

PET imaging, where the hotspots/lesions can be overlooked

completely or partially in non-TOF PET images. Both predicted TOF

images (IS and SS) were successful in extracting the information

missed or hidden among the noise in non-TOF PET images.

Since TOF information has a direct influence on lesion-to-

background ratio, both predicted TOF PET images (IS and SS) showed

a larger putamen-to-background ratio compared with non-TOF image

(Figure 4), with IS providing slightly higher contrast. Figure 5 depicts

the correlation between 18F-FDG tracer uptake in non-TOF, IS, and

SS vs. TOF PET images based on pixelwise linear regression analysis.

The data points scatter distribution decreased from non-TOF to SS

and then IS and the correlation and error level enhanced for SS

(R2 = 0.98, MSE = 0.025) compared with non-TOF (R2 = 0.96,

MSE = 0.048). The predicted image in image space achieved the high-

est correlational and lowest deviation from the identity line

(R2 = 0.99, MSE = 0.014). The bias and variance of non-TOF and pre-

dicted TOF PET images in the 83 brain regions were evaluated by

Bland & Altman analysis (Figure 6). Each single black point denotes a

brain region for each patient. The range of variance gradually

decreases from non-TOF (95% CI: �0.58%, +0.42) to TOF PET SS

(95% CI: �0.37%, +0.28%) and IS (95% CI: �0.21%, +0.17%), per-

fectly supporting the joint histogram analysis results. The average

brain region's tracer uptake bias follows the same trend and decreased

from �0.058% for non-TOF to �0.043% for SS, and �0.026% for IS.

The SNR, contrast, and noise show substantial improvement in

reference TOF and predicted IS and SS TOF PET compared with

non-TOF PET images (Table 4). In particular, the reference TOF, IS,

and SS improved the SNR by about 10%, 7%, and 3%, while they

reduced the noise by 22%, 16%, and 7%, respectively. The contrast

was enhanced by 15%, 13%, and 4% for TOF, IS, and SS,

respectively.

Figure 7 and Supplemental Figure 1 and 2 depict the relative error

(%) heat map of 28 radiomic features calculated for 44 brain regions

(the symmetric left and right sides of the 83 regions were merged for

better illustration) belong to the test dataset for predicted images in

image and sinogram space, and non-TOF. The mean relative errors of

all the radiomic features calculated across all brain regions were

<16.6%, 13.7%, and 11.8% for non-TOF, SS, and IS, respectively. The

large radiomics bias was mostly observed in regions with relatively

large distances from the center of the brain where the effect of TOF

information is more visible. This pattern was observed in other pre-

dicted TOF images. For instance, SUVmean bias for medial and lateral

orbital gyrus was around 1% and 7.7% for non-TOF and 0.5% and

TABLE 2 Summary of the 28 radiomic features belonging to the 6
main categories estimated for the 83 brain regions

Radiomic feature category Radiomic feature names

Conventional indices SUVmean

SUVstd

SUVmax

SUV Q1

SUV Q2

SUV Q3

TLG (ml)

First order features—
histogram

Kurtosis

Entropy_log10

Entropy_log2

First order features—shape SHAPE_Volume (ml)

SHAPE_Volume (# Voxel)

Grey-level zone length matrix

(GLZLM)

Short-zone emphasis (SZE)

Long-zone emphasis (LZE)

Short-zone low gray-level emphasis

(SZLGE)

Short-zone high gray-level

emphasis (SZHGLE)

Long-zone low gray-level emphasis

(LZLGLE)

Long-zone high gray-level emphasis

(LZHGLE)

Zone percentage (ZP)

Grey-level run length matrix

(GLRLM)

Short-run emphasis (SRE)

Long-run emphasis (LRE)

Short-run low gray-level emphasis

(SRLGLE)

Short-run high gray-level emphasis

(SRHGLE)

Run length non-uniformity (RLNU)

Run percentage (RP)

Grey-level co-occurrence

matrix (GLCM)

Homogeneity

Energy

Dissimilarity
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5.5% for IS, respectively. Other regions close to the center of the

brain with low bias (under 5% for non-TOF) were straight gyrus, sub-

cellular area, parietal gyrus, caudate, etc. the high bias regions (>8%)

are temporal lobe, cerebellum, frontal horn, etc. The highest of the

homogeneity radiomic feature belonging to the gray-level co-

occurrence matrix category was 10.6%, 13.7%, and 13.9% for IS, SS,

and non-TOF, respectively. The mean of all radiomic features is 3.6%,

5%, and 6.2% for IS, SS, and non-TOF, respectively. The heat map also

confirmed the overestimation of tracer uptake by the proposed

model.

F IGURE 2 Representative 18F-FDG brain PET images of a 49-year-old male patient. (a) The reference TOF image and the corresponding
(b) Non-TOF image and predicted TOF images in (c) the image space (IS) and (d) sinogram space (SS) are presented. The SUV bias maps for
(e) non-TOF, (f) IS and (g) SS PET images with respect to the reference TOF PET image are also shown.

TABLE 3 Comparison of the results
obtained from image quality assessment
in non-TOF and predicted TOF images in
image (IS) and sinogram (SS) space for the
validation dataset

Dataset SSIM PSNR RMSE

non-TOF 0.97 ± 0.03 72.10 ± 2.82 0.22 ± 0.12

Predicted TOF PET in image space (IS) 0.99 ± 0.03 84.25 ± 3.75 0.12 ± 0.09

Predicted TOF PET in sinogram space (SS) 0.98 ± 0.02 81.30 ± 3.92 0.16 ± 0.04

p value (IS vs. SS) <0.05 <0.02 <0.05

p value (IS vs. non-TOF) <0.02 <0.01 <0.01

p value (SS vs. non-TOF) <0.02 <0.02 <0.02

Abbreviations: PSNR, peak signal to noise ratio; RMSE, root mean squared error; SSIM, structural

similarity index metrics.

F IGURE 3 A representative clinical
study showing a 59-year-old male patient
displaying the patterns of detailed
anatomical structures revealed by: (a) TOF
and (b) non-TOF, and the predicted TOF
PET images for (c) IS and (d) SS models.
The images exhibited promising

performance to capture/reveal detailed
brain structures.
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The average SUV bias calculated across 83 brain regions con-

firmed the higher systematic overestimation bias for non-TOF, SS,

and IS, respectively. The results indicated that our developed models

are capable of improving the average SUVmean bias from 9.3 ± 2.21%

for non-TOF to 6.9 ± 0.08% and 6.2 ± 0.91% for predicted images in

SS and IS, respectively.

4 | DISCUSSION

The TOF information boost the informative signals relative to statisti-

cal noise in PET images. A number of studies comparing TOF and

non-TOF PET reported that TOF information improves the spatial res-

olution and SNR, and enhances contrast recovery for malignant

lesions. Hence, improvement of SNR opens the implementation of

additional options, such as reduction of the injected dose and scan-

ning time (Lois et al., 2010).

Although the impact of TOF is more visible in regions residing far

from the center of the FOV and could be more relevant in whole-body
F IGURE 4 Plots of average Putamen-to-background ratio
calculated across the entire test dataset.

F IGURE 5 The joint histogram analysis for non-TOF (left), IS (midfle), and SS (right) brain PET images versus TOF PET images.

F IGURE 6 Bland & Altman plots of SUV differences in the 83 brain regions calculated for non-TOF (left), IS (middle) and SS (right) PET images
with respect to the reference TOF PET images in the test dataset. The dashed blue and solid red lines denote the mean and 95% confidence
interval (CI) of the SUV differences, respectively.

TABLE 4 The SNR, contrast, and
noise calculated for malignant lesions
across the entire test group

Parameter Non-TOF TOF IS SS

SNR 32.34 ± 29.21 35.67 ± 37.18 34.76 ± 31.74 33.55 ± 25.11

Contrast 3.22 ± 2.51 3.71 ± 3.26 3.65 ± 3.10 3.34 ± 0.41

Noise 0.31 ± 0.12 0.24 ± 0.27 0.26 ± 0.1 0.29 ± 0.33
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F IGURE 7 Heat map of the relative error of the 28 radiomic features calculated across 83 brain regions for predicted IS TOF PET images
with respect to reference TOF PET images.
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PET imaging, its influence is still noticeable in brain imaging, especially

in the presence of artifacts or misalignment between anatomical and

functional images. Yoshida et al. reported a significant improvement in

image quality for a brain-sized phantom (Hoffman phantom) in TOF

relative to non-TOF imaging (Yoshida et al., 2020). It is noteworthy to

point out that the test dataset used in this in this study was carefully

selected to encompass images with relatively large misalignments

from the center of the FOV to highlight the relevant impact of TOF

information. The heat map revealed that brain regions with a large dis-

tance from the axis of the scanner had a larger bias compared with

regions located close to the axis. These results are in good agreement

with Budinger's rule which expresses the relation between uptake

position and improvement of SNR (Budinger, 1983). According to this

rule, the SNR gain is related to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D
ΔT�0:03

q
where D is the diameter of

the positron-emitting distribution in cm (in our case, the diameter of

the head) and ΔT is the scanner's coincidence timing resolution, about

530ps for the Siemens mCT Biograph scanner. By assuming an adult's

head diameter about 20 cm, we can expect an SNR improvement of

about a factor of 1.58 for the Biograph mCT having a TOF resolution

of 530ps and a gain factor of 2.51 for the Biograph Vision with a TOF

resolution of 210 ps (van Sluis et al., 2019).

In this study, we suggested a model for improving non-TOF PET

image quality by incorporating TOF information artificially. Our model

was trained in both image and projection space, which renders the

model's outcome flexible as it leaves open the choice of image recon-

struction protocol. To the best of our knowledge, there is no similar

work enabling to generate TOF sinograms from non-TOF sinograms

that we can compare our results with. Recently a commercially avail-

able deep learning model, referred to as SubtlePET, was employed on

non-TOF 18F-FDG PET images with 33% less injected activity on an

analog PET/CT scanner without TOF capability to generate equivalent

standard dose non-TOF PET images (Katsari et al., 2021). Another

study reported promising results for fast TOF and non-TOF PET scan-

ning with 75% scanning time reduction (Chaudhari et al., 2021). More

recently, Mehranian et al. independently reported a non-TOF to TOF

PET conversion of whole-body images implemented in image space,

demonstrating promising results in to improve noise degradation,

image sharpness, and diagnostic value (Mehranian et al., 2022). This

work did not consider the specificity of brain PET scanning and the

developed model was limited to image space implementation, which

prevents the possibility to use the desired image reconstruction

protocol.

Detailed visual assessment of our test dataset revealed that in

some cases (8 from 20) the hotspots/lesions can be missed/

overlooked partially or completely on non-TOF PET images while they

were depicted on TOF PET images. Both IS and SS models success-

fully depicted the missed lesions/hotspots. Furthermore, the anatomi-

cal structures, such as the pattern of the gyrus, were better portrayed

in the predicted TOF relative compared with corresponding non-TOF

PET images.

The Bland–Altman analysis supported the scatter plot results

where the model trained in the image space led to better correlation,

lowest bias, and variance relative to the model trained in the sinogram

space. The lower performance of the model in the projection space

can be attributed to the number of trained models where the summa-

tion of all model errors and more importantly the inherent difference

between the input (single non-TOF sinogram) and the output (several

TOF bin sinograms) and the uncertainties associated with synthesizing

the corner's bin which is more noisy in the non-TOF sinogram (syn-

thesis of seven separate TOF bins from non-TOF). In other words, in

sinogram space, our model was trained to project non-TOF sinogram

to a number of TOF bin sinograms and since the off-center TOF bins

are different from the non-TOF sinogram, it can lead to large errors

during training. It is worth highlighting that in previous work, we

trained seven DNN models for synthesizing full-dose TOF bin sino-

grams from their corresponding low-dose TOF bin sinograms, and

compared its performance with a similar DNN model generating full-

dose PET images from low-dose PET images (Sanaat, Shooli,

et al., 2021). In this work, each model was trained with a specific sino-

gram (low-dose TOF bins 0, 1, 2, 3 to full dose TOF bins 0, 1, 2, 3).

The results achieved by model implementation in the projection space

were superior to the implementation in the image domain.

In dedicated brain PET scanners, the parallax error plays a signifi-

cant role in spatial resolution degradation owing to because of the

small diameter of the gantry. Hence, there has always been a desire to

have both depth of interaction (DOI) and TOF capabilities, although

the tradeoff between DOI capability and TOF power makes this task

more complicated. Detector modules using light sharing can lead to a

degradation in TOF performance.

Artifact reduction is one of the sidelong advantages of TOF capa-

bility (Conti, 2011b), which proved useful in brain and whole-body

imaging. Voert et al. reported that PET image artifacts can significantly

reduce with consideration of TOF information. The role of TOF was

observed predominantly in patients with dental filling (Ter Voert

et al., 2017).

The main difference between TOF information in the image and

projection domains is the way they represent the additional informa-

tion. In the TOF sinogram, we have access to the spatial bins. For

instance, in our study the TOF sinogram of the Biograph mCT

(�530 ps TOF resolution) contained seven time bins (0, ±1, ±2, ±3),

meaning that we have access to 7 separate spatial bins along the line

of response with a size of about 5.38 cm. When the TOF sinogram is

reconstructed, the information of all seven TOF bins will be merged

to generate the final image and the initial TOF information lost. The

TOF information in the projection domain is reflected through assign-

ing the coincidence events to the different TOF bins, which represent

the approximate spatial location/origin of the events. Conversely, the

TOF information in the image domain would be reflected in higher

signal-to-noise ratio, reduced noise levels, better convergence, and

robustness to inconsistent data. In this regard, we hypothesized that

we would achieve better performance by training seven separate

models to generate the TOF bins from a non-TOF sinogram compared

with training a single model to generate TOF images from non-TOF

images. Yet, the model trained in image space outperformed the one

trained in projection space. A plausible explanation for this observa-

tion is that the problem (mapping non-TOF data to TOF information)
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is much easier to solve in the image domain than in the projection

space since there is a one-to-one (image-to-image) correspondence in

the image domain. We believe that when we train seven models, each

producing a certain magnitude of error, the final error resulting from

summing up the errors of all models is higher than a single model in

the image space.

Furthermore, generating the different time bins from a non-TOF

sinogram might wrongly propagate the information of a certain region

to another one. The results are better for implementation in image

space, but the sinogram space provides the freedom of reconstructing

the generated TOF sinograms with any desired reconstruction algo-

rithm, which compensates for the slight difference in results. There-

fore, both strategies can be useful depending on the targeted

application.

The extraction of TOF data from non-TOF data would not be

achievable for high TOF resolution data since a single non-TOF sino-

gram should be translated into many TOF bin sinograms. For instance,

for a TOF resolution of 240 ps, 23 sinogram bins should be generated

from a single non-TOF data, which is memory and computationally

demanding. However, in the image domain, owing to the one-to-one

correspondence, non-TOF PET images could be translated into a cor-

responding image reconstructed with extremely high TOF resolution.

There is no limit to the implementation of extremely high TOF resolu-

tion models in the image domain. Another avenue to explore would

be deep learning-based PET reconstruction using for instance the

model developed by Whiteley et al. (2020) wherein the non-TOF PET

data (in the sinogram domain) could be directly translated into the

image space. In this regard, ideally reconstructed PET images (for

instance using extremely high TOF resolution) could be considered as

target for model training. Owing to the fixed size of the input data in

the form of non-TOF data and the small size of the output image (ide-

ally reconstructed PET image), there is no memory or computational

limitations for this solution.

Among the limitations of this study is that the model was evalu-

ated on brain PET images while TOF capability is more relevant in

whole-body PET imaging. This limitation is challenging to address

because access to whole-body TOF bin sinograms is demanding

owing to their large size in whole-body imaging. Future work will

address this limitation in the image space.

Our method can be applied on any PET scanner without TOF

technology, such as analog PET scanners and BGO-based scanners

and even PET scanners with low TOF time resolution. The availability

of this technique might revive the interest in commercial deployment

of low-cost standalone BGO-based PET scanners, particularly in

developing countries. Furthermore, this study opened the way toward

TOF or high time resolution TOF enhancement through deep learning

in both image and projection space. For instance, PET images with

low TOF time resolution can be generated through simulations and

used as input to train a deep learning model to generate high TOF

time resolution PET images from the low resolution TOF PET images

corresponding to currently available TOF resolution PET scanners.

Among the limitations of this study is that the model was evaluated

on brain PET images while TOF capability is more relevant in whole-

body PET imaging. This limitation is challenging to address because

access and handling of whole-body TOF bin sinograms is computa-

tionally and memory demanding owing to their large size. Future work

might address this limitation in image space.

It should be noted that for the implementation in the image

domain, the improvement of the SNR, contrast and noise of non-TOF

images was achieved by training the network on high-SNR TOF

images. Yet, there is a lack of specific metrics enabling to demonstrate

that the model fully “recovered” valid TOF information. For example,

the SNR performance could come from denoising features of machine

learning methods and even conventional techniques. The metrics eval-

uated in this study (in the image domain) are not solely dependent on

TOF information. Other factor, such as image reconstruction algo-

rithm, hyperparameters, and postreconstruction filters might have an

impact.

5 | CONCLUSION

We developed a CycleGAN model capable of learning a non-linear

transformation to generate TOF from non-TOF PET images, hence

improving image quality and spatial resolution in addition to enhanc-

ing lesion detectability of PET images acquired on conventional inex-

pensive non-TOF PET scanners. In this regard, a technological gap in

conventional PET scanners can be addressed through enabling the

prediction TOF PET images from non-TOF scanners to achieve a

higher image quality without hardware upgrades. Our developed

model is able to transform non-TOF PET sinograms to seven TOF bins

allowing the reconstruction of the synthesized sinograms using any

desired reconstruction as well as pre- and postreconstruction filtering.

Quantitative evaluation revealed the slightly better performance of

the model in the image space compared with the projection space.

Nevertheless, the TOF model in the projection space would be useful

for applications where different reconstruction algorithms, image cor-

rection modeling (such as point spread function modeling), and atten-

uation/scatter correction are required to be implemented.
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