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Abstract

Background: Compared with disease biomarkers in blood and urine, biomarkers in
saliva have distinct advantages in clinical tests, as they can be conveniently examined
through noninvasive sample collection. Therefore, identifying human saliva-secretory
proteins and further detecting protein biomarkers in saliva have significant value in
clinical medicine. There are only a few methods for predicting saliva-secretory proteins
based on conventional machine learning algorithms, and all are highly dependent on
annotated protein features. Unlike conventional machine learning algorithms, deep
learning algorithms can automatically learn feature representations from input data and
thus hold promise for predicting saliva-secretory proteins.

Results: We present a novel end-to-end deep learning model based on multilane
capsule network (CapsNet) with differently sized convolution kernels to identify saliva-
secretory proteins only from sequence information. The proposed model CapsNet-SSP
outperforms existing methods based on conventional machine learning algorithms.
Furthermore, the model performs better than other state-of-the-art deep learning
architectures mostly used to analyze biological sequences. In addition, we further
validate the effectiveness of CapsNet-SSP by comparison with human saliva-secretory
proteins from existing studies and known salivary protein biomarkers of cancer.

Conclusions: The main contributions of this study are as follows: (1) an end-to-end
model based on CapsNet is proposed to identify saliva-secretory proteins from the
sequence information; (2) the proposed model achieves better performance and
outperforms existing models; and (3) the saliva-secretory proteins predicted by our
model are statistically significant compared with existing cancer biomarkers in saliva. In
addition, a web server of CapsNet-SSP is developed for saliva-secretory protein
identification, and it can be accessed at the following URL: http://www.csbg-jlu.info/
CapsNet-SSP/. We believe that our model and web server will be useful for biomedical
researchers who are interested in finding salivary protein biomarkers, especially when
they have identified candidate proteins for analyzing diseased tissues near or distal to
salivary glands using transcriptome or proteomics.

Keywords: Saliva-secretory protein, Deep learning, Capsule network, Convolutional
neural network
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Background
Saliva comes mainly from three pairs of salivary glands (parotid, submandibular and

sublingual) and numerous minor salivary glands spread throughout the oral cavity [1].

Similar to other human body fluids, saliva is rich in biomolecules that are secreted by

the salivary glands or that leak from nearby tissues [2]. Furthermore, biomolecules are

released into the blood circulation system by various organs throughout the body and

then secreted into saliva [3]. Thus, the biomolecules in saliva can reflect the health of

specific organs, including organs near the salivary glands and distal organs. Previous

studies have shown that certain biomolecules may appear in saliva when the patients

have oral cancer [4, 5], head and neck squamous-cell carcinoma (HNSCC) [6], breast

cancer [7], prostate cancer [8] and lung cancer [9].

Accurately measuring and evaluating biomarkers as indicators for differentiating nor-

mal and disease samples [10] is important for detecting diseases, making prognoses,

and studying disease occurrence mechanisms [11]. At present, biomarker detection

from body fluids such as blood, urine and saliva is an effective method for diagnosing

diseases [12–16]. Zhang et al. recently proposed a series of prediction methods for

secretory proteins and them in plasma, which play a great role in the diagnosis of early

cancer and other diseases [17, 18]. With the rapid development of omics technology, re-

searchers have acquired vast amounts of disease-related data. Therefore, it is desirable

to use bioinformatics methods to identify highly sensitive and specific biomarkers from

big data. Because there are many signals for various physiological and pathophysio-

logical conditions in blood, most studies on body fluid biomarkers focus on blood bio-

markers [19, 20]. However, saliva is a better source of biomarkers because it is

relatively simple in composition and can be easily and noninvasively collected [21].

Many studies have identified biomarkers of various diseases in saliva based on proteo-

mics experiments by performing comparative proteomic analyses of saliva samples from

patients with specific diseases and control groups [3, 4, 22]. However, comparing and

quantifying proteome data from saliva samples is challenging due to the large number

of sparsely occurring proteins in the saliva, have large dynamic ranges [3]. Due to the

limitations of proteomic experimental techniques, the discovery of saliva biomarkers

faces many difficulties [23]. Developing a method of accurately predicting human

saliva-secretory proteins could solve these problems to some extent. However, few

studies have focused on establishing a computational model for predicting human

saliva-secretory proteins. The existing studies are based on conventional machine learn-

ing methods in which features are selected from feature sets and then classifiers are

constructed from training sets [16, 24]. Therefore, the results of these methods are

largely dependent on the selected features. Compared with conventional machine learn-

ing techniques, deep learning methods can automatically learn complex feature repre-

sentations from raw data [25].

In this study, we propose an end-to-end prediction model based on a deep learning

framework that consists mainly of a multilane Capsule Network with differently sized

convolution kernels. Our model can accurately identify human saliva-secretory proteins

based on only sequence information. A flowchart of our model is shown in Fig. 1.

Saliva-secretory protein identification is formulated as a binary classification problem

in which each protein is classified as either a saliva-secretory protein or not. The first

step involves converting the input protein sequences into evolutionary profile matrices
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using the Position-specific Iterative Basic Local Alignment Search Tool (PSI-BLAST).

To address imbalance issues in the dataset during the training process, the bagging en-

semble learning method is applied to the training set. Then, the evolutionary profile

matrices of the training set are input into the proposed model to train the model pa-

rameters. The proposed model achieves high accuracies using 10-fold cross-validation

on the training set and an independent test set (0.905 on training set; 0.888 on inde-

pendent test set), thus outperforming existing methods [24] based on traditional ma-

chine learning algorithms. By comparing human saliva-secretory proteins detected

experimentally by other studies with the results of our model, we find that our model

can achieve a true positive rate of 89%. By comparing known salivary protein bio-

markers of cancer with the results of our model, we find that our model can achieve an

average true positive rate of 88%. A web server is developed for predicting saliva-

secretory proteins, which can be accessed at the following URL: http://www.csbg-jlu.

info/CapsNet-SSP/. We believe that our predictive model and web server are useful for

biomedical researchers interested in finding protein biomarkers in saliva, especially

when they have candidate proteins for analyzing diseased tissues near or distal to saliv-

ary glands using transcriptome or proteome data. The main contributions of this paper

are as follows: (1) a deep-learning-based end-to-end prediction model for identifying

saliva-secretory proteins solely from sequence information is proposed; (2) the pro-

posed model performs well and outperforms existing methods; and (3) saliva-secretory

protein identification is statistically significant for existing cancer biomarkers in saliva.

Results
Performance measurements

To compare the performances of different prediction models, the accuracy, sensitivity,

specificity, F-score, Matthews correlation coefficient (MCC), and AUC are applied as

evaluation metrics. The corresponding formulas are as follows:

accuracy ¼ TP þ TN
Ntotal

ð1Þ

sensitivity ¼ recall ¼ TP
TP þ FN

ð2Þ

Fig. 1 The flowchart for predicting human saliva-secretory proteins
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specificity ¼ TN
TN þ FP

ð3Þ

precision ¼ TP
TP þ FP

ð4Þ

F‐score ¼ 2 � precision � recall
precision þ recall

ð5Þ

MCC ¼ TP � TN−FP � FNð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FNð Þ TP þ FPð Þ TN þ FPð Þ TN þ FNð Þp ; ð6Þ

where TP is the number of true positives, TN is the number of true negatives, FP is the

number of false positives, FN is the number of false negatives, and Ntotal is the number

of total samples in the validation or test set. In machine learning, the MCC is used as a

measure of the quality of binary classifications [26] and has a value between − 1 and +

1, where + 1 represents perfect classification, 0 represents random classification and − 1

signifies total disagreement between prediction and observation. Since accuracy, sensi-

tivity, specificity, precision, F-score and MCC are threshold-dependent, a threshold

needs to be selected for calculating the specific value. In evaluating binary classifica-

tions, MCC produces more informative and truthful scores than accuracy and F-score

[27]. Therefore, in this article, the threshold is set where the MCC reaches the max-

imum value. The ROC curve is a graphical plot that illustrates the classification ability

of a binary classifier by plotting the true positive rate (TPR) against the false positive

rate (FPR) with various discrimination thresholds [28]. When using normalized units,

the AUC can be between 0 and 1 and represents the probability that a classifier will

rank a randomly chosen positive instance higher than a randomly chosen negative in-

stance. In brief, a larger AUC value indicates better performance. The precision-recall

curve is a plot of precision and recall with various discrimination thresholds.

Evaluating the performance of CapsNet-SSP

To evaluate the performance of CapsNet-SSP, we first generate balanced datasets using

bagging ensemble learning. In each iteration of bagging ensemble learning, 350 saliva-

secretory proteins and 350 non-saliva-secretory proteins are used to evaluate the per-

formance of the model using 10-fold cross-validation. The performance distribution of

the bagging iterations ranges from 0.859 to 0.906 for identifying saliva-secretory pro-

teins and from 0.909 to 0.947 for identifying non-saliva-secretory proteins, which is

generally desirable. The average accuracy, sensitivity, specificity, precision, F-score,

MCC and AUC values for 10 iterations of the bagging ensemble learning approach are

0.905, 0.880, 0.929, 0.924, 0.902, 0.810 and 0.930, respectively. To evaluate the perform-

ance of CapsNet-SSP against methods based on conventional machine learning, we test

all the models on the same dataset. The performance metrics of CapsNet-SSP and

other methods are listed in Table 1; the SVM method was proposed by Sun et al [24].

To ensure a comprehensive and systematic comparison, we also construct several other

prediction models, including k-nearest neighbor (KNN), decision tree, random forest

and adaptive boosting (AdaBoost) based on the selected features in [24]. The average

ROC and precision-recall curves for different methods are plotted in Fig. 2. According

to Table 1 and Fig. 2, CapsNet-SSP yields the best predictive performance.
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In addition, to evaluate the performance of the proposed model on the test set, we

train the proposed model using bagging ensemble learning over 10 iterations. In each

iteration, the models are trained with 350 saliva-secretory proteins and 350 non-saliva-

secretory proteins, and the performance of the trained model is evaluated on an inde-

pendent test set containing 100 saliva-secretory proteins and 100 non-saliva-secretory

proteins. Then, the final prediction results are calculated by averaging the results from

the 10 iterations. The performance metrics of CapsNet-SSP and other methods are

shown in Table 2. The average accuracy, sensitivity, specificity, precision, F-score, MCC

and AUC values of CapsNet-SSP on the independent test set are 0.888, 0.847, 0.929,

0.922, 0.884, 0.779 and 0.948, respectively. The ROC curves and precision-recall curves

are illustrated in Fig. 3, showing that the performance of CapsNet-SSP is better than

those of other methods. Regarding the independent test set, our model performs better

than the methods based on conventional machine learning.

Comparing the performances of different deep learning architectures

To better evaluate the contributions of the different architectures in the model, we

compare the performances of different architectures on the independent test set by

bagging ensemble learning. The results of performance comparison are shown in

Table 3 and Fig. 4. First, the architecture using only the convolutional layer with 10

kernels of size 3 (One-Lane Conv) achieves average accuracy, sensitivity, specificity,

precision, F-score, MCC and AUC scores of 0.797, 0.878, 0.717, 0.755, 0.811, 0.602 and

Table 1 The performances of CapsNet-SSP and other methods on the training set

Methods Accuracy Sensitivity Specificity Precision F-score MCC AUC

KNN 0.835 0.763 0.907 0.891 0.822 0.677 0.878

Decision Tree 0.820 0.789 0.852 0.842 0.815 0.642 0.800

Random Forest 0.810 0.752 0.867 0.850 0.798 0.623 0.879

AdaBoost 0.830 0.754 0.905 0.889 0.836 0.667 0.905

SVM 0.830 0.760 0.899 0.883 0.822 0.666 0.877

CapsNet-SSP 0.905 0.880 0.929 0.924 0.902 0.810 0.930

The threshold is set where the MCC reaches the maximum value

Fig. 2 ROC curves and precision-recall curves of different methods on the training dataset
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0.863, respectively. After adding the PrimaryCaps layer and the HiddenCaps layer

(One-Lane CapsNet), the performance improves substantially. Moreover, comparing

the performance results between the architecture of CapsNet with one lane (One-Lane

CapsNet) and that with multilane CapsNet, the model with multilane CapsNet improve

the performance greatly. To further evaluate whether the improvement of multilane

CapsNet is significant or not, we calculate the p-values between multilane CapsNet and

other architectures using the paired t-test [29] on the results of ten iterations of the

bagging algorithm. The p-values are shown in brackets in Table 3. As shown in Table 3

and Fig. 4, the performance of the architecture of multilane CapsNet is statistically su-

perior to the other architectures in predicting saliva-secretory proteins.

To better evaluate the performance of the proposed model, we compare our model

with existing deep learning architectures on an independent test set. There is growing

interest in applying deep learning methods to biological sequence analysis. For example,

a convolutional neural network (CNN) is used in DeepSig to detect signal peptides in

proteins [30]. DanQ uses a hybrid of CNN and a bidirectional long short-term memory

network (BLSTM) to predict the properties and functions of DNA sequences [31]. An

end-to-end model based on CNN, BLSTM and an attention mechanism is used in Dee-

pLoc to predict protein subcellular localization [32]. To ensure a fair comparison with

other deep learning architectures, we use the same balanced datasets and training strat-

egy as our proposed model CapsNet-SSP to train these deep learning models. Specific-

ally, we use the deep learning architectures proposed in DeepSig [30], DanQ [31] and

DeepLoc [32] to replace our network architecture in the code, respectively. The

Table 2 The performances of CapsNet-SSP and other methods on the independent test set

Methods Accuracy Sensitivity Specificity Precision F-score MCC AUC

KNN 0.778 0.649 0.907 0.875 0.745 0.575 0.809

Decision Tree 0.772 0.692 0.851 0.823 0.752 0.550 0.740

Random Forest 0.781 0.804 0.758 0.769 0.786 0.563 0.836

AdaBoost 0.792 0.703 0.881 0.855 0.772 0.593 0.847

SVM 0.781 0.784 0.778 0.779 0.782 0.562 0.857

CapsNet-SSP 0.888 0.847 0.929 0.922 0.884 0.779 0.948

The threshold is set where the MCC reaches the maximum value

Fig. 3 ROC curves and precision-recall curves of different methods on the independent test set
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performance comparison results of different deep learning architectures are shown in

Table 4, and the average ROC and precision-recall curves for different models are plot-

ted in Fig. 5. To further evaluate whether the improvement of CapsNet-SSP is signifi-

cant or not, we calculate the p-values between CapsNet-SSP and other deep learning

architectures using the paired t-test [29] on the results of ten iterations of the bagging

algorithm. The p-values are shown in brackets in Table 4. As shown in Table 4 and

Fig. 5, the performance of CapsNet-SSP is significantly superior to those of the other

deep learning architectures on the independent test set.

Comparing the performances of different strategies for class imbalance

Ensemble learning techniques, including bagging-based algorithm, boosting-based

algorithmand and hybrid-based algorithm, can solve the problem of class imbalance

[33]. To compare the performance of these strategies, first we train the proposed model

without any strategy for solving the class imbalance problem. Then, we evaluate the

performance of boosting-based and hybrid-based algorithms on the independent test

set. The boosting-based and hybrid-based algorithms are implemented using RUSBoost

[34] and EasyEnsemble [35], respectively. The performance metrics of different strat-

egies on the independent test set are shown in Table 5. From the table, we can see that

the performances of all the strategies based on ensemble learning techniques for the

class imbalance problem are improved. Among them, the performance improvement of

the bagging-based method is the most significant.

Table 3 Performance comparison using different architectures in CapsNet-SSP

Architectures Accuracy Sensitivity Specificity Precision F-score MCC AUC

One-Lane Conv 0.792 (8.8e-
08)

0.827 (5.0e-
07)

0.758 (2.3e-
07)

0.771 (4.0e-
08)

0.811 (3.6e-
07)

0.602 (1.6e-
07)

0.863 (1.1e-
06)

Multi-Lane Conv 0.812 (4.4e-
08)

0.806 (6.4e-
06)

0.818 (1.0e-
07)

0.814 (1.0e-
08)

0.810 (9.6e-
07)

0.624 (4.1e-
08)

0.869 (2.5e-
06)

One-Lane
CapsNet

0.832
(0.015)

0.847 (0.04) 0.818
(0.013)

0.822
(0.013)

0.834
(0.013)

0.665
(0.025)

0.915
(0.001)

Multi-Lane
CapsNet

0.888
(N/A)

0.847
(N/A)

0.929
(N/A)

0.922
(N/A)

0.884
(N/A)

0.779
(N/A)

0.948
(N/A)

The threshold is set where the MCC reaches the maximum value, and the values in brackets are p-values

Fig. 4 The ROC curves and precision-recall curves using different architectures in CapsNet-SSP
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Predicting and ranking human saliva-secretory proteins

We rank 20,186 human proteins reviewed in the Universal Protein Resource (UniProt)

database [36] using the S-value, which is defined as follows:

S ¼ 2� arg max pð Þ−0:5ð Þ � max pð Þ; ð7Þ

where p is the result of the softmax output from CapsNet-SSP and arg max(p) (0, 1)

represents the indices of the maximum values. Then, to rank the human saliva-

secretory proteins that do not overlap with our training set, 3449 proteins in saliva are

collected using the LC-MS/MS analyses reported in the literature [37–42], of which

182 are detected in all studies. Of these 182 proteins, 87 are secretory proteins in SPD

[43], LOCATE [44] and UniProt [36]. Next, we remove the proteins in the training set

from the 87 proteins and obtain the 37 proteins shown in Additional file 1.

Table 6 shows the ranking results of these 37 proteins using the model based on

SVM [24], DeepLoc [32] and CapsNet-SSP. Of the 37 proteins, 16 (43.24%), 24

(64.86%), 29 (75.68%) and 33 (89.19%) are ranked among the top 1000, 2000, 3000 and

4000 using CapsNet-SSP, respectively. We count the results of these saliva proteomics

studies [37–42] and find that the maximum number of salivary proteins does not ex-

ceed 4000. Consequently, we use 4000 as the maximum number of saliva-secretory pro-

teins. In the results corresponding to the models based on SVM and DeepLoc, 3, 7, 7,

and 9 proteins and 5, 19, 27, and 30 proteins are ranked among the same top sets. Fi-

nally, to evaluate the statistical significance of the ranking results, we calculate the p-

Table 4 Performance comparison of deep learning architectures

Architectures Accuracy Sensitivity Specificity Precision F-score MCC AUC

DeepSig 0.792
(0.011)

0.745
(0.030)

0.838
(0.009)

0.820
(0.016)

0.781 (7.8e-
04)

0.586
(0.011)

0.867 (5.8e-
07)

DanQ 0.802
(1.4e-05)

0.745
1.8e-05)

0.859
(3.5e-05)

0.839
(3.3e-05)

0.789
(2.2e-05)

0.608
(1.8e-05)

0.886
(6.3e-06)

DeepLoc 0.843
(0.013)

0.755
(0.029)

0.929
(0.037)

0.914
(0.038)

0.827 (0.016) 0.695
(0.013)

0.891 (0.015)

CapsNet-
SSP

0.888
(N/A)

0.847
(N/A)

0.929
(N/A)

0.922
(N/A)

0.884
(N/A)

0.779
(N/A)

0.948
(N/A)

The threshold is set where the MCC reaches the maximum value, and the values in brackets are p-values

Fig. 5 The ROC curves and precision-recall curves of different deep learning architectures
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values by assuming that the underlying distribution of our problem follows a hypergeo-

metric distribution [45] as follows:

Px kð Þ ¼ kK
� �

n‐kN ‐K� �

nN
; ð8Þ

where N, which is the total number of human proteins, is 20,186, and n is the num-

ber of the selected top proteins. K, which is the number of experimentally verified hu-

man saliva-secretory proteins that do not overlap with the training set, is 37, and k is

the number of proteins that are in the 37 saliva-secretory proteins and the top n pre-

dicted candidate proteins. The p-values of hypergeometric probability are 5.28E-12,

5.35E-16, 7.28E-18 and 1.56E-19 for such rankings using CapsNet-SSP, respectively.

The ranking results show that CapsNet-SSP meets the requirement of statistical signifi-

cance for predicting saliva-secretory proteins and has a better effect than the model

based on SVM and the model based on the deep learning architecture DeepLoc.

Next, the function enrichment analysis is implemented by treating the entire set of

human proteins as the background among the top 4000 proteins ranked by S-value,

using the Database for Annotation, Visualization and Integrated Discovery (DAVID)

[46] against the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes

(KEGG), which are pathway databases for understanding the cellular functions and sub-

cellular locations of the predicted saliva-secretory proteins. The enrichment results

show that the most significantly enriched biological processes, cellular components and

molecular functions are ‘homophilic cell adhesion via plasma membrane adhesion mol-

ecules’, ‘extracellular region’ and ‘serine-type endopeptidase activity’. The most signifi-

cantly enriched pathways are ‘extracellular matrix (ECM)-receptor interaction’,

‘complement and coagulation cascades’ and ‘protein digestion and absorption’ (see

Additional file 2).

Ranking known cancer biomarkers in saliva

To further confirm the effect of the proposed model on disease marker detection, we

also rank the existing cancer biomarkers in saliva. We collect existing biomarkers in

Table 5 Comparison of the performances of different strategies for class imbalance

Strategies Accuracy Sensitivity Specificity Precision F-score MCC AUC

No strategy 0.853 0.796 0.909 0.897 0.843 0.710 0.916

Hybrid-based 0.868 0.857 0.879 0.875 0.866 0.736 0.939

Boosting-based 0.868 0.827 0.909 0.900 0.862 0.738 0.918

Bagging-based 0.888 0.847 0.929 0.922 0.884 0.779 0.948

The threshold is set where the MCC reaches the maximum value

Table 6 Ranking result comparison for experimentally verified human saliva-secretory proteins

Top number SVM DeepLoc CapsNet-SSP

1000 3 (0.168) 5 (0.025) 16 (5.28E-12)

2000 7 (0.042) 19 (2.13E-10) 24 (5.35E-16)

3000 7 (0.132) 27 (2.83E-15) 29 (7.28E-18)

4000 9 (0.121) 30 (1.65E-15) 33 (1.56E-19)
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saliva from head and neck squamous-cell carcinoma (HNSCC) [24], oral squamous cell

carcinomas (OSCC) [22], lung cancer (LC) [47] and breast cancer (BC) [7]. Table 7

shows the ranking results of the 25, 36, 11 and 10 biomarkers of secretory protein in

HNSCC, OSCC, LC and BC, respectively. The results show that 19 (76.00%) of the 25

biomarkers in HNSCC, 34 (94.44%) of the 36 biomarkers in OSCC, 10 (90.91%) of the

11 biomarkers in LC, 9 (90.00%) of the 10 biomarkers in BR are ranked among the top

4000, respectively. Then, to evaluate the statistical significance of the ranking results,

we calculate the p-values by assuming that the underlying distribution of our problem

is a hypergeometric distribution. The p-values of hypergeometric probability are 2.01E-

9, 4.55E-22, 8.16E-9 and 3.75E-6 in HNSCC, OSCC, LC and BC, respectively, among

the top 4000. These ranking results show that saliva-secretory protein identification is

statistically significant for existing cancer biomarkers in saliva.

Discussion
Disease biomarkers play an important role in disease detection and the investigation of

the mechanisms of disease occurrence and development. In particular, protein bio-

markers in biological fluids have the potential to be measured and evaluated as indica-

tors for differentiating normal and disease samples. In recent years, as the level of

proteomic analysis has increased, a variety of clinical disease biomarkers have been dis-

covered in body fluids. However, most of these biomarkers are found in blood, and few

are detected in saliva. Saliva, as a source for detecting disease biomarkers, has obvious

advantages over blood in terms of sample collection and clinical diagnosis.

Many studies have identified biomarkers for various diseases in saliva by comparative

proteomic analysis of saliva samples from patients with specific diseases and controls.

Comparing and quantifying proteomic data from saliva samples is a challenging task

because saliva contains a large number of sparsely occurring proteins with large dy-

namic ranges that span several orders of magnitude. Consequently, due to the limita-

tions of proteomic experimental techniques, the discovery of salivary biomarkers faces

many problems. Thus, developing a method for accurately predicting human saliva-

secretory proteins can solve these problems to some extent. However, few studies have

focused on establishing computational models for predicting human saliva-secretory

proteins, and all of these studies are based on conventional machine learning tech-

niques, in which features are selected from feature sets and classifiers are constructed

from training sets.

Conclusions
In this study, we proposed an end-to-end model based on a deep learning framework

that can accurately identify human saliva-secretory proteins solely from the sequence

information of amino acids. The model consists mainly of a multilane Capsule Network

Table 7 Comparison of the ranking results for different cancer biomarkers in saliva

Top number HNSCC OSCC LC BC

1000 7 (1.39E-4) 13 (7.31E-9) 6 (5.23E-6) 3 (0.010)

2000 11 (8.41E-6) 28 (6.73E-22) 7 (2.02E-9) 4 (0.011)

3000 15 (2.16E-7) 34 (2.03E-26) 9 (1.40E-6) 6 (0.001)

4000 19 (2.01E-9) 34 (4.55E-22) 10 (8.16E-9) 9 (3.75E-6)
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with differently sized convolution kernels. The first step in constructing the model is to

convert the input protein sequences into evolutionary profile matrices using PSI-

BLAST. In addition, to address unbalanced dataset issues during training, the bagging

ensemble learning method is applied to the training set. Then, the profile matrices of

the training set are input into the proposed model to train the model parameters. Fi-

nally, the trained model is used to predict saliva-secretory proteins from the test set,

and its performance is verified to be better than those of existing methods. Meanwhile,

our model can satisfactorily detect the salivary protein biomarkers of cancer. The main

contributions of this paper are the proposal of a deep-learning-based end-to-end pre-

diction model that can accurately identify saliva-secretory proteins using only protein

sequence information and achieving results that are statistically significant for existing

cancer biomarkers in saliva.

Methods
Data collection

Several proteins that can be detected in saliva have been either curated in existing data-

bases or reported in the literature. Therefore, we first collect proteins detectable in sal-

iva from the Sys-BodyFluid database [48], which contains human body fluid proteins

from previous proteome studies. The database includes 2161 proteins in saliva detected

experimentally in eight salivary proteome studies. We also gather proteins in saliva

from other salivary proteome studies [39, 49], resulting in 331 and 1166 additional pro-

teins in saliva. Then, we filter these proteins using the data of experimentally validated

secretory proteins from the secreted protein database (SPD) [43], the mammalian pro-

tein subcellular localization database (LOCATE) [44], and the Universal Protein Re-

source (UniProt) [36]. In addition, to avoid learning bias due to protein redundancies,

we remove the proteins that have a mutual sequence similarity above 30% using the

CD-HIT tool [50]. Finally, 450 proteins remain as the positive data (saliva-secretory

proteins), of which 350 proteins are used as a positive training set while 100 proteins

are used as the positive test set.

Because no proteins have been clearly reported as non-saliva-secretory proteins, gen-

erating the negative data is challenging. In this study, we use a method similar to that

proposed by Cui et al [51], which chooses proteins from the Pfam families that do not

contain proteins in the positive data. To reduce the influences of protein families that

contain only a small number of proteins, we choose the proteins from families with at

least ten proteins. For each family, three members are selected to construct the negative

data. We also remove proteins from the negative data that have a mutual sequence

similarity above 30% using the CD-HIT tool. As a result, 1850 proteins are selected as

the negative data, of which 1750 are used as the negative training set, and the

remaining 100 proteins are used as the negative test set.

Input sequence encoding

A simple and widely used encoding method for protein sequences is one-of-K encoding

(one-hot encoding), which consists of a matrix with N rows and K columns, where K is

usually the number of amino acid types and N is the length of the input protein se-

quences [52]. In one matrix, each column corresponds to a type of amino acid, and
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each row indicates the location in a protein sequence, which is a K-dimensional vector

with a value of 1 at the index corresponding to the amino acid and a value of 0 at all

other positions. However, one-of-K encoding does not consider the evolutionary rela-

tionships among proteins. Therefore, in this study, the protein sequences are encoded

to evolutionary profiles obtained by searching for the sequence in the ‘Uniref50’ data-

base [53] using PSI-BLAST [54]. Specifically, the profile of each protein, which is gener-

ated using PROFILpro [55], is actually a normalized position-specific scoring matrix

(PSSM) [56] based on the amino acid frequencies at every position of a multiple

alignment.

In practice, the sequence lengths of different proteins are different. To reduce the

training time, the maximum protein length is set to 1000, and for proteins with lengths

less than 1000, the end of the matrix is padded with zeros. When a protein is longer

than 1000, 500 amino acids from the beginning (N-terminus) and 500 amino acids

from the end (C-terminus) of the protein are selected to avoid the loss of the sorting

signals on the N-terminus and C-terminus. According to this rule, only 16.32% of hu-

man saliva-secretory proteins are truncated. Because most information on saliva-

secretory proteins is stored at the beginning (N-terminus) and the end (C-terminus) of

the sequence, this selection will retain the most information [24].

Architecture design

The architecture of the proposed model based on a deep learning framework is shown

in Fig. 6, and the architecture is summarized as follows. The input of the model is a

1000 × 20 normalized PSSM for each protein, which is used as input of the multilane

Capsule Network (CapsNet). In this study, the multilane CapsNet contains eight lanes

with differently sized 1D convolution kernels, and each CapsNet lane contains a convo-

lutional layer (Conv), a convolutional capsule layer (PrimaryCaps) and a HiddenCaps

layer.

Fig. 6 Architecture of the proposed model
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The first convolutional layer (Conv) in each lane is designed to increase the represen-

tation power of the model. Each of them contains 10 1D convolution kernels of desig-

nated size with a stride of 1 and a ReLU activation function [57]. The kernel sizes of

the eight lanes are set to 1, 3, 5, 9, 15, 21, 27 and 33, respectively. The first convolu-

tional layer in each lane, which also uses the dropout technique with a dropout rate of

0.5 to prevent overfitting and to optimize model generalizability [58].

The PrimaryCaps layer is a convolutional capsule layer proposed by Sabour et al [59].

In this study, the PrimaryCaps layer in each lane is a 1D convolutional capsule layer

with 8 channels of convolutional capsules. Each capsule consists of 16 convolutional

units, each of which is the result of a size-1 1D convolution kernel with a stride of 9. In

total, the PrimaryCaps layer in each lane contains [1000 × 8] capsule outputs (each out-

put is a 16D vector), and each capsule in the [1000 × 1] grid shares its weight with

others. Because the capsule length represents the probability of entity presentation, the

convolutional units in the capsule layers require different activation functions than

those used in convolutional neural networks [60]. The squashing activation function

used in the PrimaryCaps layer scales the capsule lengths to [0, 1] as follows:

v j ¼
s j

�� ��

1 þ s j
�� ��2

s j
s j

�� �� ; ð9Þ

where sj is the input vector of capsule j and vj is its output vector.

The HiddenCaps layer in each lane consists of eight 16D capsules that map the

input proteins to different states. The computation between the PrimaryCaps and

HiddenCaps layers is shown in Fig. 7, where μi, i ∈ [1, 8000] is a 16D vector in the

PrimaryCaps layer, Wi,j is the weight matrix of an affine transformation, and Vj is

a 16D vector obtained by the weighted sum sj on all the outputs μj ∣ i of the Pri-

maryCaps layer. There are eight capsules (Vj, j ∈ [1, 16]) in the HiddenCaps layer of

each group that receive inputs from the outputs of the corresponding PrimaryCaps

layer. The squashing activation function shown in Eq. 9 is applied to the Hidden-

Caps layer. ci,j is the coupling coefficient determined by the iterative dynamic rout-

ing process, and these coefficients sum to 1 for the eight capsules of HiddenCaps

in each group. To train the model by dynamic routing, five routing iterations are

applied in this study. The complete dynamic routing algorithm can be found in the

original CapsNet paper [59]. The outputs of the HiddenCaps layer in each group

are merged in the concatenated layer. Then, the prediction outputs are produced

by a fully connected dense layer with 128 units and a softmax layer for binary

classification.

Model training

During model training, all the deep learning models are trained using identical training

strategies. The parameters of these deep learning models are optimized using the Adam

stochastic optimization method [61] with the following parameters: a learning rate of

0.001, a decay rate for the first-moment estimate of 0.9, and an exponential decay rate

for the second-moment estimate of 0.999. The applied loss function is cross-entropy

loss between the true and predicted distributions of saliva-secretory proteins and non-

saliva-secretory proteins. Both the proposed and compared models are executed on a
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workstation equipped with an Ubuntu 18.04.2 LTS operating system, an Intel Core i7-

7800X CPU, 128 GB of RAM, and an NVIDIA GeForce RTX 2080 Ti GPU. All the

deep learning models are implemented using Keras 2.2.4 and TensorFlow 1.13.1.

The dropout, early stopping and regularization strategies are used to prevent overfit-

ting of the complex deep-learning model. The dropout strategy adds multiple dropout

layers in the prediction model. During training, samples are taken from different sparse

networks of index numbers. During testing, an unthinned network is used with a

smaller weight to easily approximate the average of all the thinning network predictions

[62]. Another strategy used to reduce overfitting is to stop early during training. Specif-

ically, when the validation data loss is not reduced within some preset number of

epochs, the training procedure is halted [63]. The third strategy for preventing overfit-

ting is to use regularization in the deep learning model [64]. The optimization function

contains two items: a loss term, which is used to measure the degree to which the

model fits the data, and a regularization term, which is used to measure the model

complexity and prevent overfitting. In this study, L2 regularization is adopted to pre-

vent overfitting of the deep learning model.

Bagging ensemble learning

The bagging ensemble learning method [33] is applied to the training set to reduce the

impact of unbalanced data. By training models on several selected balanced subsets, we

obtain several independent classifiers. Then, the final prediction is calculated by aver-

aging the results of these independent classifiers. The bagging ensemble learning algo-

rithm used to train our proposed model is given below:

Fig. 7 Computation between the PrimaryCaps and HiddenCaps layers of each group
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Here, S+ contains 350 saliva-secretory proteins, and S− contains 1750 non-saliva-

secretory proteins. The number of iterations T is 10, and the size of the random selec-

tion n is 350.
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