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The Klebsiella pneumoniae species complex (KpSC) is a set of seven Klebsiella taxa that are found in a variety of niches and are an
important cause of opportunistic health care–associated infections in humans. Because of increasing rates of multi-drug re-

sistance within the KpSC, there is a growing interest in better understanding the biology and metabolism of these organisms

to inform novel control strategies. We collated 37 sequenced KpSC isolates isolated from a variety of niches, representing all

seven taxa. We generated strain-specific genome-scale metabolic models (GEMs) for all 37 isolates and simulated growth

phenotypes on 511 distinct carbon, nitrogen, sulfur, and phosphorus substrates. Models were curated and their accuracy

was assessed using matched phenotypic growth data for 94 substrates (median accuracy of 96%). We explored species-spe-

cific growth capabilities and examined the impact of all possible single gene deletions using growth simulations in 145 core

carbon substrates. These analyses revealed multiple strain-specific differences, within and between species, and highlight the

importance of selecting a diverse range of strains when exploring KpSC metabolism. This diverse set of highly accurate

GEMs could be used to inform novel drug design, enhance genomic analyses, and identify novel virulence and resistance

determinants. We envisage that these 37 curated strain-specific GEMs, covering all seven taxa of the KpSC, provide a valu-

able resource to the Klebsiella research community.

[Supplemental material is available for this article.]

Klebsiella pneumoniae is a ubiquitous bacterium that inhabits a va-
riety of host- andnon-host-associated environments and is amajor
cause of human disease. It is an opportunistic pathogen and a sig-
nificant contributor to the spread of antimicrobial resistance glob-
ally (Pendleton et al. 2013;Navon-Venezia et al. 2017; Thorpe et al.
2021). Multi-drug-resistant K. pneumoniae with resistance to the
carbapenems (the “drugs of last resort”) cause infections that are
extremely difficult to treat and are considered an urgent public
health threat (Pendleton et al. 2013). Understanding the biology
and ecological behavior of these organisms is essential to inform
novel control strategies.

The last 6–7 yr have seen an explosion of K. pneumoniae com-
parative genomics studies, revealing numerous insights into its ep-
idemiology, evolution, pathogenicity, and drug resistance, and
informing a genomic framework that facilitates surveillance and
knowledge generation (for a recent summary, see Wyres et al.
2020). It is now clear that isolates identified as K. pneumoniae
through standard microbiological identification techniques actu-
ally comprise seven distinct closely related taxa known as the K.
pneumoniae species complex (KpSC): K. pneumoniae sensu stricto,
Klebsiella variicola subsp. variicola, K. variicola subsp. tropica,
Klebsiella quasipneumoniae subsp. quasipneumoniae, K. quasipneu-
moniae subsp. similipneumoniae, Klebsiella quasivariicola, and

Klebsiella africana (Gorrie et al. 2017; Long et al. 2017; Rodrigues
et al. 2019; Wyres et al. 2020). K. pneumoniae sensu stricto accounts
for the majority of human infections and is therefore the most
well-studied of these organisms.

Each individual K. pneumoniae genome encodes between
5000 and 5500 genes; approximately 2000 are conserved among
all members of the species (core genes), and the remainder vary be-
tween individuals (accessory genes) (Holt et al. 2015). The total
sum of all core and accessory genes is estimated to exceed
100,000 protein-coding sequences that can be assigned to various
functional categories, many of which are not well-characterized.
For example, the diversity, mechanism, and phenotypic impact
of antimicrobial resistance genes, accounting for 1% of the total
gene pool, is well understood. In contrast the functional implica-
tions of metabolic genes, which account for the largest single frac-
tion of the gene pool (37%) (Holt et al. 2015), are relatively poorly
understood. The sheer number of genes in this category suggests
that substantial metabolic variability exists within the KpSC, a hy-
pothesis supported by two studies that have generated growthphe-
notypes for multiple isolates (Brisse et al. 2009; Blin et al. 2017).
However, these data are limited by the number and variety of sub-
strates tested and it is difficult to consolidate the genotype data in
the context of these phenotypes. Moreover, these phenotyping
methods are slow, expensive, and nonscalable across large num-
bers of isolates.
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Genome-scale metabolic modeling represents a powerful ap-
proach to bridge the gap between genotypes and phenotypes.
Drawing on the accumulated biochemical knowledge base, it is pos-
sible to infer the metabolic network of an individual organism from
its genome sequence and subsequently apply in silico modeling ap-
proaches to predict its metabolic capabilities (growth phenotypes)
(Thiele andPalsson 2010;O’Brien et al. 2015). Suchmodels allowex-
ploration of metabolic diversity (Monk et al. 2013; Bosi et al. 2016;
Seif et al. 2018), prediction of the impact of gene deletions or the re-
sponse to drug exposure (Tong et al. 2020), identification of novel
virulence factors or drug targets (Bartell et al. 2017; Ramos et al.
2018; Zhuet al. 2018), andoptimization for theproduction of indus-
trially relevant compounds (Jung et al. 2015; Li et al. 2016).

To date, two curated and validated single-strain genome-scale
metabolic models (GEMs) have been reported for K. pneumoniae.
The first was generated for the MGH78578 laboratory strain and
published in 2011 (model ID iYL1228) (Liao et al. 2011). It com-
prised 1228 genes, 1188 enzymes, and 1970 reactions, andwas val-
idated by comparison of in silico growth predictions to true
phenotypes generated for 171 substrates using a Biolog phenotyp-
ing array. The estimated accuracy of iYL1228 was 84% when com-
pared to Biolog growth phenotypes. A second K. pneumoniaeGEM,
for laboratory strain KPPR1, was published in 2017 (model ID
iKp1289) (Henry et al. 2017). This model contained 1289 genes
and 2145 reactions. The KPPR1 model was found to be 79% accu-
rate when compared to Biolog phenotype data in terms of predict-
ing substrate-growth phenotypes. More recently, Norsigian and
colleagues (Norsigian et al. 2019a) reported nonvalidated draft
GEMs for 22 antimicrobial-resistant K. pneumoniae clinical isolates
built from the iYL1228 model through a subtractive approach.
Subsequent in silico growth predictions indicated variability be-
tween isolates in terms of carbon, nitrogen, and sulfur, but not
phosphorus utilization. There was evidence that nitrogen sub-
strate usage could be used to classify strains associatedwith distinct
drug resistance phenotypes. However, none of these models were
experimentally validated.

Here, we present an updated version of the MGH78578 GEM
in addition to novel GEMs for 36 KpSC strains, including represen-
tatives of all seven taxa in the species complex. We curate and val-
idate the models using a combination of Biolog growth assays and
additional targeted growth phenotype data, resulting in a median
accuracy of 96%. We define the core reactomes of K. pneumoniae
and the broader species complex, and we identify species-specific
metabolic capabilities. We then explore these models to identify
strain-specific gene essentiality andmetabolic pathway redundan-
cy across growth on 145 core carbon substrates.

Results

Completed KpSC genomes

We collated 37 previously described isolates from the KpSC com-
plex, including at least one representative per taxon (Blin et al.
2017; Rodrigues et al. 2019). The collection spanned a variety of se-
quence types (STs) within species with more than one strain and
represented a wide range of isolation sources (including human-
host-associated, water, and the environment). The strains were
geographically and temporally diverse, sampled from five conti-
nents, and with isolation dates spanning from 1935 to 2010
(Supplemental Table 1).

Eight strains had previously published complete genome se-
quences available, and we generated complete genome sequences

for the remaining 29 strains using a combination of short- and
long-read sequencing (Methods). The median genome size was
5.5 Mbp (range 5.1–6.0 Mbp) with a median of 5145 genes (range
4798–5704 genes). Themajority of strains carried at least one plas-
mid (n=29, 78%), with seven strains carrying five or more
plasmids.

Model generation, curation, and validation

Using these completed genomes we created strain-specific GEMs,
initially using the curated MGH78578 GEM (iYL1228) as a refer-
ence to identify conserved genes and reactions, followed by man-
ual curation (Methods). The latter was enabled by the availability
of matched phenotype data (Blin et al. 2017) indicating the ability
of each strain to grow in minimal media supplemented with each
of 94 distinct sole carbon substrates for which we were able to pre-
dict growth in silico using the GEMs (Supplemental Table 2). Our
phenotypic data included 12 carbon substrates for which growth
was shown for at least one strain and for which the corresponding
metabolite transport and/or processing reactions were not present
in the original iYL1228 model. Literature searches were undertak-
en to identify the putatively responsible candidate genes and reac-
tions for GEM inclusion. For example, all strains were able to use
palatinose as a carbon substrate; the reaction required to catabolize
this compound was added based on the presence of core genes
with ≥99% nucleotide homology with aglAB (that encode
AglAB), which has been shown to catabolize palatinose in K. pneu-
moniae (Supplemental Table 3; Thompson et al. 2001). When the
model-based predictions and our phenotypic growth data dis-
agreed, we attempted to correct the models by identifying alterna-
tive pathways from the literature or homologous genes in other
Klebsiella or Enterobacteriaceae species with sufficient evidence
to allow inclusion in our models (Methods; Supplemental Table
3). Overall, we added 49 genes and 56 reactions across all models.

The final curated, validated models were highly accurate for
the prediction of growth phenotypes measured through Biolog
(median accuracy 95.7%, range 88.3%–96.8%) (Supplemental
Table 1). The majority (87%) of the discrepancies were false posi-
tives, that is, the model predicted growth on a carbon substrate,
butwe did not observe any phenotypic growth. False positives usu-
ally occur because of gene regulation, in which strains carry the
genes encoding the enzymes required to import and metabolize
a substrate; however, these genes are not expressed during the phe-
notypic growth experiments. False positives can also be related to
technical issues with measuring metabolic phenotypes, for exam-
ple, the limit of detection, sensitivity of growth detection, and use
of correct standards for measurements (Ibarra et al. 2002). Every
model had at least one false positive (median 4, range 1–11)
(Supplemental Table 1) across 31 different carbon substrates. The
most common false positive calls were predicted growth in 2-oxo-
glutarate (n=35 strains), ethanolamine (n=29), L-ascorbate (n =
28), and 3-hydroxycinnamic acid (n =20); false positive calls for
the remaining 27 carbon substrates were associatedwith six or few-
er strains each (Supplemental Table 4).

Five carbon substrates had at least one strain with a false neg-
ative call, in which the model did not predict growth, but we ob-
served a growth phenotype: L-tartaric acid (n=12 strains), L-
lyxose (n=5), L-sorbose (n=2), propionic acid (n =2), and L-galac-
tonic acid-gamma-lactone (n=1) (Supplemental Table 4). In such
cases it is assumed that the models are missing information re-
quired to optimize for growth on these substrates (Orth and
Palsson 2012). Despite thorough literature and database searches,
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wewere unable to identify alternate biological pathways that could
plausibly fill these gaps in the models. This was particularly nota-
ble among the five K. quasipneumoniae subsp. quasipneumoniae
strains, which all had false negative predictions for L-lyxose utili-
zation. These genomes were each missing sgaU (KPN_04590),
which was present in all other KpSC genomes and encodes an en-
zyme that converts L-ribulose-5-phosphate to L-xylulose-5-phos-
phate. We were unable to detect any other proteins belonging to
this enzyme class or carrying similar domains. As the phenotypic
results indicated that all K. quasipneumoniae subsp. quasipneumo-
niae can use L-lyxose, we hypothesize that they must contain un-
known functional ortholog/s to sgaU, which can perform
isomerase activity on L-ribulose-5-phosphate.

We performed an independent validation of the models by
comparing growth phenotypes from the VITEK GN card with sim-
ulated phenotypes (n=13 substrates; Methods). The models were
highly accurate in this setting (median accuracy 100%, range
92.3%–100%) (Supplemental Table 5). All discrepancies were false
positives (n=4): two for growth in succinate, one in tagatose, and
one in 5-keto-D-gluconate (Supplemental Table 5).

Novel GEMs reveal species- and strain-specific metabolic diversity

Our strain collection provided us with a novel opportunity to com-
pare predicted metabolic functionality between all seven taxa
within the KpSC. Overall there were median 1219 genes and
2294 reactions in each curated strain-specific GEM (ranges 1190–
1243 and 2283–2305, respectively), representing median 23.6%
of all coding sequences in each genome (Supplemental Table 1).
Each species had approximately 1200 core model genes and about
2200 core reactions (Table 1), with a slight decreasing trend with
increasing sample size. Conversely, the total number of distinct re-
actions detected among the best represented species, K. pneumo-
niae (2312, n=20 genomes), was higher than those detected
among each of the species represented by fewer genomes (2299
in K. quasipneumoniae subsp. quasipneumoniae; 2307 in both K.
quasipneumoniae subsp. similipneumoniae, and K. variicola subsp.
variicola). In terms of the reactions themselves, the vast majority
were core across all species (Fig. 1); however, there was variability
in reactions associated with carbohydrate metabolism, for which
16% (n=37/234) were not conserved across all models (Fig. 1).
Among these variable reactions we identified three involved in
the N-acetylneuraminate pathway (ACNAMt2pp, ACNML, and
AMANK) that were species-specific and were found to be core in
all five K. quasipneumoniae subsp. similipneumoniae in our study,
but absent from all other genomes. A BLASTN screen of all 307
K. quasipneumoniae subsp. similipneumoniae genomes from Lam
et al. (2021) revealed that these three genes were present in all
307 genomes, indicating that this pathway is likely to be core
across all members of the species.

We simulated growth on 511 substrates as the sole sources of
either carbon (n=272), nitrogen (n=155), phosphorus (n=59), or
sulfur (n=25) (Methods; Supplemental Table 2). A total of 224
(44%) were unable to support growth for any strain (carbon=
107, nitrogen=87, phosphorus= 15, sulfur = 15). Overall, the
number of core growth-supporting phenotypes was very similar
across taxa, with a median of 279 (range 268–281) (Table 1). Of
the 287 that were predicted to support growth for at least one
strain, 262were conserved across all 37 strains (carbon=145, nitro-
gen= 64, phosphorus= 43, sulfur = 10), with only 25 (5%) sub-
strates variable between strains. Substrates that could be used as
a carbon source had the most variation, with 7% of carbon sub-
strates displaying variable predicted growth phenotypes by strain
(Fig. 2). This was in stark contrast to substrates used as a source
of sulfur, in which no variation was observed (Fig. 2).

Among the 20 variable carbon substrates, there was some spe-
cies-specific variation. Six of these reflect core growth capabilities in
all but one of the seven species (3-hydroxycinnamic acid, 3-(3-hy-
droxy-phenyl)propionate, D-arabitol, L-ascorbate, L-lyxose, tricar-
ballylate) (Fig. 3). In the case of tricarballylate, we identified a new
pathway that was absent from the original K. pneumoniae
MGH78578 model: all KpSC species except for K. pneumoniae car-
ried the tcuABC operon, which encodes the enzymes responsible
for oxidizing tricarballylate to cis-aconitate (Lewis et al. 2009)
through the TCBO reaction (Fig. 3). In contrast, all KpSC were
able to use L-ascorbate with the exception of K. quasipneumoniae
subsp. quasipneumoniae, in which all five genomes were lacking
the ulaABC operon encoding the transport reaction ASCBptspp
(Fig. 3). This reaction converts L-ascorbate into L-ascorbate-6-phos-
phate as it is transported into the cytosol (Zhang et al. 2003). We
screened all 149 K. quasipneumoniae subsp. quasipneumoniae ge-
nomes from Lam et al. (2021) for ulaABC with BLASTN and found
that this operon was missing from all members of the species, sug-
gesting that this is a conserveddeletion inK. quasipneumoniae subsp.
quasipneumoniae.

The remaining 14 variable carbon substrates were specific to
five or fewer strains. For example, sn-glycero-3-phosphocholine
could be used by all strains as a carbon and phosphorus substrate,
except for the singleK. africana andK. quasivariicola representatives,
which share a common ancestor in the core gene phylogenetic tree
(Fig. 3). Both these genomes lacked glpQ, encoding the enzyme re-
quired to convert sn-glycero-3-phosphocholine into sn-glycero-3-
phosphate and ethanolamine (Brzoska and Boos 1988). We con-
firmed that glpQwas absent in all 13K. quasivariicola genomes listed
in Lam et al. (2021) by screening for the gene using BLASTN. To
check the result if the glpQ deletion is present in other K. africana
(because we have only a single genome), we screened six K. africana
genomes (all ST4838) for glpQ from Vezina et al. (2021) and found
that this gene was present in all strains. There was only a single car-
bon substrate,N-acetylneuraminate,which supported growth for all

Table 1. Summary of genomes and the core elements of the GEMs

Species Genomes STs Model genes (core) Reactions (core) Phenotypes (core)

K. pneumoniae 20 18 1202–1243 (1183) 2288–2305 (2276) 277–282 (277)
K. quasipneumoniae subsp. quasipneumoniae 5 5 1197–1209 (1190) 2283–2289 (2283) 270–274 (268)
K. quasipneumoniae subsp. similipneumoniae 5 5 1200–1220 (1194) 2283–2299 (2287) 273–280 (273)
K. variicola subsp. variicola 4 4 1212–1227 (1214) 2294–2301 (2299) 279–282 (279)
K. africana 1 1 1216 2289 279
K. quasivariicola 1 1 1228 2299 279
K. variicola subsp. tropica 1 1 1237 2310 281
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K. quasipneumoniae subsp. similipneumoniae, because of the presence
of the nan operon (Vimr and Troy 1985), encoding the proteins re-
quired to catalyze the ACNAMt2pp, ACNML, and AMANK reac-
tions, which were absent in all the other species (Fig. 3).

Single gene knockout simulations reveal variable gene essentiality

Strain-specific GEMs provide an unparalleled opportunity to sim-
ulate the impact of single gene knockout mutations for diverse
strains. Because carbon substrates were associated with the greatest
amount of variation, we focused on the impact of single gene
knockouts in this group. For each strain we simulated the impact
of deletion of each unique gene in its
GEM on growth in each of the core car-
bon substrates (those predicted to sup-
port growth of all strains, n =145),
resulting in 6,544,865 unique simula-
tions (Supplemental Table 6). Among
these simulations, 639,365 (9.8%) were
predicted to result in a loss-of-growth
phenotype.

To compare the diversity of knock-
out phenotypes between strains, we
focused on simulations representing
core gene-substrate combinations (n=
164,285 gene-substrate combinations;
1133 genes that were present in all
GEMs×145 substrates) and excluded
those representing noncore gene-sub-
strate combinations (n=19,140 combi-
nations), because the former can be
directly compared for all strains, whereas
the latter cannot (by definition not all
strains harbor all of the genes). A total
of 146,385 core gene-substrate combina-

tions (89.1%) resulted in no loss-of-
growth phenotype in any strain, whereas
7170 (10.5%) combinations resulted in a
loss-of-growth phenotype in all strains.
At the gene level, 807 genes (71.2%)
were not predicted to be essential for
growth for any substrate in any strain,
and just 57 genes (5.0%) were predicted
to be essential for all substrates in all
strains. The latter were associated with
194 distinct reactions (1–32 reactions
each, median=1, Supplemental Table
7), encompassing eight subsystem cate-
gories: cell membrane metabolism (n=
76 reactions), lipid metabolism (n=42),
amino acid metabolism (n=33), trans-
port, inner- (n = 29) or outer-transport
(n=6), nucleotide metabolism (n=5),
carbohydrate metabolism (n=2), and co-
factor and prosthetic group biosynthesis
(n =1).

Gene essentiality varied by strain,
with reasonable consistency within spe-
cies. The number of core gene-substrate
combinations predicted to result in a
loss-of-growth phenotype ranged from 0
to 519 (median=143) (Fig. 4), and the

number of core genes resulting in a phenotype on at least one
growth substrate ranged from0 to 15 (median=3). The vast major-
ity of these genes (31 of 36 unique genes, 86.1%) were associated
with loss-of-growth phenotypes for six or fewer substrates, with
minimal variation in the total number of substrates among those
strains that were impacted. In contrast, a small number of genes
were associated with loss of growth for all or almost all substrates
for some strains (four genes, 11.1%, each affecting 143ormore sub-
strates per strain) (Fig. 4).

We further investigated the core gene deletions predicted to
result in loss-of-growth phenotypes for 143 or more substrates in

Figure 2. Predicted substrate utilization by type. Bar height indicates number of substrates for each
type, with segments colored to indicate those associated with no growth for any strain (gray), variable
growth (red), and conserved growth (blue). Percentages are indicated within each segment.

Figure 1. Number of model reactions by category. Bars are colored to indicate core reactions (black,
conserved in all strains) and accessory reactions (gray, variably present).
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only a subset of strains, beginning with an apparent K. quasipneu-
moniae subsp. quasipneumoniae species-specific phenotype. The as-
sociated gene, KPN_03428, encodes the enzyme for catalysis of
two reactions in the models: CYSDS (cysteine desulfhydrase) and
CYSTL (cystathionine b-lyase), the latter of which may also be en-
coded by KPN_01511 (malY).malYwas present in all other models
but absent from all K. quasipneumoniae subsp. quasipneumoniae
(closest bidirectional BLASTP hit had 30.07% identity, well below
the threshold required for inclusion as a homolog and consider-
ably lower than the expected divergence between KpSC species;
3%–4% nucleotide divergence) (Holt et al. 2015), and no alternate
genes encoding putative cystathionine b-lyases could be identified
by search of the KEGGdatabase, indicating a lack of genetic redun-
dancy for these reactions. Direct comparison of the K. quasipneu-
moniae subsp. quasipneumoniae 01A030T chromosome to K.
pneumoniae MGH78578 revealed that the former harbored a ∼5
kbp deletion relative to the latter, spanning the zntB, malY, and
malX genes as well as part of malI. The lack of malY (KPN_
01511) in combination with the KPN_03428 deletion resulted in
predicted loss of ability to produce three keymetabolites (L-homo-
cysteine, ammonium, and pyruvate) and ultimately the predicted
loss of biomass production. This deletion was replicated in all five
K. quasipneumoniae subsp. quasipneumoniae strains. Inspection of
an additional 149 publicly available K. quasipneumoniae subsp.
quasipneumoniae genome assemblies (Methods) found this region

to be present in only 37 genomes (24%), suggesting that the
most recent common ancestor of this species is lacking this region,
with occasional reacquisition in some lineages.

Unlike the KPN_03428 deletion, deletion of KPN_04246 re-
sulted in predicted loss-of-growth phenotypes for all 145 sub-
strates for the single K. africana strain plus 13 of 20 K.
pneumoniae strains (comprising multiple distantly related lineages
including representatives of the well-known globally distributed
ST14, ST23, ST86, and ST258). KPN_04246 encodes a protein
that catalyzes two reactions—ACODA, acetylornithine deacety-
lase, andNACODA, N-acetylornithine deacetylase—both of which
may also be encoded by the product of KPN_01464 (homologs of
this gene were identified in only those genomes that were not as-
sociated with loss-of-growth phenotype). Comparison of the K.
pneumoniae strain CG43 (ST86) chromosome lacking KPN_01464
to K. pneumoniae MGH78578 harboring KPN_01464 showed that
CG43 contained a ∼10 kbp deletion resulting in the loss of
KPN_01464. This deletion was replicated in the K. africana
200023T genome and the remaining 12 K. pneumoniae genomes
that lacked KPN_01464 (≤33.24% identity for the best bidirec-
tional BLASTP hit, no alternate genes encoding putative acetylor-
nithine deacetylases/N-acetylornithine deacetylases were
identified in KEGG).

Finally, we investigated the two gene deletions (KPN_02238
and KPN_00456) resulting in predicted loss of growth on all

Figure 3. Variable growth phenotypes across all seven taxa in KpSC. (Left) Core gene phylogeny for all 37 strains, with tips colored by species per legend.
(Middle) Heatmap of variable substrates for which both phenotypic growth results and model predicted results were available. White indicates no growth,
and color indicates growth. False positive calls are shown in yellow, and false negative calls are in gray (per legend). (Right) Heatmap of variable substrates
for which only model predictions were available. White indicates no growth, color indicates growth, with substrate type indicated per legend.
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substrates in only K. pneumoniae NJST258-1. KPN_02238 encodes
the protein responsible for catalyzing phosphoribosylpyrophos-
phate synthetase (PRPPS), for which no redundant genes were in-
cluded in any of our KpSCmodels. This reaction converts alpha-D-
ribose 5-phosphate to 5-phospho-alpha-D-ribose 1-diphosphate, a
key substrate used as input for 14 downstream reactions. Although
the K. pneumoniae MGH78578 reference model contains a redun-
dant pathway to support this conversion, one of the required reac-
tions (R15BPK, catalyzed by a ribose-1,5-bisphosphokinase) was
missing from theNJST258-1model because the associated genome
lacked a homolog of KPN_04492 (best bidirection BLASTP hit
26.19% identity), whereas all other genomes contained a homolog
of this gene. Further investigation showed that the NJST258-1
chromosome was missing a ∼17 kbp region compared to

MGH78578. In theNJST258-1 chromosome, this region, which in-
cluded KPN_04492, was replaced by the insertion sequence IS1294
(99% nucleotide identity). We were not able to identify a similar
deficiency to explain the strain-specific loss-of-growth phenotype
associated with KPN_00456, which encodes a protein implicated
in 14 distinct reactions.

Discussion

Here, we present an updated GEM for K. pneumoniae MGH78578
plus novel GEMs for 36 members of the KpSC, capturing all seven
taxa and representing the first reported GEMs for the K. variicola
(subsp. variicola and tropica), K. quasipneumoniae (subsp. quasipneu-
moniae and similipneumoniae), K. quasivariicola, and K. africana

Figure 4. Variable loss-of-growth phenotypes. (Left) Core gene phylogeny per Figure 3, with tips colored by species as indicated in legend: (Ka) K. af-
ricana; (Kp) K. pneumoniae; (Kqq) K. quasipneumoniae subsp. quasipneumoniae; (Kqs) K. quasipneumoniae subsp. similipneumoniae; (Kqv) K. quasivariicola;
(Kvt) K. variicola subsp. tropica; (Kvv) K. variicola subsp. variicola. (Middle) Heatmap showing core genes for which variable loss-of-growth phenotypes were
predicted (columns). Shading indicates the number of substrates where loss of growthwas predicted for each strain (rows) per the scale legend. (Right) Bars
show the total number of loss-of-growth phenotypes predicted for each strain.
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species. All models were validated and curated by comparison of
predicted and true growth phenotypes, and they had a median ac-
curacy of 95.7% (range 88.3%–96.8%), higher than estimated for
the previously published K. pneumoniae MGH78578 (84%) and
KPPR1 (79%) models.

Our in silico growth phenotype predictions for a diverse set of
substrates highlighted variability among strains within the K.
pneumoniae species, as has been indicated by previous smaller scale
GEMcomparisons and phenotypic comparisons (Brisse et al. 2009;
Blin et al. 2017; Henry et al. 2017; Norsigian et al. 2019a). Similar
variability was also indicatedwithin and between the other species
in the KpSC (Fig. 3). Carbon substrates were associated with the
greatest diversity; a total of 145 substrates (53%) predicted to sup-
port growth of all 37 strains and 20 (7%) predicted to support
growth of 1–36 strains each (Fig. 2). These predictions were consis-
tent with the observed reaction variability, in which the highest
proportion of accessory reactionswas identified among those asso-
ciated with carbohydrate metabolism (16%) (Fig. 1). This is consis-
tent with a previous pan-genome analysis of 328 K. pneumoniae
that indicated that ∼50% of the total gene pool predicted to en-
code proteins with metabolic functions were specifically associat-
ed with carbohydrate metabolism (Holt et al. 2015). This trend is
also consistent with previous studies of the closely related species,
Escherichia coli, which showed carbohydrate metabolism as the
most diverse category for this organism (Monk et al. 2013; Fang
et al. 2018).

The extent of diversity reported for E. coli and Salmonella spp.
(Seif et al. 2018) wasmuch higher than reported here for KpSC.We
propose two likely explanations for these differences. First, the cur-
rent analysis for KpSC comprises just 37 strains, compared to 55
and 110 strains included in the E. coli studies (Monk et al. 2013;
Fang et al. 2018) and 410 in the Salmonella study (Seif et al.
2018). With greater sample size we expect to capture greater
gene content diversity (Tettelin et al. 2008), including genes asso-
ciated with metabolic functions that drive metabolic diversity (as
was shown to be the case for Salmonella spp.) (Seif et al. 2018).
Second, our draft KpSC strain-specific models were generated us-
ing the reference-based protocol (Norsigian et al. 2019b), in which
homology search is used to identify genes in the reference model
that are absent from the strain of interest and are therefore re-
moved from the strain-specificmodel.We added novel genes/reac-
tions to the models based on comparison of predicted versus
observed growth phenotypes and manual sequence/literature
search, but we did not conduct an automated screen to identify ad-
ditional genes that are present in the novel strain collection. The
latter approach is expected to reveal further diversity, but it re-
quires significant manual curation and validation to ensure the
high-quality status of the models is maintained; therefore, it
should be addressed in future studies.

In addition to growth capabilities, our analyses revealed con-
siderable variation in terms of predicted gene essentiality as has
been implicated for other bacterial species (Breton et al. 2015;
Poulsen et al. 2019; Tong et al. 2020; Rousset et al. 2021).
Specifically, our data indicate that (1) deletion of a single core
gene in a given strain may result in loss of growth on all, none,
or only a subset of growth substrates; and (2) the impact of such
deletions may vary between strains (Fig. 4). Among genes for
which deletion was predicted to have variable impact, most were
associated with the loss of growth for only a small number of sub-
strates in the impacted strains. However, four genes were associat-
ed with predicted loss of growth on 143 or more of 145 substrates
for between one and 14 strains each. In two cases (genes

KPN_03428 and KPN_04246), the impacted strains were missing
redundant genes that were present in the MGH78578 reference
model—that is, those encoding proteins with the same functional
annotation as the deleted gene. Comparisons of the chromosomes
of these strains suggested that the genes were lost through large-
scale chromosomal deletions (5–10 kbp). One of these deletions
was uniquely conserved among strains belonging to K. quasipneu-
moniae subsp. quasipneumoniae, suggesting that it may have oc-
curred in the most recent common ancestor of this subspecies
and has been inherited through vertical descent, with evidence
from additional public genome data pointing toward recent reac-
quisition of this region in some lineages. The other chromosomal
deletion was found among a distantly related subset of K. pneumo-
niae as well as the single K. africana isolate; therefore, its distribu-
tion cannot be explained by simple vertical ancestry. Rather, we
speculate that this deletion has been disseminated horizontally
by chromosomal recombination, as is known to occur frequently
among K. pneumoniae (Bowers et al. 2015; Wyres et al. 2019) and
has been reported between KpSC species (Holt et al. 2015).

Deletion of two genes (KPN_02238 and KPN_00456) resulted
in the loss of growth on all substrates for only a single strain (K.
pneumoniaeNJST258-1). This strain is of particular interest because
it was associated with the highest number of deletion phenotypes
(Fig. 4), and it belongs to ST258, a globally distributed cause of car-
bapenem-resistant K. pneumoniae infections (Bowers et al. 2015;
Wyres et al. 2020). We were unable to identify the cause of this
rare knockout phenotype (lacking adenylate kinase, encoded by
KPN_00456), which converts D-ribose 1,5-bisphosphate to 5-
phospho-alpha-D-ribose 1-diphosphate at the cost of 1 ATP. Com-
parison of the metabolic networks of NJST258-1 and MGH78578
indicated that NJST258-1 was lacking an additional reaction path-
way (phosphoribosylpyrophosphate synthetase) present in
MGH78578, allowing an alternative means of 5-phospho-alpha-
D-ribose 1-diphosphate production in the absence of ribose-1,5-
bisphosphokinase. Further investigation showed that the
NJST258-1 chromosomewas missing a ∼17 kbp region containing
one of the genes required to express this redundant pathway,
which had been replaced by an insertion sequence (IS). ISs are fre-
quently identified among Klebsiella and other Enterobacteriaceae
where they are particularly associated with large plasmids and
the dissemination of antimicrobial resistance (Adams et al. 2016;
Che et al. 2021). The carbapenem-resistant K. pneumoniae lineage,
ST258, has been associated with particularly high IS burden (Ad-
ams et al. 2016), and we hypothesize that such insertions contrib-
ute to the increased number of gene deletion phenotypes
predicted for NJST258-1 compared to other K. pneumoniae strains.
We screened an additional 1021 nonredundant ST258 genomes
from Lam et al. (2021) for the presence of KPN_02388 (the gene
which encodes for phosphoribosylpyrophosphate synthetase)
and found that this gene was present in all 1021 ST258 genomes,
suggesting that the deletion of this pathway is unique to NJST258-
1. This highlights the importance of assessing multiple strains
when attempting to draw conclusions regarding observed
phenotypes.

These findings indicate that KpSC can differ substantially in
terms ofmetabolic redundancy.We cannot exclude the possibility
that the predicted knockout phenotypesmight be rescued by prod-
ucts of nonorthologous genes that are not currently captured in
our models, but at least for the aforementioned examples, a search
of the KEGG database did not indicate any additional known
redundant metabolic pathways. Additionally, our findings are
consistent with a recent experimental exploration of gene
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essentiality in E. coli (Rousset et al. 2021), which showed that 7%–

9% of roughly 3400 conserved genes were variably essential
among 18 E. coli strains grown in three different conditions.
Genomic comparisons of these E. coli implicated a key role for hor-
izontal gene transfer in driving strain-specific essentiality patterns
and redundancies through the mobilization of homologous or
analogous genes and/or those driving epistatic interactions
(Rousset et al. 2021).

Taken together our findings highlight the importance of
strain-specific genomic variation in determining strain-specific
metabolic traits and redundancy. More broadly, these analyses
show the value of an organism investing in redundant systems, ei-
ther through (1) encoding multiple genes capable of performing
the same reaction, or through (2) encoding multiple, alternative
pathways for producing key metabolites from different substrates.
Given what is known about the extent of genomic diversity
among K. pneumoniae and the broader KpSC (Holt et al. 2015;
Wyres et al. 2019; Thorpe et al. 2021), it is clear that studies seek-
ing to understand the metabolism of these species—for example,
for novel drug design, or to identify novel virulence and drug re-
sistance determinants—should include a diverse set of strains. In
this regard, we anticipate that the GEMs, growth predictions, and
single gene deletion predictions presented here will provide a
valuable resource to the Klebsiella research community that can
be used to understand the fundamental biology of these organ-
isms and to derive clinically relevant insights—for example, to
understand how substrate usage patterns influence pathogenicity
and virulence, or to identify universal or clone-specific metabolic
choke points wherein the associated essential genes/proteins
could be targeted by novel therapeutics. As exemplified for the
E. coli K-12 reference strain, such resources can be continually im-
proved and expanded to maximize their utility and facilitate bio-
logical discovery for years to come (Schilling et al. 1999; Monk
et al. 2017).

Methods

Genome collection

The 37 strains used in this study were sourced from two previous
studies (Blin et al. 2017; Rodrigues et al. 2019). Eight strains had
completed genome sequences already publicly available, generat-
ed using various sequencing and assembly methods (for details,
see Supplemental Table 1). For the remaining 29 strains, short-
and long-read sequencing was conducted as follows. Genomic
DNA was extracted from overnight cultures, using GenFind v3 re-
agents (Beckman Coulter). The same DNA extraction was used for
both Illumina andMinION libraries. Illumina sequencing libraries
were made with Illumina DNA Prep reagents (catalog no.
20018705) and the Illumina Nextera DNA UD Indexes (catalog
no. 20027217) per manufacturer’s instructions with one major
deviation from described protocol: Reactions were scaled down
to 25% of recommended usage. Illumina libraries were sequenced
on the NovaSeq platform using the 6000 SP Reagent Kit (300 cy-
cles; catalog no. 20027465), generating 250-bp paired-end reads.
A total of 21 strains were sequenced across multiple long-read se-
quencing libraries, prepared using the ligation library kit (LSK-
109, OxfordNanopore Technologies [ONT])with native barcoding
expansion pack (EXP-NBD104 and NBD114, ONT). The libraries
were run on a R9.4.1 MinION flow cell and base called with
Guppy v3.3.3 using the dna_r9.4.1_450 bps_hac (high-accuracy)
base callingmodel. The remaining seven strains had their DNA ex-

tracted using Qiagen Genomic DNA kits (Qiagen Genomic-tip
100/G) and sequenced using Pacific Biosciences (PacBio) RS II.

The Illumina andMinION read data were combined to gener-
ate completed genomes for n= 28/29 strains with Unicycler v0.4.8
(Wick et al. 2017) using default parameters. SB610 could not be as-
sembled into a completed genome using this approach, so we used
Trycycler v0.3.3 (Wick et al. 2021) to combine 12 independent
long-read only assemblies into a single consensus assembly. The
12 assemblies were generated from 12 independent subsets of
the long reads (randomly selected) at 50× depth, which were as-
sembled with one of three assemblers (n =4 assemblies each):
Flye v2.7 (Kolmogorov et al. 2019), Raven v1.1.10 (Vaser and
Šikic ́ 2021), and Miniasm v0.3 (Li 2016). The final consensus as-
sembly was then polished with the long reads using Medaka
v1.1.3 (https://github.com/nanoporetech/medaka), followed by
three rounds of polishing using the Illumina reads with Pilon
v1.23 (Walker et al. 2014). The PacBio reads were assembled
with HGAP, and overlaps between contigs extremities were manu-
ally circularized. All 37 completed genomes were annotated with
Prokka v1.13.3 (Seemann 2014), using a trained annotationmodel
(created using 10 genomes with Prodigal v2.6.3) (Hyatt et al.
2010). All genomes were analyzed with Kleborate v2.0.3
(Lam et al. 2021) to obtain ST and other genomic information
(Supplemental Table 1).

Phenotypic testing

We used the Biolog growth phenotypes for 190 carbon substrates
generated previously (Blin et al. 2017; Rodrigues et al. 2019). As de-
termined in Blin et al. (2017), a maximum value in the respiration
curve of 150 or greaterwas used to indicate growth,whereas a value
of less than 150 indicated no growth.

We performed additional phenotypic tests on six carbon
substrates; two which were not available on Biolog, 3-(3-hy-
droxy-phenyl)propionate (Sigma-Aldrich PH011597) and 3-
hydroxycinnamic acid (CAS 14755-02-3); and four Biolog sub-
strates for which we required further evidence, gamma-amino bu-
tyric acid (CAS 56-12-2), L-sorbose (CAS 87-79-6), D-galactarate
(CAS 526-99-8), and tricarballylate (CAS 99-14-9). Overnight cul-
tures of all 37 isolates were grown in M9 minimal media (2× M9,
Minimal Salts [Sigma-Aldrich], 2 mM MgSO4, and 0.1 mM CaCl2)
plus 20 mM D-glucose, at 37°C, shaking at 200 RPM. Each carbon
source substrate solution was prepared to a final concentration of
20 mM in M9 minimal media, pH 7.0. Then, 200 µL of each sub-
strate solution was added to separate 96-well cell culture plates
(Corning) and 5 µL of overnight cultures added to the wells, dilut-
ed to McFarland standard of 0.4–0.55. Negative controls were in-
cluded on every independent plate and included (1) no substrate
solution controls (20 mM M9 minimal media) and (2) no isolate
controls but 20 mM substrate solution. For positive controls,
each isolate was also grown independently in M9 minimal media
containing 20 mM D-glucose. Every growth condition was per-
formed in technical triplicate. Plates were then sealed with Aera-
Seal film (Sigma-Aldrich) and then grown aerobically for 18 h at
37°C, shaking at 200 RPM. Plates were then read using the FLUOs-
tar Omega plate reader (BMG Labtech) using Read Control version
5.50 R4, firmware version 1.50, using 595 nm absorbance after 30
sec of shaking at 200 RPM. No isolate controls were used as blanks
to generate the optical density (OD) value for each technical repli-
cate. We then averaged all no isolate OD values to obtain a mean
M9 media OD value. To determine growth/no growth using the
ODmethod, we calculated themeanOD for growth on a particular
substrate for each strain at 24 h and subtracted from this the OD
value of M9media alone. Subsequently, for each carbon substrate,
we divided themeanODvalue for a strain by themeanOD for that

Curated collection of Klebsiel la metabolic models

Genome Research 1011
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276289.121/-/DC1
https://github.com/nanoporetech/medaka
https://github.com/nanoporetech/medaka
https://github.com/nanoporetech/medaka
https://github.com/nanoporetech/medaka
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276289.121/-/DC1


strain inM9media alone to get anOD fold change. OD fold chang-
es≥2were considered sufficient evidence of growth (Supplemental
Fig. 1).

We performed additional growth tests for independent vali-
dation of the models using VITEK 2 GN ID cards (bioMérieux).
All 37 strains were assayed on the card to evaluate growth on 13
carbon sources (VITEK codes for those 13 sources can be found
in Supplemental Table 5). Cards were read on the VITEK 2
Compact (bioMérieux) per the manufacturer’s instructions using
VITEK 2 software version 8.0.

Creating and curating strain-specific GEMs

Using themethod outlined by Norsigian et al. (2019b), we extract-
ed and translated all CDS from each genome and used bidirec-
tional BLASTP hits (BBH) to determine orthologous genes
compared to the reference K. pneumoniae MGH78578 GEM
(iYL1228) (Liao et al. 2011). Genes with at least 75% amino acid
identity were considered orthologous. Genes and their reactions
that did not meet this threshold were removed from their respec-
tive models.

During GEM creation, we discovered that the original bio-
mass function (BIOMASS_) in iYL1228 required the production
of both rhamnose, which is a component of the capsule in K. pneu-
moniaeMGH 78578, as well as UDP-galacturonate and UDP-galac-
tose, which are components of the variable O antigen. Because
both the capsule and O antigens are known to differ greatly be-
tween strains (Follador et al. 2016; Wyres et al. 2016), we created
a new biomass function (BIOMASS_Core_Oct2019) that no longer
required the associated metabolites dtdprmn_c, udpgalur_c, and
udpgal_c.

To validate each GEM against its respective phenotypic
growth results, we used flux-based analysis (FBA) implemented
in the COBRApy framework (Ebrahim et al. 2013) to simulate
growth of each GEM in M9 media with all possible sole carbon,
nitrogen, phosphorus, or sulfur substrates. The updated
BIOMASS function, BIOMASS_Core_Oct2019, was used as the
objective to be optimized. M9 media was defined by setting the
lower bound of the cob(I)alamin exchange reaction to −0.01,
and the lower bound of the following exchange reactions to
−1000: Ca2+, Cl−, CO2, Co2+, Cu2+, Fe2+, Fe3+, H+, H2O, K+,
Mg2+, Mn2+, MoO4

2−, Na+, Ni2+, Zn2+. To predict growth on alter-
nate carbon substrates, we set the lower bound of glucose to zero
(to prevent the model using this as a carbon source), and then set
the lower bound of all potential carbon substrates to −1000 in
turn. The carbon substrate was considered growth supporting if
the predicted growth rate was ≥0.001. The code used to simulate
growth on each substrate can be found in Supplemental Code
(simulate_ growth_single.py).

While identifying carbon substrates, the default nitrogen,
phosphorus, and sulfur substrates were ammonium (NH4), inor-
ganic phosphate (HPO4), and inorganic sulfate (SO4). Prediction
of nitrogen, phosphorus, and sulfur supporting substrates was per-
formed in the sameway as carbon but setting glucose as the default
carbon substrate.

We matched predictions and phenotypic growth data for all
strains for 94 distinct carbon substrates. These data were used to
(1) curate and update the models and (2) estimate model accuracy.
Where we had evidence of phenotypic growth but a lack of simu-
lated growth, we attempted to identify themissing reactions using
gene homology searches and literature searches in related bacteria
(for a full list of reactions added and the evidence for each, see
Supplemental Table 3). During this process it became apparent
that the directionality of the following transport reactions in the
original iYL1228 GEM were set to export the compound from

the cell rather than allow uptake (TARTRtex, SUCCtex, FORtex,
FUMtex, THRtex, ACMANAtex, MALDtex, ABUTtex, AKGtex).
Each of these reactions were updated to be reversible (bound range
−1000 to 1000), restoring the ability for the model to use the asso-
ciated compounds.

Strainmodel accuracy was determined by calculating the per-
centage of true positive and negative compounds, as well as calcu-
lating Matthew’s correlation coefficient using the following
formula (TP= true positive; TN= true negative; FP = false positive;
FN= false negative):

TP × TN − FP × FN
������������������������������������������������

TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ .

Weassessed accuracy against theVITEK growth data using the
same method as described previously. However, these data were
used only to estimate model accuracy and were not used to curate
or update the models.

Gene essentiality for growth on core carbon substrates

To determine which genes were essential for growth in each core
carbon substrate (n=145) for each strain, we used the single_gene_
deletion functions in COBRAPy (Ebrahim et al. 2013). For each
GEM, on every core carbon substrate we simulated growth in M9
media with that substrate as the sole carbon source using FBA (as
described previously), but with one gene knocked out using the
single_gene_deletion function. Each gene was knocked out in turn,
and optimized biomass values ≥0.001 were considered positive
for growth. The code used to perform the knockouts and growth
simulations on each substrate can be found in Supplemental
Code (single_gene_knockouts.py).

Four gene-substrate combinations were selected for further
investigation by interrogation of the model gene-protein-reaction
rules and search of the KEGG database (Kanehisa et al. 2002) using
KofamKOALA (Aramaki et al. 2020) for redundant genes/path-
ways. When relevant, pairwise chromosomal comparisons were
performed using BLASTN (Camacho et al. 2009) and visualized us-
ing the Artemis Comparison Tool (Carver et al. 2005). The putative
insertion sequence was identified by BLASTN search of the
ISFinder database (Siguier et al. 2006).

Core genome phylogeny

The core genome for the set of 37 genomes was determined using
panaroo v1.1.2 (Tonkin-Hill et al. 2020) in strict mode with a gene
homology cutoff of 90% identity, which generated a core gene
alignment consisting of 3717 genes with 75,899 variable sites.
We generated a phylogeny using this core gene alignment with
IQ-Tree v2 (Minh et al. 2020), which selected GTR+F+I +G4 as
the best-fit substitution model. The resulting phylogeny was visu-
alized using ggtree (Yu et al. 2017) in R (R Core Team 2021).

Gene screening in public genomes

To determine whether specific gene deletions or acquisitions are
likely to be conserved in all members of a species or clone, we
used the curated set of 13,156 Klebsiella genome assemblies from
Lam et al. (2021).We used BLASTN to screen for (1) the nan operon
in 307 K. quasipneumoniae subsp. similipneumoniae genomes; (2)
the ulaABC operon in 149 K. quasipneumoniae subsp. quasipneumo-
niae genomes; (3) glpQ in 13 K. quasivariicola genomes and six K.
africana genomes (Vezina et al. 2021); and (4) KPN_02388 in
1021 nonredundant ST258 genomes. Hits with ≥90% coverage
and ≥90% identity were considered to be present.
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Data access

All completed genomes and raw sequence data generated in this
study have been submitted to the NCBI BioProject database
(BioProject; https://www.ncbi.nlm.nih.gov/bioproject/) under ac-
cession number PRJNA768294. All strain metabolic models gener-
ated in this study have been deposited in JSON format, along with
the gene annotations used for the models in figshare (https://doi
.org/10.26180/16702840). MEMOTE reports for all models can
be found in figshare (https://doi.org/10.26180/19180274.v1).
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