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Insulin resistance and cachexia represent severe metabolic syndromes accompanying
a variety of human pathological states, from life-threatening cancer and sepsis to
chronic inflammatory states, such as obesity and autoimmune disorders. Although
the origin of these metabolic syndromes has not been fully comprehended yet, a
growing body of evidence indicates their possible interconnection with the acute and
chronic activation of an innate immune response. Current progress in insect immuno-
metabolic research reveals that the induction of insulin resistance might represent an
adaptive mechanism during the acute phase of bacterial infection. In Drosophila, insulin
resistance is induced by signaling factors released by bactericidal macrophages as
a reflection of their metabolic polarization toward aerobic glycolysis. Such metabolic
adaptation enables them to combat the invading pathogens efficiently but also makes
them highly nutritionally demanding. Therefore, systemic metabolism has to be adjusted
upon macrophage activation to provide them with nutrients and thus support the
immune function. That anticipates the involvement of macrophage-derived systemic
factors mediating the inter-organ signaling between macrophages and central energy-
storing organs. Although it is crucial to coordinate the macrophage cellular metabolism
with systemic metabolic changes during the acute phase of bacterial infection, the
action of macrophage-derived factors may become maladaptive if chronic or in case
of infection by an intracellular pathogen. We hypothesize that insulin resistance evoked
by macrophage-derived signaling factors represents an adaptive mechanism for the
mobilization of sources and their preferential delivery toward the activated immune
system. We consider here the validity of the presented model for mammals and
human medicine. The adoption of aerobic glycolysis by bactericidal macrophages
as well as the induction of insulin resistance by macrophage-derived factors are
conserved between insects and mammals. Chronic insulin resistance is at the base of
many human metabolically conditioned diseases such as non-alcoholic steatohepatitis,
atherosclerosis, diabetes, and cachexia. Therefore, revealing the original biological
relevance of cytokine-induced insulin resistance may help to develop a suitable strategy
for treating these frequent diseases.

Keywords: Drosophila, macrophages, insulin resistance, cachexia, cytokines, immuno-metabolism, aerobic
glycolysis
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INTRODUCTION

Both cachexia and insulin resistance are in the spotlight
of immuno-metabolic research and represent the most
important comorbidities that often accompany acute and chronic
inflammatory states and complicate their treatment (Fonseca
et al., 2020). Cachexia, literally meaning “bad condition,” is a
metabolic syndrome of excessive weight loss and muscle wasting
caused by alterations in appetite and the overall metabolic setup
(Yang et al., 2020). The progressive development of insulin
resistance to pre-cachexia and cachexia, which is defined as a
loss of more than 5% of the cell body mass over 12 months or
less, is known to be a hallmark for a wide range of seemingly
unrelated diseases, such as obesity, cancer, chronic obstructive
pulmonary disease, acute kidney disease, and sepsis (Mak and
Cheung, 2006; Koehler et al., 2007; Srikanthan et al., 2010;
Honors and Kinzig, 2012). Nevertheless, the mechanism of
induction of these frequently occurring metabolic syndromes
remains to be elucidated.

The origin of insulin resistance and cachexia relies on the
activity of immune cell-derived signaling factors and is thus a
result of excessive activation of the immune system (Olefsky
and Glass, 2010). However, the biological relevance of such
signaling has not been fully comprehended yet. It is mainly
due to the prevailing perception of the cytokine-induced insulin
resistance as a mere side effect of pathological syndromes and
insufficient effort to reveal its adaptive meaning. The complexity
of the mammalian immune system, as well as pleiotropic effects
of most immune cell-derived factors, further complicate the
resolution of this intricate relationship (Stenholm et al., 2008;
Del Fabbro et al., 2011).

Recent progress in insect immuno-metabolic research
revealed that cytokine-induced insulin resistance is not a
mechanism occurring exclusively in vertebrates. Indeed, we may
observe several physiological conditions in which immune cells
release cytokines to affect the systemic metabolism via induction
of insulin resistance in Drosophila, such as metabolic misbalance
and development, as well as immune response (Rajan and
Perrimon, 2011; Woodcock et al., 2015; Lee et al., 2018; Dolezal
et al., 2019). These states document the preservation of this
mechanism among such evolutionarily distant groups as insects
and mammals. To be maintained in the evolution, we might
presume that cytokine-induced insulin resistance represents an
ancient adaptive process of systemic metabolic rearrangement.

Here, we would like to present several recent observations
depicting that Drosophila activated immune cells affect systemic
metabolism via the induction of insulin resistance to ensure
sufficient supplementation with nutrients for their function
(Figure 1 and Box 1). Although this mechanism is necessary
for the acute phase of the immune response (Yang et al., 2015;
Bajgar and Dolezal, 2018; Dolezal et al., 2019), it may lead to
nutrient wastage if chronic, and prolonged reallocation of sources
may become the basis for the development of many serious
pathological conditions.

Innate immune cells performing the phagocytic function
represent the front line of protection against invading pathogens
(Franken et al., 2016). Individuals, therefore, tend to maximize

the number of these protectors participating in phagocytosis and
clearance of pathogen (Kacsoh and Schlenke, 2012; Mihajlovic
et al., 2019). Nevertheless, the maintenance of an excessive
number of metabolically demanding phagocytes would be
highly energy-intensive with subsequent adverse impact on
concurrent energy-consuming processes, such as growth and
reproduction (Wolowczuk et al., 2008). Therefore, animals have
developed a strategy to overcome these evolutional constraints by
maintaining a sufficient number of immune cells in a quiescent
state as well as by proliferation of their progenitors upon
immune challenge. Quiescent phagocytes exhibiting only a basal
metabolic rate are thus waiting for the activation stimuli ready
to be metabolically awakened and to participate in the acute
immune response (Mosser and Edwards, 2008). In plentiful
times, individuals can fully exploit the surplus energy to maintain
homeostasis, growth, and reproduction as processes based mainly
on anabolic metabolism (Wang et al., 2019). That is in sharp
contrast to the situation of life-threatening infection. In response
to the recognition of pathogen-associated molecular patterns,
activated immune cells such as monocytes, macrophages,
dendritic cells, and neutrophils, must react rapidly to limit
the pathogen burden and adopt a bactericidal polarization
phenotype (Galván-peña and O’Neill, 2014; Loftus and Finlay,
2016). However, the immediate activation of a large number of
these cells toward the bactericidal phenotype (also known as
pro-inflammatory) represents an immense energy load for the
organism (Demas, 2004; Edholm et al., 2017). The nutritional
investments connected with the acute phase response are further
increased by the proliferation of immune cell progenitors and
their differentiation toward effector cells upon activation of the
immune response.

Professional phagocytes must rewire their cellular metabolism
greatly to become efficient in bacterial killing (Pavlou et al., 2017).
It is well established particularly for mammalian bactericidal
macrophages that they undergo metabolic polarization toward
aerobic glycolysis as a predominant source of energy and a
precursors essential for bactericidal function (Benoit et al., 2008).
Similarly to macrophages, the increased glycolytic rate and other
metabolic adjustments were later confirmed also for neutrophils,
dendritic cells, effector lymphocytes, and natural killer cells
(Loftus and Finlay, 2016). Interestingly, adoption of aerobic
glycolysis by immune cells may originate not only in response
to bacterial invaders but can also be induced by excessive
lipid uptake (Box 2).

Although the term “aerobic glycolysis” sensu stricto refers
to lactic acid fermentation of glucose, here we perceive it as a
complex phagocyte metabolic program including, in addition,
increased pentose phosphate pathway, lipid synthesis, and the
mevalonate pathway, as well as a rewired flow of the Krebs
cycle (Mills and O’Neill, 2016; Nonnenmacher and Hiller, 2018).
Such metabolic adaptation affects also nutritional demands
of these cells and makes them functionally dependent on
external supplementation. Since the availability of nutrients may
become limiting for the adoption of bactericidal polarization
(Nagy and Haschemi, 2015; Ganeshan et al., 2019), they have
to secure sufficient availability of sources in circulation and
gain an advantage over the surrounding tissues in their use.
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FIGURE 1 | Schematic representation of the “selfish immune system theory.” Infection-activated macrophages adopt Hif1α-induced aerobic glycolysis and
subsequently release signaling factors to ensure sufficient amount of nutrients to supplement the immune function. Hif1α, hypoxia-inducible factor 1 α.

Therefore, activated professional phagocytes release signaling
factors regulating both local and systemic energy in order
to usurp enough sources for an acute immune response
(Khovidhunkit et al., 2004; Soeters and Soeters, 2012; Straub,
2014; Dolezal, 2015; Figure 1 and Box 1).

Besides the mobilization of sources from central energy-
storing organs, such as adipose tissue and the liver, it is
fundamental to limit the consumption of nutrients by other
processes unrelated to the immune response (Almajwal et al.,
2019). The privileged status of immune cells in reaching
the nutrients is justified since making the immune response
the most efficient is often a question of life and death.
Although such behavior of the immune cells is for the
sake of the individual, the usurpation of sources may be
interpreted as selfish if viewed from the perspective of inter-
organ competition for sources. Immune cell-derived signaling

BOX 1 | Hypothesis.
We hypothesize that activated phagocytes produce signaling factors to reflect
their current nutritional demands upon adoption of aerobic glycolysis. These
factors induce mobilization of nutrients and silence their consumption by
non-immune tissues via insulin resistance, leaving thus enough of sources for
the activated immune system. Release of these signaling factors is thus
beneficial for the acute immune response; however, it may lead to energy
wasting and development of severe pathologies if produced chronically
(Figure 1).

factors responsible for such systemic metabolic switch may be
hence called selfish immune factors (SIFs) (Bajgar et al., 2015;
Dolezal et al., 2019).

Insulin signaling is the central signaling pathway regulating
the balance between anabolic and catabolic processes in the
body (Schwartsburd, 2017). We may, therefore, presume that
antagonism of insulin signaling is the most straightforward
strategy to reroute energy flows from maintenance, growth, and
reproduction to its fast utilization by the activated immune
system. Cytokine-induced deterioration of insulin signaling leads
to an increased titer of circulating energy-rich compounds such
as glucose, lipoproteins, and amino acids (Felig et al., 1969;
Salazar et al., 2018; Cho et al., 2019). The impact of infection-
induced insulin insensitivity on the systemic metabolism highly
resembles hyperglycemia and hyperlipidemia as hallmark states
of chronic insulin resistance and cachexia (Khovidhunkit et al.,
2004; de Luca and Olefsky, 2008; Shi et al., 2019). However, the
regulation of energy homeostasis in mammals is substantially
influenced also by other metabolism-related hormones such
as cortisol and catecholamines, particularly noradrenalin and
norepinephrine that should not be omitted for their effects
on nutrient mobilization in situation of metabolic stress
(Marik and Bellomo, 2013).

In the presented perspective, insulin resistance and
subsequent pre-cachectic state induced by immune cell-derived
factors may be perceived as an adaptive metabolic adjustment
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BOX 2 | Excessive lipids induce adoption of macrophage pro-inflammatory phenotype.
It is of particular interest that the adoption of pro-inflammatory Ml polarization can be induced even without the presence of a pathogen. That is in concordance with
the previously mentioned fact that HIFlα stabilization, central for induction of bactericidal macrophage polarization, may be achieved either by TLR4 activation or by
metabolic feedback from mitochondrial metabolism (Iommarini et al., 2017). It underpins many metabolically induced inflammatory diseases with a significant impact
on human well-being, such as obesity, non-alcoholic fatty liver disease, atherosclerosis, and diabetes (Kraakman et al., 2014; Castoldi et al., 2016; Kazankov et al.,
2019).

Exposure of macrophages to excessive amounts of lipids can lead to the adoption of pro-inflammatory polarization of macrophages. The effect of lipids on
macrophages is dual. The increased concentration of lipids in the extracellular space is recognized by TLR4 and, analogically to infection, leads to the stabilization of
HIFlα via the NFKB signaling pathway (Hubler and Kennedy, 2016; Korbecki and Bajdak-Rusinek, 2019). In addition, lipids are efficiently internalized by macrophages
via receptor-mediated endocytosis (Park, 2014). Because there is no feedback on lipid uptake by macrophages, it leads to a massive accumulation of oxidized lipids
and cholesterol in the cytosol of these cells, followed by disruption of mitochondrial function (Gibson et al., 2018). Lipid peroxidation catalyzed by free iron ions,
together with ROS accumulation, leads to disruption of mitochondrial function by activating the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2)
(Dodson et al., 2019). NRF2 triggers the expression of a number of genes responsible for the sequestration of free iron and enzymes that neutralize the oxidative
potential of ROS (Tonelli et al., 2018). Therefore, the accumulation of both internal and external lipids results in HIFlα stabilization and the adoption of AG. It seems
that macrophages are predetermined for this detoxification function by exploiting a whole set of genes involved in lipid metabolism and thus help to cope with
ectopic lipid deposition (Bobryshev et al., 2016).

Under conditions in which macrophages are exposed to excessive lipids for a time-restricted period, such as aerobic exercise, intermittent fasting, and caloric
restriction, induction of mild mitochondrial stress may be beneficial for the organism. This phenomenon, called mitohormesls, alleviates systemic insulin signaling,
which has a positive impact on lifespan (Ristow and Schmeisser, 2014). Nevertheless, prolonged exposure of macrophages to lipids leads to the adoption of
pro-inflammatory phenotypes and chronic insulin resistance (Shin et al., 2017). During obesity, macrophages are thought to cause cytokine-induced insulin
resistance in adipose tissue, the liver, and, subsequently, the whole organism (Marette, 2002; Tilg and Hotamisligil, 2006; Makki et al., 2013).

Activation of macrophages by excessive lipids may explain several metabolic syndromes such as adipose tissue inflammation, non-alcoholic liver steatosis,
atherosclerosis, diabetes, and cachexia. This hypothesis is in concordance with clinical observations and experiments carried out on mice, in which the amelioration
of macrophage polarization by anti-inflammatory agents and drugs affecting lipid metabolism leads to significant improvement of these syndromes in obese
individuals (Bellucci et al., 2017; Koelwyn et al., 2018).

essential for the effective fight of invading pathogens. However,
mobilization of nutrients and their altered distribution in the
body may become detrimental if chronic and may progress to the
development of several human pathological states.

In the following paragraphs, we would like to present several
lines of evidence supporting this perspective. Although gained
mostly by the research of immuno-metabolism in insects, these
observations are in concordance with many data from mice
models and humans. Since the metabolic switch of innate
immune cells is best comprehended for macrophages, we will
focus in this review mainly on these cells. The hypothetical model
discussed in this review is based on knowledge of biology of
both mammalian macrophages as well as Drosophila professional
phagocytes, called plasmatocytes. Their basic characteristics
and the features resembling mammalian macrophages and
neutrophils are further described in Box 3. To specify that the
presented information concerns Drosophila phagocytes, these
cells will be always denoted here as plasmatocytes.

We believe that we present here a compelling set of
information to change the general conception of insulin
resistance and pre-cachexia as clearly pathological states.
This may help to better comprehend medical treatment in
many human diseases.

MACROPHAGE ADOPTION OF A
BACTERICIDAL PHENOTYPE IS
NUTRITIONALLY DEMANDING

Macrophages, as highly versatile cells, fulfill various tasks in
the organism. Besides representing the front line of protection
against invading pathogens, macrophages also clear apoptotic
cellular debris, maintain tissue homeostasis, and participate
in the formation of many morphological structures during

development (Wynn et al., 2013; Gordon and Martinez-Pomares,
2017; Theret et al., 2019).

Not surprisingly, the various macrophage tasks require
specific settings of cellular metabolism to obtain the optimal
amount of metabolites and precursors required for the desired
function. That may be depicted, for instance, in the metabolism of
amino acid arginine. While macrophages participating in wound
healing metabolize arginine to generate growth-promoting
ornithine essential for wound reconstruction, bactericidal
macrophages use the same amino acid as a precursor for
the production of nitric oxide later applied as an efficient
bactericidal agent (Mills et al., 2015). This revelation led to later
identification of the full spectrum of macrophage polarization
states characterized by their metabolic program, with the
extremes represented by healing and bactericidal polarizations
(Mosser and Edwards, 2008). Interestingly, the metabolic settings
are determinative of macrophage function, and a mere metabolic
setting has the potential to change the polarization phenotype
(Galván-peña and O’Neill, 2014).

Upon pathogen infiltration, macrophages have to recognize,
entrap, engulf, and destroy the invaders in the phagolysosome
(Diskin and Pålsson-McDermott, 2018). There is no doubt that
these processes are connected with excessive energy expenditure
and a need for a synthesis of a high amount of precursors
for the production of bactericidal agents, signaling molecules,
as well as remodeling of cytoskeleton and cellular membrane.
It has been estimated that the cellular membrane of activated
macrophage turns over completely every 30 min due to
accelerated endocytosis and micropinocytosis (Werb and Cohn,
1972). Besides membrane remodeling, phagocytosis also requires
a high amount of energy. The ATP required for phagocytosis of a
single polystyrene particle has been estimated to cost about 109

ATP molecules (Karnovsky, 1962). The subsequent generation
of a sufficient amount of ROS and myeloperoxidase for bacterial
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BOX 3 | Drosophila as a model for immuno-metabolic research.
Over the last century, Drosophila has become a very universal and suitable model organism for the study of many human diseases. The simplicity of Drosophila, the
existence of readily available transgenic strains, as well as the possibility of tissue-specific and time-limited knockdown of a particular gene make Drosophila one of
the most suitable model organisms for the study of complex systemic metabolic syndromes (Duffy, 2002). In addition, approaches that previously could not be
applied due to the lack of input material from such a small organism are now possible due to the greater sensitivity of analytical techniques in recent years (Cheng
et al., 2018).

The Drosophila immune system consists of several layers of protection of an individual, which consist of two main branches of the humoral and cellular immune
response. In addition to immune cells, the fat body also participates in immune responses, as the central metabolic organ supports the immune response by
releasing resources and producing antimicrobial peptides (Melcarne et al., 2019). Although Drosophila may develop a characteristic immune response against
underlying types of pathogens, such as gram-positive and gram-negative bacteria, viruses, and fungi, the adaptive immune response in Drosophila has not been
reliably demonstrated (Ferrandon et al., 2007). The Drosophila and mammalian immune systems display a surprising level of homology in the major immune signaling
pathways. The antibacterial response consists of the activation of the Toll and Imd signaling pathways, supported by the usual JNK and HIFlα stress response (De
Gregorio et al., 2002).

Some observations suggest that the innate immune response to invading pathogens shows certain features of trainability, but the mechanism of this process
remains unclear. Drosophila immune cells, called hemocytes, include prohemocytes, plasmatocytes, crystall cells, and lamellocytes. While crystal cells and
plasmatocytes are mainly involved in the encapsulation and melanization of foreign objects in the hemolymph, plasmatocytes represent a population of professional
phagocytes (Melcarne et al., 2019; Figure 2).

Plasmatocytes are the most abundant population of cells in both larvae and adult flies (Figure 2A). These functionally versatile cells are involved in many biological
processes (Figure 2F), from embryonic morphogenesis, metamorphosis, and wound healing to protection against invading pathogens (Banerjee et al., 2019).
Because phagocytosis and bacterial killing are highly conserved at the level of cell biology, Drosophila plasmatocytes show an exceptional level of similarity to cells of
the mammalian innate immune system, especially macrophages and neutrophils. Indeed, plasmatocytes use the same metabolic and signaling pathways for
pathogen uptake and destruction in phagolysosomes (Figure 2C) as their mammalian counterparts, including the involvement of a plethora of homologous genes
(Browne et al., 2013).

Although plasmatocytes are predominantly considered in the literature as a homogeneous population of phagocytic cells, a single cell transcriptomic analysis of
the immune-stimulated larval hemocytes revealed a surprising level of their variability. However, the research of the plasmatocyte subpopulation is still at the
beginning and far from distinguishing tissue-resident or specifically primed plasmatocyte subsets (Cattenoz et al., 2020; Tattikota et al., 2020).

Recently, the concept of immuno-metabolism has been developed in mammals, which indicates that several populations of mammalian immune cells must adopt
a specific cellular metabolism in order to perform the desired function (Galván-peña and O’Neill, 2014). Although there are still some doubts about an analogous
mechanism for Drosophila plasmatocytes, several publications and transcriptomic data document this ability (Krejčová et al., 2019; Cattenoz et al., 2020; Ramond
et al., 2020; Tattikota et al., 2020). These observations are necessary not only for a comprehensive understanding of the antibacterial immune response but may
become a base for research of many other human diseases that are connected with the pathological metabolic polarization of mammalian immune cells.

Despite the undeniable benefits of the Drosophila model for the study of human diseases, there are certain limits because many Drosophila organs and tissues
show a lower level of complexity than in mammals.

Drosophila is currently used extensively to study insulin resistance. Drosophila and mammalian insulin signaling share major components at the level of cell biology
(Álvarez-Rendón et al., 2018). However, certain significant differences also need to be taken into account. Drosophila carries eight insulin-like peptides (DILP1-8) that
show structural homology to either mammalian insulin or relaxin. Analogous to mammals, Drosophila insulin signaling also reflects the current metabolic status of the
individual. DILPs 2, 3, and 5 are thus released by specialized neurosecretory cells in the Drosophila CNS to regulate reproduction, growth and lifespan. While most
DILPs activate a single Drosophila insulin receptor, DILP8 binds to its own LGR3 receptor. The situation in humans is even more complicated because, in addition to
insulin, we can recognize two insulin-like growth factors, relaxin, as well as several insulin-like peptides. Insulin signaling activity is affected by many convergent
signaling pathways and factors, such as hormones of a lipophilic nature, as well as insulin-binding proteins and IGFs (Nässel et al., 2015; Nässel and Broeck, 2016).
Thus, an analogy can also be observed in the manner of insulin resistance induction.

Therefore, we believe that ongoing research on the role of the Drosophila immune system in the regulation of systemic metabolism will lead to new discoveries that
can be generalized to human medical research.

killing in the phagolysosome is another metabolically demanding
process. The production of ROS, as well as compensation of
its cytotoxicity, depends on sufficient availability of NADPH in
cells. Therefore, macrophages must substantially increase the
flow rate of the metabolic pathways producing this reducing
agent (Panday et al., 2015).

To cover the sudden requirements arising from bactericidal
function, macrophage has to adjust the overall metabolic setup,
i.e., glycolysis, pentose phosphate pathway, mevalonate pathway,
as well as the mitochondrial cycle of tricarboxylic acids and
oxidative phosphorylation (Galván-peña and O’Neill, 2014). Such
a complex rearrangement is orchestrated by central metabolic
regulator Hypoxia-inducible factor 1 alpha—Hif1α (Corcoran
and O’Neill, 2016; Wang et al., 2017). This stress-related
transcription factor, originally discovered in research of hypoxia,
is constitutively produced and degraded by all cells in the
body (Marxsen et al., 2004). That is particularly important for
immediate initiation of Hif1α activity since mere inhibition
of its degradation suffices to stimulate expression of its target

genes (Watts and Walmsley, 2019). Stabilized HIF1α triggers
the expression of more than a hundred genes under the control
of the hypoxia response element (Dengler et al., 2014). The
unique metabolic program established by the activity of HIF1α is
generally called aerobic glycolysis. Between HIF1α-target genes,
we can find mostly enzymes directly participating in metabolic
pathways upregulated in aerobic glycolysis or regulating their
flow rate, as will be mentioned below (Figure 3).

Many different signaling cascades converge on prolyl
hydroxylase dehydrogenase (PHD), the enzyme responsible for
HIF1α degradation. PHD requires several metabolic products
as essential cofactors for its enzymatic activity. From the
most prominent, we should mention oxygen, Fe2+ ions, and
α-ketoglutarate as a product of canonically running Krebs
cycle (Iommarini et al., 2017). Although originally described
in hypoxia, HIF1α stabilization may be achieved even under
normoxic conditions as may be observed in macrophages
stimulated by pathogen-associated molecular patterns or pro-
inflammatory cytokines (Iommarini et al., 2017). These ligands
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FIGURE 2 | Representative confocal and electron microscopy images of Drosophila macropahges. (A) Adult Drosophila bearing a genetic construct that enables
visualization of macrophages (in green HmlGal4 > UAS2xeGFP) and tissue expressing lactate dehydrogenase (LDH-mCherry). (B) Confocal image depicting growth
of streptococcus in dissected Drosophila abdomen (green—S. pneumoniae, red pericardial cells, cyan—DAPI). (C) Confocal image depicting phagocytic events by
injection of Drosophila adult with pHrodoTM Red S. aureus BioparticlesTM Conjugate. Macrophages are visualized by endogenously expressed GFP (Crq > GFP)
(green—macrophages, red—phagolysosomes). (D) Confocal image depicting endocytosis of low-density lipoproteins by injection of adult fly with pHrodoTM

Red-LDL. Macrophages are visualized by endogenously expressed GFP (Crq > GFP) (green—macrophages, red—LDL-containing late endosomes).
(E) ImpL2-expressing macrophages interacting with fluorescently labeled S. pneumoniae (green—S. pneumoniae, red—ImpL2 Gal4 > UAS mCherry,
white—phalloidin). (F) Pseudo-colored scanning electron micrograph of a macrophage interacting with S. pneumoniae (green—macrophage,
purple—S. pneumoniae). (G) Transmission electron micrograph of S. pneumoniae bacteria (white arrows) in a macrophage. Crq, croquemort; ImpL2, imaginal
morphogenesis protein late 2; LDL, low-density lipoproteins; S.p., Streptococcus pneumoniae.

activate toll-like receptor 4 (TLR4), which further enhances
a Nuclear Factor kappa B (NF-κB)-signaling pathway. As an
outcome of NFkB activity, the cytosolic Fe2+ ions are sequestered
by the major iron-storage protein ferritin. Lack of Fe2+ as a
crucial cofactor of PHD thus causes HIF1α stabilization and
substantial remodeling of overall cellular metabolism (Siegert
et al., 2015). It should be noted that TLR4 may also be activated
by endogenous ligands such as extracellular matrix components,
oxidized lipids, and lipoproteins (Erridge, 2010).

Besides extracellular stimuli, HIF1α stabilization may be
achieved by the cytosolic accumulation of several metabolic
intermediates originating from the mitochondrial Krebs cycle.
It has been documented that lactate, succinate, itaconate,
pyruvate, and 2-hydroxyglutarate impair PHD ability to degrade
HIF1α (Koivunen et al., 2007; Bailey and Nathan, 2018).
This interconnection seems to be adaptive for overcoming
hypoxic states since an accumulation of these metabolites
in the cytosol is a hallmark of mitochondrial dysfunction
(Garedew and Moncada, 2008; Prabakaran, 2015). Even
though this mechanism enables cells to reflect their current
metabolic state, it makes HIF1α stabilization dependent on
elevated flow through metabolic pathways enhanced in aerobic
glycolysis. Therefore, cells employing aerobic glycolysis are
highly sensitive to the availability of sources. Early experiments
using LPS as a classic way to activate macrophages showed that

macrophages functionally depend on sufficient concentrations
of glucose, glutamine, and lipids in the culture medium
(Newsholme et al., 1986). Further in vitro investigation of
nutrient uptake and trafficking fully elucidated the complexity of
HIF1a-mediated metabolic changes and the utilization of these
nutrients by bactericidal macrophages (Stunault et al., 2018).

An immense uptake of glucose is one of the hallmarks
of bactericidal macrophages. That may be explained by its
utilization as a primary energy resource as well as a substrate
for the generation of NADPH and nucleotides in the pentose
phosphate pathway (Yamashita et al., 2014). Consistently,
glucose-6-phosphate dehydrogenase, which catalyzes the first step
in pentose phosphate pathway, is known to be triggered by HIF1α

(Gao et al., 2004). Interestingly, the glucose energy potential
is not fully exploited since pyruvate as the end-product of
glycolysis is not entering the mitochondria for its full oxidation.
Due to HIF1α transcriptional activity, it is instead preferentially
converted to lactate by lactate dehydrogenase and excluded from
the cell through monocarboxylate transporter 4 (Firth et al., 1995;
Kim et al., 2006). Via increased glycolytic flux, cells avoid the
time-consuming transport of pyruvate into the mitochondrial
lumen that otherwise represents the rate-limiting step of ATP
generation (Thomas and Halestrap, 1981). Thanks to that, the
glycolytic flux may be increased even a hundred times, thus
fully compensating for the lower efficiency of ATP generation.
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FIGURE 3 | Schematic representation of the proposed hypothetical model. In infection-activated macrophages, HIF1α stabilization leads to adoption of aerobic
glycolysis, which is a highly energy demanding metabolic program. Aerobic glycolysis is interconnected with the production of selfish immune factors. These
molecules affect remotely the metabolism of the main storage organs via induction of insulin resistance, leading to FOXO nuclear translocation and induction of
mobilization of sources. This results in elevated titer of circulating carbohydrates and lipids, which are thus utilized by bactericidal macrophages to supplement their
increased energy demands. Such inter-organ communication is essential for resistance to infection by extracellular pathogen, but may be maladaptive upon its
chronic activation or in case of infection by intracellular bacteria. Hif1α, hypoxia-inducible factor 1 α; FOXO, forkhead box O; Upd3, unpaired 3; ImpL2, Imaginal
morphogenesis protein late 2; IGFBP7, insulin-growth factor binding protein 7; IL-6, interleukin 6; eAdo, extracellular adenosine; SIFs, selfish immune factors.

The acceleration of glycolysis is also under the control of
HIF1α, which regulates the expression of rate-limiting glycolytic
enzymes hexokinase II and phosphofructokinase-1 (Riddle et al.,
2000; Obach et al., 2004). Pyruvate conversion into lactate,
together with pentose phosphate pathway, serves as a mechanism
generating sufficient amounts of NADPH to be utilized for
ROS production as well as self-protection against its detrimental
effects (Riganti et al., 2012).

Despite the generation of sufficient amounts of ATP
by glycolysis, mitochondrial metabolism is still crucial for
activated macrophages (Sancho et al., 2017). Indeed, many
Krebs cycle intermediates have been shown to be essential
for macrophage bactericidal function. Since HIF1α-elevated
expression of pyruvate dehydrogenase kinase diverts the pyruvate

from entering the mitochondria, there must be an alternative
way for Krebs cycle supplementation. The flow of the Krebs
cycle is sustained by using glutamate as an initial precursor
for the synthesis of Krebs cycle intermediates. To supplement
the Krebs cycle by glutamate, HIF1α increases the expression
of glutamine transporters SLC1A5 and SLC38A2 (Chen et al.,
2001). Since the Krebs cycle is replenished from a different
direction than usual, it produces several intermediates in opposite
directions and was therefore referred to as the “broken Krebs
cycle” (O’Neill, 2015). Consequently, the concentration of several
Krebs cycle intermediates varies substantially in the cytosol.
While overproduced itaconate and fumarate are used directly to
fight the pathogen extracellularly, citrate is used as a substrate for
the synthesis of fatty acids and glutathione (Rouzer et al., 1982).
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However, the broken Krebs cycle does not generate enough
precursors to fuel the oxidative phosphorylation. The canonical
function of oxidative phosphorylation is thus disabled, and
cells cannot employ cellular respiration (Ramond et al., 2019).
Although bactericidal macrophages generate ATP independently
from oxygen, their activity is often associated with a high oxygen
consumption rate (OCR) when metabolically analyzed under
controlled in vitro conditions (Van den Bossche et al., 2015). This
can be explained by the massive utilization of oxygen for the
generation of reactive oxygen and nitric species (ROS/RNS) later
used for bacterial killing in phagolysosomes and oxidative burst
(Forman and Torres, 2002). Indeed, an expressional increase in
Nitric oxide synthase is triggered by the transcriptional activity of
HIF1α (Matrone et al., 2004). ROS are produced by the NADPH-
oxidase complex as well as the reversed mitochondrial electron
transport chain. Production of ROS/RNS thus depends on the
utilization of ATP, NADPH, and their effective regeneration
(Xu et al., 2016; Scialò et al., 2017).

A considerable amount of ROS must be generated for
bacterial killing in phagolysosomes. However, with increasing
concentration of ROS, also the risk of lipid peroxidation and
subsequent cell death rises. Bactericidal macrophages invest
many sources to cascades producing a sufficient amount of
neutralizing reductive compounds. Citrate and glutamate are
exploited for the generation of glutathione, which protects thus
macrophages from self-harming by otherwise bactericidal ROS
(Kwon et al., 2019).

Finally, yet importantly, the difference can also be seen in
the utilization of lipids if comparing quiescent and bactericidal
macrophages. While resting macrophages use a relatively
small amount of lipids mainly as a source of energy from
fatty acid oxidation, upon infection, HIF1α-induced activity
of sterol regulatory element-binding proteins and peroxisome
proliferator-activated receptors lead to the accumulation of fatty
acids and cholesterol (Shen and Li, 2017; Mylonis et al., 2019).
That may be attributed to increased uptake of lipids in the
form of lipoproteins as well as a rise in lipid synthesis. Uptake
of lipoproteins [via scavenger receptor CD36, very-low-density
lipoprotein receptor (VLDL-R) and low-density lipoprotein
receptor-related protein 1 (LRP1)] as well as their synthesis
increases in a HIF1α-dependent manner (Krishnan et al., 2009;
Castellano et al., 2011; Mylonis et al., 2012; Shen et al., 2012;
Maier et al., 2017), which further supports the perception of
HIF1α as a master-regulator of aerobic glycolysis in bactericidal
macrophages. However, the involvement of this regulation upon
infection has not been fully comprehended yet. Contrary, the
utilization of fatty acids for energy generation via fatty acid
oxidation is significantly decreased upon HIF1α stabilization
(Remmerie and Scott, 2018). Even though the use of lipids
by macrophages upon infection has not been fully elucidated
yet, we can presume their deployment for remodeling of the
cellular membrane, formation of cholesterol rafts, synthesis of
catecholamines, trained immunity, as well as inflammasome
activation (Bekkering et al., 2018; Remmerie and Scott, 2018).

As we depicted above, the adjustment of macrophage central
metabolic pathways is fundamental for the engulfment of bacteria
and its killing. However, this relationship has been omitted for

a long time in insects. Nevertheless, phagocytosis and clearance
of invading pathogens is an evolutionarily highly conserved
process even on the molecular level and, therefore, plasmatocytes
as Drosophila professional phagocytes (Figure 2 and Box 3)
should have the same requirements for energy and precursors
(Stuart and Ezekowitz, 2008; Browne et al., 2013). The position
of plasmatocytes in fly’s body (Figure 2A), their morphology
(Figures 2C–G), as well as their ability to phagocytose bacteria
(Figures 2C,E–G and Box 3) and uptake LDLs (Figure 2D) are
depicted in Figure 2.

Thus, we can hypothesize that basically, all professional
phagocytes performing bactericidal function should undergo
the switch toward aerobic glycolysis upon their activation.
This notion is supported by observations made by Anderson
and his colleagues, who investigated the metabolic demands
of cockroach hemocytes during phagocytosis in vitro. They
revealed that insect hemocytes are functionally dependent on
uptake of glucose, glutamine, and lipids from cultivation media
(Anderson et al., 1973; Ratcliffe and Rowley, 1975). That may
be supported by transcriptomic data characterizing Drosophila
immune cells with various stimuli. In larvae, both differentiating
and proliferating immune cells display hallmarks of increased
glycolytic rate and conversion of pyruvate to lactate resembling
aerobic glycolysis (Irving et al., 2005; Johansson et al., 2005;
Bajgar et al., 2015; Ramond et al., 2020). The versatility
of Drosophila immune cells and their metabolic response to
the activating stimuli may be further documented by the
single-cell transcriptomic analysis published recently (Tattikota
et al., 2020), which shows the above-mentioned patterns in
raw data. According to these data, larval hemocytes display
increased expression levels of lipid-scavenging receptors and
genes for import and metabolism of lipids in the Krebs cycle.
Moreover, a subpopulation of immune cells bearing lamellocyte
markers displays metabolic shift toward aerobic glycolysis upon
wasp infestation.

It has been proven experimentally that even adult fly
plasmatocytes perform the switch to aerobic glycolysis upon
streptococcal infection in vivo (Krejčová et al., 2019). In analogy
to their mammalian counterparts, Drosophila plasmatocytes
require the activity of HIF1α for induction of aerobic glycolysis
and, in response to infection, display substantially increased
glucose and lipid uptake (Krejčová et al., 2019, 2020). In
concordance with that, the rate of glycolysis, as well as the
production of lactate, is increased in these cells. However,
the complex metabolic characterization concerning particularly
mitochondrial metabolism still remains to be fully explored.
In this experimental setup, plasmatocyte function is central
for limiting the bacterial burden during the first 24 h post-
infection. Decreased efficiency of phagocytosis and bacterial
killing leads to the death of the individuals. Interestingly, the
cellular metabolic switch is accompanied by an adjustment of
the systemic metabolism of flies when both adoption of aerobic
glycolysis by plasmatocytes and induction of hyperglycemia
and hyperlipidemia are essential for resistance during the
acute phase of the infection. Since adoption of aerobic
glycolysis by plasmatocytes is epistatic to adjustment of systemic
metabolism, we may anticipate the existence of signaling factors
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mediating this interorgan crosstalk (Bajgar and Dolezal, 2018;
Krejčová et al., 2019, 2020; Figure 1 and Box 1).

In conclusion, the adoption of aerobic glycolysis as a metabolic
program fundamental for effective bactericidal function results in
increased demands for external sources. Since these sources may
be depleted rapidly in the local microenvironment (Kedia-Mehta
and Finlay, 2019), we suggest that one of the possible ways how
to ensure resource supplementation is the release of immune cell-
derived signaling factors to affect systemic metabolism (Figure 1
and Box 1). The character of these signaling factors will be
considered in the following paragraphs.

ADOPTION OF AEROBIC GLYCOLYSIS IS
CONNECTED WITH THE RELEASE OF
SYSTEMIC SIGNALING FACTORS

As described in the previous paragraphs, macrophage activation
is connected with enhanced nutritional demands due to
the adoption of aerobic glycolysis and a high activity of
these cells. Macrophages are expected to release signaling
factors to usurp enough sources from other non-immune
organs and tissues. Thus, the immune response becomes a
privileged physiological process above other processes in the
body. However, redistribution of sources may be limiting for
concurrent physiological processes based mainly on anabolic
metabolism (Ganeshan et al., 2019; Kedia-Mehta and Finlay,
2019). From the perspective of inter-organ signaling, the immune
system behaves selfishly in competition for energy sources and
releases SIFs that mediate this signaling (Figure 1 and Box 1).
Based on the knowledge of insect SIFs, we may propound several
hypothetical features to be met by these factors. This approach
may help to identify possible novel SIFs in mammals.

Firstly, we expect the SIFs to be released by activated immune
cells as a reflection of their nutritional status and adoption
of HIF1α-driven aerobic glycolysis. There are two ways to

translate the information about the increased demands linked
to the adoption of aerobic glycolysis into the production of
SIFs. SIF production may be a part of the transcriptional
program associated with the metabolic switch directed by either
HIF1α or other transcriptional factors involved in immune cell
polarization—for example, JNK and NfKB. Thus, the remodeling
of cellular metabolism of these cells and concurrent production
of SIFs may be intimately interlinked. Alternatively, certain
metabolites, generated as a product of some highly active
metabolic pathways in aerobic glycolysis, may serve as potential
SIFs as well (Figure 3).

Whether or not SIFs are linked to a transcriptional program
or to the metabolic status of the cells, they should be released
during the early phase of the acute immune response. Although
it has been shown that macrophages are endowed with certain
nutritional stores, they barely suffice for the initial few hours
of their activation (Ma et al., 2020). This fact has been
documented by many clinical data as well as experimental studies
describing the progress of infection (Imran and Smith, 2007;
Scott et al., 2019). Last, but not least, we should consider the
potential of SIFs to spread through the body and affect systemic
nutrient expenditure.

Assuming that the nutritional requirements of activated
immune cells are the primary motivation for SIF release, we
can look for a parallel in neoplastic tumors and hypoxic tissues,
because they all use HIF1α-driven aerobic glycolysis (Escoll and
Buchrieser, 2018; Miska et al., 2019; Box 4). Based on that
presumption, we may preselect several cancer-derived cachectic
factors that also occur in hypoxia. In the following paragraphs,
we will address three immune signaling factors that meet the
above criteria and represent the potential SIFs in Drosophila
[extracellular adenosine (eAdo), insulin/IGF antagonist Imaginal
morphogenesis protein late 2 (ImpL2), and cytokine Unpaired3
(Upd3)] (Figure 3).

Adenosine is a purine metabolite naturally occurring at low
concentrations in all living cells. Nevertheless, its concentration

BOX 4 | Cancer and bactericidal macrophages display a similar cellular metabolic setup.
It is almost 100 years since the discovery that cancer cells preferentially employ glucose fermentation as an oxygen-independent source of ATP even when
sufficiently supplied with oxygen (Warburg et al., 1927; Warburg, 1956). This metabolism was thought to be unique for cancer cells and was called the Warburg
effect, named after its discoverer. Since the adoption of the Warburg effect yields eighteen times less ATP generated from one molecule of glucose compared to
oxidative phosphorylation, the benefits arising from the use of such a metabolic program appeared unlikely. The adoption of the Warburg effect was thus attributed
to disturbed mitochondrial function. However, this explanation cannot elucidate the similar observations made in yeasts that often use anaerobic metabolism despite
the constant level of oxygen in the culture. This phenomenon is known as the Crabtree effect, which suggests an adaptive significance for such metabolic settings
(de Deken, 1966; Diaz-Ruiz et al., 2011). Later research has shown that this mechanism is also utilized by other highly active or dividing cells, such as embryonic
stem cells and activated bactericidal macrophages, and the term aerobic glycolysis has been introduced for this metabolic adaptation (Jones and Bianchi, 2015).
This motivated scientists to find an explanation for why cells in certain situations prefer to switch to this metabolic regime and what the benefits are.

Using modern metabolomics techniques, it has been found that the lower yield of ATP is compensated by the increased glycolytic rate and that this metabolic
setting represents an advantage in the production of essential precursors promoting cell growth, division, and active participation in many biological processes
(Burns and Manda, 2017). As a result, these cells are dependent on an increased supply of nutrients. It is now clear that neoplastic cancer cells alter all major cellular
metabolic pathways and that there is a high similarity in metabolism between cancer and bactericidal macrophages (Escoll and Buchrieser, 2018). It is generally
accepted that neoplastic cancer cells represent a significant energy burden for patients compared to benign tumors of the same size. The malignancy of these
tumors depends on the induction of systemic metabolic changes such as insulin resistance and cachexia (Nagao et al., 2019).

Interestingly, the pro-cachectic effect of tumors is interconnected with the adoption of HIFlα -dependent aerobic glycolysis (Koltai, 2020). It has been outlined that
cancer may be perceived as a metabolic syndrome comprising cancer-induced insulin resistance and cachexia as mechanisms to usurp enough nutrition from the
host’s anabolic processes to support tumor growth and metastatic spreading (Porporato, 2016). In concordance with that, cachexia is thought to cause about 20%
of deaths in cancer patients and accompany up to 80% of advanced cancer states (Fonseca et al., 2020). Besides metabolic profile, cancer cells also share with
bactericidal macrophages the production of several pro-inflammatory cytokines with impact on systemic metabolism (Liou, 2017). Therefore, research on these
factors and their involvement in the induction of insulin resistance and cachexia upon infection should be considered.
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may rise substantially as a reflection of increased activation
of cellular metabolism (Eltzschig, 2013). Adenosine is formed
in the cells as an outcome of the enormous consumption
of ATP, the increased number of methylation events, as well
as generation of reductive potential (Ham and Evans, 2012;
Tehlivets et al., 2013; Sarkar et al., 2020). Accumulation of
intracellular adenosine serves as a negative feedback signal on
cellular metabolism via AMPK activation leading to quiescence
(Aymerich et al., 2006). That is contradictory to the desired
tasks of an activated immune system, and immune cells
thus must expel excessive adenosine extracellularly (Sag et al.,
2008). Since the quantification of intracellular adenosine is
technically challenging under natural physiological conditions,
its production by immune cells has to be presumed from indirect
evidence. Nonetheless, the processes leading to the generation of
intracellular adenosine are accelerated in activated macrophages
employing aerobic glycolysis (Leonard et al., 1978; Vijayan et al.,
2019; Silva et al., 2020). Aside from the intracellular source of
adenosine, we should not omit its generation in an extracellular
space, where it may be produced by ectonucleotidases bound to
the surface of the immune cells (Zanin et al., 2012). Characteristic
producers of adenosine in mammals are hypoxic endothelial and
smooth muscle cells, activated immune cells, as well as cancerous
tissues (Grenz et al., 2011; Silva-Vilches et al., 2018; Boison and
Yegutkin, 2019). Recently, it has been shown that intracellular
adenosine may be released by cultured human macrophages
infected by Leishmania (Hsu et al., 2012). It is in concordance
with an observation made in Drosophila, in which activated
immune cells release adenosine via equilibrative nucleoside
transporters upon an infestation of larvae by parasitoid wasps
(Bajgar et al., 2015). Extracellular production of adenosine has
also been described for murine macrophages upon their classic
activation by LPS (Zanin et al., 2012). Although local rise in
adenosine concentration has rather anti-inflammatory effects in
mammals (Haskó and Cronstein, 2013), its systemic spreading
may support immune response by mobilizing required energy
substrates (Tadaishi et al., 2018). As an outcome of paracrine
and systemic adenosine effects, we may observe overall metabolic
suppression in the organism inducing thus, e.g., fatigue or
hibernation (Davis et al., 2003; Olson et al., 2013). That is
analogous to the observation made in infected Drosophila where
adenosine directs mobilization of carbohydrates from adipose
tissue and concurrently limits glucose consumption by other
than immune tissues (Bajgar et al., 2015; Bajgar and Dolezal,
2018). Although the release of adenosine has not yet been
experimentally linked to the adoption of aerobic glycolysis in
activated immune cells, it is well established that many genes
involved in adenosine signaling are HIF1α targets (Bowser et al.,
2017). Thus, we hypothesize that adenosine production may
be directly linked to the adoption of aerobic glycolysis. This
is in concordance with the observation of eAdo release from
cancer cells, hypoxic tissues, as well as activated immune system
(Schrader et al., 1977; Alam et al., 2015; Bajgar and Dolezal, 2018;
Arab and Hadjati, 2019).

The second SIF—ImpL2—has been identified as a Drosophila
cancer-derived cachectic factor (Kwon et al., 2015). This
putative functional homolog of mammalian insulin-like growth

factor-binding protein 7 (IGFBP7) is known to be released from
experimentally induced cancer cells in adult flies. ImpL2 affects
the metabolism of adipose tissue via insulin resistance and
induces the mobilization of nutrients subsequently exploited
by the tumor for its own growth (Kwon et al., 2015;
Figueroa-Clarevega and Bilder, 2015). ImpL2 is documented to
be released from tumors, which growth was induced either by
loss of cell polarity or overexpression of transcription coactivator
Yorkie (Bunker et al., 2015; Kwon et al., 2015). Importantly, these
tumors are known to rely metabolically on aerobic glycolysis
(Wang et al., 2016).

A remarkable release of ImpL2 was also observed from tissues
undergoing experimentally-induced hypoxia and mitohormesis,
where its expression reflected the mitochondrial dysfunction
(Allee, 2011; Owusu-Ansah et al., 2013). The link between HIF1α

and ImpL2 production has been revealed by comparing ImpL2
transcript abundance in response to hypoxia for wild-type and
HIF1α homozygous mutant adult flies. Moreover, experimentally
increased HIF1α expression is sufficient for enhanced ImpL2
protein levels (Allee, 2011). The role of HIF1α in the regulation
of ImpL2 production has been suggested for infection-activated
plasmatocytes (Krejčová et al., 2020). It has been revealed that
the rise in ImpL2 expression in plasmatocytes (Figure 2E) is
dependent on HIF1α activity in these cells upon infection.
Thus, HIF1α directs not only the metabolic switch to aerobic
glycolysis but also ImpL2 expression. That is further supported
by the occurrence of four hypoxia response elements in the
regulatory sequence of the ImpL2 genomic region. We thus
may claim that bactericidal plasmatocytes produce ImpL2 as a
reflection of HIF1α-driven aerobic glycolysis (Krejčová et al.,
2020). Interestingly, plasmatocytes produce ImpL2 not only in
response to the recognition of invading pathogens but also in
response to their exposure to excessive lipids, as it has been
documented for high-fat-diet fed flies (Morgantini et al., 2019).
Since ImpL2 is known to bind Drosophila insulin-like peptides,
its effects on systemic metabolism can be accounted to the
abrogation of insulin signaling (Honegger et al., 2008).

The last SIF discussed here is a Drosophila cytokine Upd3.
Based on its structural and functional similarities, it is considered
to be a functional homolog of mammalian cytokine IL6 (Oldefest
et al., 2013). In analogy to its mammalian counterpart, Upd3
also acts as a ligand for the JAK-STAT signaling pathway. Upd3
production is crucial in the regulation of many physiological
processes, ranging from embryogenesis and larval growth and
development to stress response, such as in tissue damage, loss
of cell polarity, metabolic stress, and bacterial infection (Jiang
et al., 2009; Wang et al., 2014; Woodcock et al., 2015). Under
such situations, Upd3 production is triggered by the activation
of JNK by loss of cell polarity, recognition of bacterial pathogens,
or increased accumulation of ROS (Jiang et al., 2009). Immune
cells are one of the prominent producers of Upd3 in adult flies.
In response to tissue damage, bacterial infection, or exposure to
oxidized lipids, Upd3 expression rises in these cells substantially
(Agaisse et al., 2003; Woodcock et al., 2015; Chakrabarti et al.,
2016; Shin et al., 2020). Systemic Upd3 subsequently triggers
JAK-STAT signaling in non-immune tissues and activates a stress
response primarily in the gut and the fat body. While in the
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gut, Upd3 induces regenerative proliferation and maintenance of
integrity, in the fat body, it induces a Foxo-driven transcriptomic
program, leading to a mobilization of lipid stores (Chakrabarti
et al., 2016; Shin et al., 2020).

Interestingly, Upd3 production is induced under a similar
condition to ImpL2. Indeed, both are produced from cancer
and hypoxic cells as well as from plasmatocytes responding to
bacterial infection, excessive lipids, or tissue damage (Agaisse
et al., 2003; Bunker et al., 2015; Shin et al., 2020). The
interconnection of Upd3 production with HIF1α transcriptional
activity has been observed for hypoxia-responsive neurons in
the central nervous system of Drosophila larvae. Upd3 released
by these cells has a remote impact on insulin signaling in
adipose tissue and, thus, supports the proliferation of immune
cell progenitors in lymph glands (Cho et al., 2018).

From the above-mentioned, we may suggest that Upd3
production reflects a situation of cellular metabolic stress.
However, the direct link between plasmatocyte aerobic glycolysis
and Upd3 production has not been satisfactorily studied to date.
A systemic effect of Upd3 may be attributed to the activation
of a JAK-STAT cascade, which often leads to an alleviation of
the insulin signaling pathway in target tissues (Yang et al., 2015;
Kierdorf et al., 2020; Shin et al., 2020).

We propose that all three SIFs discussed here are produced
by bactericidal immune cells due to their increased metabolic
activity and the adoption of HIF1α-driven aerobic glycolysis.
It is particularly interesting that the informing of metabolic
demands is mediated by multiple factors involving the body’s
central metabolic organs. However, it seems that their cooperative
action ensures the supplementation of the immune system with
sources (Figure 3).

IMMUNE CELL-DERIVED FACTORS
INDUCE MOBILIZATION AND TARGETED
DELIVERY OF NUTRIENTS

The task of SIFs is to ensure sufficient supplementation of
their producers with energy resources and nutrients necessary
for their function.

The mechanism of resource redistribution consists of two
parallel processes, the mobilization of resources from reserves
and their subsequent delivery to the activated immune system.
The energy suddenly required for protection against pathogen
attack is usurped from anabolic processes such as the building
of reserves, maintenance, growth, and reproduction. Therefore,
SIFs are expected to mobilize the nutrients from central energy-
storing organs and concurrently minimize their consumption by
other immune response-unrelated tissues.

Since most physiological processes based on anabolism
depend on the insulin signaling pathway (Schwartsburd, 2017),
we can assume that the transition between insulin sensitivity
and resistance may represent such a mechanism. We hypothesize
here that ImpL2, Upd3, and adenosine represent examples of
possible SIFs. Therefore, their impact on systemic metabolism
with emphasis on the induction of insulin resistance will be
considered in the following paragraphs.

Recently, it has been deciphered that ImpL2 is released
from infection-activated plasmatocytes during acute immune
response in Drosophila (Krejčová et al., 2020; Figure 3).
However, a recently published RNA-Seq analysis of Drosophila
larval plasmatocytes revealed neither an increase in ImpL2
transcripts upon septic injury nor enriched expression of ImpL2
in plasmatocytes (Ramond et al., 2020). That is in concordance
with other observations showing that larval ImpL2 is expressed in
the fat body rather than in circulating immune cells. That suggests
a different role of ImpL2 in larva and adult immune system
since, in adult flies, the subpopulation of plasmatocytes clearly
displays a strong ImpL2 expression level, particularly of ImpL2
RA isoform (Krejčová et al., 2020). Interestingly, another single-
cell analysis displays a clear subpopulation of larval plasmatocytes
denoted according to a high level of ImpL2 expression as ImpL2-
positive (Cattenoz et al., 2020).

Krejčová shows that ImpL2 subsequently affects the
mobilization of carbohydrates and lipoproteins from the fat
body, which results in their increased titer in circulation
and their subsequent utilization by activated plasmatocytes
(Figure 3). Several independent approaches document its impact
on nutrient mobilization. It was shown that ImpL2 induces
morphological changes in the fat body of infected individuals.
The adipocytes display a significantly reduced amount of lipid
stores, which are dispersed in the cytoplasm in an increased
number of smaller lipid droplets. It is believed that the
reduced diameter of the lipid droplets is advantageous for cells
undergoing increased lipolysis since it makes the triglycerides
more accessible to lipases located on their surface (Kühnlein,
2012). That is in concordance with the induction of Forkhead
Box O (Foxo)-driven transcriptomic program, which triggers the
expression of enzymes responsible for lipolysis and assembly and
release of lipoproteins (Figure 3). Lipid mobilization in the form
of lipoproteins is further supported by the change of relative
representation of individual lipid classes in the fat body on behalf
of phospholipids. Interestingly, a mere overexpression of ImpL2
in plasmatocytes is able to mimic the effects of infection in the
fat body (Krejčová et al., 2020).

Foxo is known to regulate adipocyte metabolism upon
metabolic stress conditions such as starvation, hypoxia, and
elicitation of immune response. It has been reported that when
starving or eliciting an immune response, Foxo is triggered
by immune signaling cascades such as NF-κB, Toll, and IMD
in the fat body (Molaei et al., 2019; Texada et al., 2019).
Nevertheless, adipocyte insulin signaling has the power to
counteract this nutrient-deliberating mechanism completely (Lee
and Dong, 2017). Therefore, it is central for the organism to
alleviate insulin signaling in these cells to induce mobilization
of stores. ImpL2 is a perfect candidate for this role since
it is known for its high affinity to Drosophila insulin-like
peptides as well as experimentally administered human insulin
(Honegger et al., 2008). Although the production of ImpL2
by plasmatocytes appears to be sufficient to induce changes
in lipid metabolism of adipose tissue upon infection, another
plasmatocyte-derived factor, Upd3, surprisingly targets the
same signaling pathway in this organ (Krejčová et al., 2020;
Shin et al., 2020).
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There is a striking similarity between the effects accounted
for ImpL2 and Upd3. Contrary to ImpL2, Upd3 affects the
FOXO nuclear translocation via activation of the JAK/STAT
signaling pathway in the fat body and induces insulin resistance
in adipocytes downstream of insulin receptor (Shin et al., 2020).
That may be accomplished via affecting the phosphorylation
status of effector kinase AKT. Interestingly, also Upd3 itself
can induce mobilization of lipid stores into the circulation
(Woodcock et al., 2015). Redundancy of ImpL2 and Upd3
effects suggests that it is adaptive to inhibit insulin signaling in
adipose tissue by multiple SIFs to secure mobilization of sources
upon infection. Also eAdo affects adipose tissue metabolism
in response to infection in Drosophila. While the effects of
ImpL2 and Upd3 are manifested mainly by the mobilization
of lipid stores, eAdo affects the level of expression of glycogen
metabolizing enzymes through its receptor. eAdo induces
hyperglycemia upon infection via depletion of adipose tissue
glycogen stores (Bajgar and Dolezal, 2018). However, its effect on
lipid metabolism has not been sufficiently investigated yet.

We may conclude that immune cell-derived SIFs induce
adipocyte insulin resistance leading to mobilization of sources
from adipose tissue and their utilization by activated immune
cells (Figure 3).

Besides mobilization of sources, SIFs also often silence the
nutrient consumption of tissues that are not involved in the
immune response. Interestingly, all the SIFs discussed here
are known to silence anabolic processes in these tissues in
certain situations. Production of one factor by macrophages
thus regulates concurrently both mobilization of sources and
suppression of physiological processes competing with the
immune response for resources.

The effect of ImpL2 on anabolic processes has been observed
during the fly’s development and upon experimental induction
of cancer. An increased titer of circulating ImpL2 alleviated
insulin signaling and thus decreased metabolic muscle rate
and caused fragmentation of muscle mitochondria (Figueroa-
Clarevega and Bilder, 2015; Kwon et al., 2015; Lee et al., 2018). In
addition, these individuals displayed disrupted ovary maturation
and mobilization of sources leading to wasting-induced cachexia
(Figueroa-Clarevega and Bilder, 2015; Kwon et al., 2015). We
can hypothesize that plasmatocyte-derived ImpL2 may have
similar effects upon infection, although not with as significant
phenotypes as in cancer because upregulation of the ImpL2
gene in these experimental systems resulted in concentrations far
beyond those occurring naturally.

Also, the effects of Upd3 on muscle metabolism have been
investigated. Plasmatocyte-derived Upd3 has been shown to
limit remote lipid accumulation in muscles to maintain lipid
homeostasis in the tissue via alleviation of insulin signaling
in these cells through activation of the JAK-STAT singling
pathway, which is documented by decreased pAKT occurrence
(Kierdorf et al., 2020). We suggest that such a mechanism may
also be involved in the regulation of muscle lipid uptake upon
infection, during which Upd3 expression in plasmatocytes is
markedly elevated (Péan et al., 2017). A similar mechanism may
be observed in larvae infested by wasp parasitoids, in which
Upd3-induced JAK-STAT signaling in muscles is essential for

an effective immune response (Yang et al., 2015). This may
indicate that muscle insulin resistance is essential to effectively
combat wasp parasitic infestation. However, in their follow-
up study, Yang and Hultmark (2017) showed that insulin
signaling in muscles, in contrast to fat body and plasmatocytes,
is essential for the effective encapsulation of invaders. Muscle-
specific knockdown of insulin receptor resulted in reduced
resistance to infection and encapsulation rate. However, these
effects can be explained by developmental defects caused by
changes in feeding behavior and subsequent malnutrition, as
this experimental treatment was induced throughout the life
of individuals. Nonetheless, this publication nicely depicts the
impact of experimentally induced muscle insulin resistance on
systemic carbohydrate metabolism.

The impact of eAdo on decreased energy consumption by
non-immune tissues has also been described in Drosophila larva
upon wasp infestation. eAdo released by activated immune cells
silences consumption of C14-labeled glucose by virtually all non-
immune tissues, leading to decreased growth of imaginal wing
discs and delayed metamorphosis. Consequently, this mechanism
allows the glucose uptake by immune cells to be increased up to
threefold. These effects were mediated by eAdo activation of the
adenosine receptors in target tissues (Bajgar et al., 2015).

Based on the aforementioned data, we may say that the effects
of macrophage-derived SIFs are dual. They induce nutrient
mobilization from central storage organs and concurrently limit
their consumption by non-immune tissues and physiological
processes. While these effects are essential for the acute-phase
response to infection, they may cause nutrient waste and cachexia
if activated chronically (Figure 3).

IMMUNE CELL-MEDIATED METABOLIC
CHANGES ARE NOT ALWAYS
BENEFICIAL UPON INFECTION

Immune cell-derived SIFs increase the titer of circulating
carbohydrates and lipids, which are then available to be exploited
by the immune system. Subsequently, these nutrients are utilized
by activate phagocytes to feed the suddenly increased energy and
nutritional demands. Thus, we may presume that this signaling is
important for resistance to infection.

Indeed, experimental knockdown of ImpL2 and Upd3 in
infection-activated plasmatocytes or systemic abrogation of
adenosine signaling pathway leads to the reduced ability
of plasmatocytes to fight the pathogens. That manifests in
decreased resistance to bacterial infection accompanied by
elevated pathogen load in these individuals (Agaisse et al., 2003;
Bajgar and Dolezal, 2018; Krejčová et al., 2020). Further studies
suggested that such a decrease in resistance to infection is due
to reduced availability of nutrients for immune cells. Notably,
a mere twofold increase in glucose concentration in fly diet is
sufficient to rescue phenotypes caused by a lack of eAdo signaling
(Bajgar et al., 2015).

Although SIF signaling is essential for an adequate immune
response to acute bacterial infection, it may become maladaptive
under certain conditions. Since SIFs mobilize sources primarily
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for the needs of phagocytes, they may be exploited by the
bacteria growing intracellularly. It is well documented that
many intracellular pathogens affect the metabolic profile of
macrophages to be literarily nourished by the host cell (Teng
et al., 2017). Indeed, it has been described for each of the
SIFs discussed here that their effects have become maladaptive
upon infection with intracellular pathogens such as Listeria
monocytogenes or Mycobacterium tuberculosis (Péan et al., 2017;
Bajgar and Dolezal, 2018; Krejčová et al., 2020).

Not only the type of bacterial threat but also the duration
of SIF action seems to be central. Prolonged SIF production
leads to uncontrolled wasting of nutrients, cachexia, and
irreversible damage of tissues silenced by insulin resistance.
Indeed, for instance, the production of eAdo by plasmatocytes
has to be time-restricted by eAdo degrading enzyme Adenosine
deaminase-related growth factor A (Adgf-A). Interestingly, this
enzyme is produced by plasmatocytes as well, with an 8
h delay after adenosine. Lack of adgf-A function leads to
wasting of glycogen stores and slow-down of development
(Bajgar and Dolezal, 2018).

Also, the ImpL2 production by plasmatocytes must be
time-restricted. Chronically increased ImpL2 production by
plasmatocytes leads to developmental malformations, reduced
body size of the individual, and excessive melanization
of immune cells (Krejčová et al., 2020). Moreover, the
overproduction of ImpL2 causes insulin resistance and cachexia
in the Drosophila cancer model (Figueroa-Clarevega and Bilder,
2015; Kwon et al., 2015).

Although eAdo, ImpL2, and Upd3 meet the criteria of a
selfish immune factor released by the Drosophila plasmatocytes,
analogous signaling in mammals remains controversial.
However, all of these factors have their signaling counterparts
in mammals. While the Upd3 functional homolog has been
identified as IL6, studied mostly for its signaling and metabolic
effects in immune response, the ImpL2 mammalian putative
functional homolog IGFBP7, known for its ability to attenuate
insulin signaling, has not yet been explored in the context
of infection. Therefore, we speculate about the evolutionary
conservation of the role of these SIFs in the following
paragraphs.

THE FUNCTION OF IMMUNE
CELL-DERIVED SIFS MAY BE
CONSERVED BETWEEN INSECTS AND
MAMMALS

Experimental studies performed on insects demonstrate that
plasmatocytes release signaling factors to affect systemic
metabolism and thus ensure a sufficient supply of resources.
Here, we would like to consider the possibility that such a
mechanism is also valid for mammals (Figure 3). The connection
between aerobic glycolysis in activated phagocytic immune cells
and the adjustment of systemic metabolism has been considered
for mammals in recent review based mainly on clinical data of
chronically ill patients (van Niekerk et al., 2017). Moreover, it

may represent the essence of many human diseases, as will be
discussed later.

A plethora of cytokines and chemokines are released from
activated immune cells upon the adoption of a bactericidal
polarization state. These are generally known as “pro-
inflammatory cytokines” due to their potential to guide
other myeloid cells toward inflammatory polarization. Here, we
suggest their role in the regulation of systemic metabolism via
the induction of insulin resistance upon bacterial infection.

From several experimental and clinical studies, it is clear
that macrophage production of pro-inflammatory cytokines is
associated with HIF1α transcriptional activity and subsequent
metabolic rearrangement toward aerobic glycolysis (Palazon
et al., 2014; Corcoran and O’Neill, 2016). However, it is difficult
to distinguish whether their production reflects either cellular
metabolic switch or adopted pro-inflammatory state since both
are intimately interconnected (Diskin and Pålsson-McDermott,
2018). To solve this problem, we must focus on the production
of cytokines by cells utilizing HIF1α-mediated aerobic glycolysis
in non-inflammatory context, such as neoplastic tumors and
hypoxic tissues (He et al., 2014; Edwardson et al., 2017).

There is a compelling list of publications describing the
release of pro-inflammatory cytokines from cancer and hypoxic
tissues (Dinarello, 2006; Peyssonnaux et al., 2007; Popa et al.,
2007; Heikkilä et al., 2008; Xing and Lu, 2016; Lewis and
Elks, 2019; Kammerer et al., 2020). Recently, a transcriptomic
meta-analysis of human cancers varying in degree of their pro-
cachectic potential has been performed to identify new cachectic
factors (Freire et al., 2020). Many of the identified factors were
cytokines and chemokines well-known for their participation
in the acute immune response. That is in concordance with
other studies documenting the pro-cachectic features of Il1β,
TNFα, and Il6 (Zhang et al., 2007; Narsale and Carson, 2014;
Patel and Patel, 2017).

Consistent with this hypothesis, hypoxic tissues also release a
number of cytokines with pro-cachectic properties. Surprisingly,
the elicitation of hypoxic response employs several immune-
related signaling pathways such as JNK, NF-κB, and Hif1α (Jin
et al., 2000; D’Ignazio and Rocha, 2016). Their activation leads
to the adjustment of cellular metabolism to overcome periods
of mitochondrial dysfunction. Although pro-inflammatory
cytokines were originally investigated in the context of LSP-
induced sepsis (Pizarro and Cominelli, 2007; Rossol et al.,
2011), they also reflect the metabolic status and nutritional
requirements of their producers and thus serve as potential
regulators of systemic metabolism.

According to the proposed theory, the central mechanism
that changes the systemic metabolism from anabolism to
catabolism is the induction of insulin resistance. In adipose
tissue, the lack of insulin signaling serves as a signal for
potentiation of lipolysis and subsequent fatty acid mobilization
(Langin, 2013). Therefore, infection-induced lipodystrophy
results in a substantial release of lipid stores during the
acute phase of the immune response. Deliberated fatty acids
are further metabolized in the liver and enwrapped into
lipoproteins as a lipid form suitable for transport to distant
tissues on the periphery (Perry et al., 2014). The liver is
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known to respond differently to a lack of insulin signaling
from most tissues in the body, which is called the “liver
insulin resistance paradox ” (Santoleri and Titchenell, 2019).
Indeed, contrary to other tissues silenced by a lack of insulin
signal, hepatic insulin resistance accelerates lipid synthesis,
gluconeogenesis, and absorption of circulating amino acids
(Biddinger et al., 2008). All of these metabolic changes lead
to increased mobilization of lipoproteins and glucose into
circulation, resulting in the development of hyperglycemia and
hyperlipidemia (Lewis et al., 2002). It is known that stress-related
hyperglycemia, as a result of insulin resistance in critically ill
and septic patients, is beneficial under certain conditions. In
the acute phase of stress response, hyperglycemia appears to
support metabolically stressed tissues and immune cell function,
whereas in context of its chronic activation, it may result in
development of glucotoxicity, exaggerated glycosylation, and
chronic inflammation. The function of mammalian immune
cells is affected by insulin signaling with different context-
dependent effects (Van den Berghe, 2002; Marik and Bellomo,
2013; van Niekerk et al., 2017).

An opposite effect of insulin resistance can be observed in
muscles, where a lack of insulin signal leads to a significant
reduction of its metabolic rate and induction of autophagy
(Lim et al., 2014; Ryter et al., 2014). Autophagy covers basal
nutritional demands of silenced cells and concurrently generates
amino acids utilized for gluconeogenesis in hepatocytes (Cui
et al., 2019). In line with the energy-saving program, insulin
resistance in the brain also significantly reduces its energy
consumption, leading to a lower intellectual capacity, bad moods,
and depressions (Kullmann et al., 2020). Nevertheless, metabolic
adaptation to metabolic stress is a tremendously complex process
in mammals, which is affected by many hormonal and signaling
cues. Particularly effect of several stress-related hormones, such
as cortisol, noradrenaline, or norepinephrine on the mobilization
of nutrients from adipose tissue and the liver is well established.
In this context, the role of immune cell-derived factors on these
signaling pathways should also be considered.

Besides the systemic impact on insulin resistance, we should
also take into account the paracrine effects of cytokines in the
liver. The liver is the central metabolic organ that coordinates
the systemic metabolic changes upon infection (Bernal, 2016).
In addition, the liver hosts a specialized population of tissue-
resident macrophages known as Kupffer cells (KC). KCs serve as
sentinel cells reflecting changes in the titers of metabolites and
endotoxins in the blood. Although KCs tolerate some levels of
endotoxins being permanently present in the circulation without
eliciting an immune response, their increase above a certain
limit leads to KC activation (Zeng et al., 2016). KCs recognize
endotoxins via TLR4, which in turn leads to the activation
of NF-κB and its classical M1 polarization (Gandhi, 2020).
This process is accompanied by the stabilization of HIF1α and
the adoption of aerobic glycolysis (Roth and Copple, 2015).
Subsequently, KCs release the pro-inflammatory cytokines Il1β,
TNFα, and IL6 into the extracellular space. Consequently, these
signaling factors induce hepatocyte insulin resistance via their
paracrine signaling (Bartolomé et al., 2008). The lack of insulin
signaling in hepatocytes leads to a nuclear translocation of

the transcription factor FOXO and the subsequent induction
of its specific transcriptomic program. FOXO increases the
expression of genes involved in lipogenesis and glycogenolysis,
as well as the production and release of lipoproteins (Puigserver
et al., 2003). This mechanism is strikingly reminiscent of the
process observed in insect adipose tissue. Although the role
of KC-derived IL1β, Il6, and TNFα in inducing hepatocyte
insulin resistance has been reliably demonstrated, their mere
administration cannot fully mimic the effects of KCs (Bartolomé
et al., 2008). This suggests the involvement of additional
KC-derived signaling factors. IGFBP7, a mammalian putative
functional homolog of Drosophila ImpL2, may be a potential
candidate (Figure 3).

It has been shown that IGFBP7 expression increases fourfold
in the culture of human THP-1 macrophages in response to their
exposure to Streptococcus pneumoniae (Krejčová et al., 2020).
In addition, IGFBP7 expression increases sixfold in response
to the exposure of KCs to excessive lipids in obese mice.
Subsequently, IGFBP7 induces hepatocyte insulin resistance,
hyperlipidemia, and hyperglycemia prior to the production
of KC-derived pro-inflammatory cytokines (Morgantini et al.,
2019). Although the experimental data connecting the adoption
of aerobic glycolysis by KCs to the production of IGFBP7 are
missing, we suggest that this mechanism may be relevant for the
mobilization of nutrients for immune cells, upon infection. The
role of IGFBP7 and IL6 in the induction of insulin resistance
and cachexia is further supported by their increased plasma
titer in patients suffering from diseases often accompanied by
cachexia, such as morbid obesity, cancer, chronic obstructive
pulmonary disease, acute kidney diseases, and liver fibrosis
(Liu et al., 2015; Gunnerson et al., 2016; Ruan et al., 2017;
Martínez-Castillo et al., 2020). Although nowadays IGFBP7 is
associated with diseases accompanied by chronic inflammatory
and pathological conditions, we suggest that its beneficial role in
nutrient mobilization during an acute immune response should
also be considered (Figure 3).

SUMMARY

This review brings the new perspective that systemic insulin
resistance represents an essential mechanism for overcoming
the acute phase of bacterial infection. Insulin resistance is
induced by immune cell-derived cytokines, which are produced
as a reflection of their elevated metabolic demands resulting
from the adoption of aerobic glycolysis. These cytokines induce
both the mobilization of sources from the storage organs and
their suppressed consumption by non-immune tissues. Titers of
nutrients thus elevate in circulation to be utilized by the activated
immune system. While such metabolic adaptation is fundamental
for resistance to extracellular pathogens, it may become
maladaptive upon infection by intracellular bacteria exploiting
phagocyte cellular stores for its own benefits. Although cytokine-
induced insulin resistance is beneficial during acute phase
response, its chronic activation may progress into the wasting
of nutrients and cachexia (Figure 3), which are severe metabolic
disorders accompanying several serious diseases. Understanding
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the adaptive significance of cytokine-induced insulin resistance
may therefore provide new insights into these maladies.

Induction of insulin resistance in hepatocytes is central for the
progress of obesity and obesity-associated diseases, such as non-
alcoholic steatohepatitis, atherosclerosis, and diabetes. According
to the presented hypothesis, liver and systemic insulin resistance
are induced by chronically adopted aerobic glycolysis in activated
liver macrophages. Reversal of macrophage metabolic switch may
thus represent a powerful therapeutic strategy.
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