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Abstract

Background: Neurocognitive disorder (NCD) is common in stroke survivors. We aimed to identify clinically
accessible imaging markers of stroke and chronic pathology that are associated with early post-stroke NCD.

Methods: We included 231 stroke survivors from the “Norwegian Cognitive Impairment after Stroke (Nor-COAST)”
study who underwent a standardized cognitive assessment 3 months after the stroke. Any NCD (mild cognitive
impairment and dementia) and major NCD (dementia) were diagnosed according to “Diagnostic and Statistical
Manual of Mental Disorders (DSM-5)” criteria. Clinically accessible imaging findings were analyzed on study-specific
brain MRIs in the early phase after stroke. Stroke lesion volumes were semi automatically quantified and strategic
stroke locations were determined by an atlas based coregistration. White matter hyperintensities (WMH) and medial
temporal lobe atrophy (MTA) were visually scored. Logistic regression was used to identify neuroimaging findings
associated with major NCD and any NCD.

Results: Mean age was 71.8 years (SD 11.1), 101 (43.7%) were females, mean time from stroke to imaging was 8 (SD
16) days. At 3 months 63 (27.3%) had mild NCD and 65 (28.1%) had major NCD. Any NCD was significantly
associated with WMH pathology (odds ratio (OR) = 2.73 [1.56 to 4.77], p = 0.001), MTA pathology (OR = 1.95 [1.12 to
3.41], p = 0.019), and left hemispheric stroke (OR = 1.8 [1.05 to 3.09], p = 0.032). Major NCD was significantly
associated with WMH pathology (OR = 2.54 [1.33 to 4.84], p = 0.005) and stroke lesion volume (OR (per ml) =1.04
[1.01 to 1.06], p = 0.001).

Conclusion: WMH pathology, MTA pathology and left hemispheric stroke were associated with the development
of any NCD. Stroke lesion volume and WMH pathology were associated with the development of major NCD 3
months after stroke. These imaging findings may be used in the routine clinical setting to identify patients at risk
for early post-stroke NCD.

Trial registration: ClinicalTrials.gov, NCT02650531, Registered 8 January 2016 – Retrospectively registered.
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Background
Neurocognitive disorder (NCD), which includes mild
and major NCD, is common after stroke [1, 2] and a
major cause of disability for stroke survivors [3, 4]. Mild
and major NCD are the latest nomenclature for the pre-
viously used diagnoses “mild cognitive impairment” and
“dementia”, defined in the most recent “Diagnostic and
Statistical Manual of Mental Disorders (DSM-5)” [5, 6].
Reported prevalence of major NCD after a first-ever
stroke ranges from 10 to 40% [2], and is stated to be
around 30% for recurrent stroke [7]. Up to 71% of stroke
patients are reported to have mild NCD 3 months post
stroke, depending on assessment methods and diagnos-
tic criteria used [1]. Three months after stroke, the
prevalence in the “Norwegian Cognitive Impairment
after Stroke (Nor-COAST)” study were found to be 29
and 26% for mild and major NCD, respectively [8]. Age,
education, stroke severity, and previous stroke seem to
be clinically important factors for the development of
NCD, while white matter hyperintensities (WMH), med-
ial temporal lobe atrophy (MTA) [9, 10], strategic stroke
location, and total brain volume have been suggested as
important imaging findings associated with the devel-
opment of cognitive impairment [11, 12]. Seminal
neuropathological observations by Tomlinson et al.,
published in 1970 [13] and backed up by a recent study
[14], suggested a relationship between stroke volume,
stroke location, and cognitive impairment, while an-
other recent study found WMH-volume and not the
stroke volume to be a significant predictor of cognitive
impairment after a mild stroke [15]. While WMHs are
consistently stated as strong predictors of post-stroke
cognitive impairment, the importance of the stroke le-
sion volume is still disputable [16], especially for small
stroke volumes (~ 5 ml) that are commonly observed in
the clinical routine [17].
In order to be clinically feasible, neuroimaging

markers should be accessible on routine acute stroke im-
aging, not only on advanced research sequences. Fast
routine stroke imaging combined with visual rating
scales would allow for early clinical predictions of post-
stroke NCD without the need for complicated MRI
post-processing software and advanced sequences. The
clinical translation of this study is the identification of
robust robust neuroimaging markers of post-stroke
NCD, which will help to estimate the risk of post-stroke
cognitive impairment for the individual patients and
allow the identification of patients susceptible to pre-
ventive interventions.
The aim of this study was to identify clinically access-

ible neuroimaging markers that are associated with early
post-stroke NCD.
Our hypothesis was that patients with larger stroke

volume, left-sided stroke, strategic stroke locations,

higher WMH burden and higher MTA-score more fre-
quently develop post-stroke NCD.

Methods
Nor-COAST
The current study uses data from the Norwegian Cogni-
tive Impairment After Stroke (Nor-COAST) study; a
prospective longitudinal multicenter cohort study
recruiting patients hospitalized with acute stroke in five
Norwegian stroke units from May 2015 to March 2017.
Details of the Nor-COAST study are described by
Thingstad et al. [18].

Population
All patients admitted to the five stroke units participat-
ing in Nor-COAST with suspected stroke were screened
for inclusion. A stroke was diagnosed according to the
World Health Organisation (WHO) criteria [19] as a
focal (or at times global) neurological impairment of
sudden onset, and lasting more than 24 h (or leading to
death) and of presumed vascular origin or an findings of
acute infarction or intra-cerebral hemorrhage on MRI.
Eligible patients for the inclusion in Nor-COAST were

according to the inclusion criteria (a) admitted with
acute ischemic or hemorrhagic stroke hospitalized
within 1 week after onset of symptoms; (b) age over 18
years; and (c) fluent in a Scandinavian language. Exclu-
sion criteria were (a) symptoms explained by other dis-
orders than ischemic brain infarct or intracerebral
hemorrhages; (b) expected survival less than 3 months
after stroke based on a clinical assessment by experi-
enced stroke physicians. Patients with pre-existing
cognitive impairment or dementia were not excluded.
Inclusion criteria for the MRI substudy were (a) patient
included in Nor-COAST; (b) modified Rankin scale < 5
before the stroke; (c) able to cooperate during MRI.
Exclusion criteria for MRI were (a) severe functional im-
pairment making MRI impossible to perform; (b) med-
ical contraindications for MRI like claustrophobia or
pacemaker; (c) patient declined participation in MRI
substudy. Participation in the MRI substudy was
optional.

MRI acquisition
A study-specific brain MRI was performed as early as
possible during the acute/subacute phase of the stroke.
Brain scans were acquired at all five participating hospi-
tals, using one specific MRI-scanner on each site (GE
Discovery MR750, 3 T; Siemens Biograph_mMR, 3 T;
Philips Achieva dStream, 1.5 T; Philips Achieva, 1.5 T;
Siemens Prisma, 3 T). The study protocol consisted of
3D-T1 weighted, axial T2, 3D-Fluid attenuated inversion
recovery (FLAIR), diffusion-weighted imaging (DWI),
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and susceptibility-weighted imaging (SWI). Details about
the MRI protocol have previously been described [20].

Image analysis
Coregistration and stroke segmentation
The 3D-T1 sequence was linearly registered to the 1 mm
“Montreal Neurological Institue-152” (MNI-152) T1
template with the help of “Oxford Centre for Functional
Magnetic Resonance of the Brain (FMRIB)” version 6.0
[21] Linear Image Registration Tool (FLIRT) [21, 22].
DWI trace images were coregistered and resampled to
the already co-registered 3D-T1 using the same software
(FLIRT).
The stroke lesion volume was defined as equivalent to

the ischemic core that represents the amount of irrevers-
ibly destroyed brain parenchyma, identified as diffusion
restriction on the DWI sequence. Acute infarcts were
semi-automatically labeled with the help of the “Insight
Segmentation and Registration Toolkit-Snap (ITK-
Snap)” snake tool (v. 3.8.0) [23] in order to create lesion
masks. Hemorrhagic stroke lesions were included in this
analysis. We did not split the analysis of stroke lesion vol-
ume in ischemic and hemorrhagic stroke because of the
small number and comparable volume of hemorrhagic
strokes. Lesion masks were created for all patients who
had visible diffusion restriction on DWI. The masked
stroke volume in mm3 was automatically measured by
ITK-snap (v. 3.8.0), exported to a comma separated values
(CSV) file, and converted to milliliters (ml).

Localization of acute stroke
Infarcts in the thalamus, angular gyrus, hippocampus,
parahippocampal gyrus, caudate, substantia nigra, red
nucleus, lateral and medial globus pallidus were consid-
ered strategic infarcts in accordance with previous find-
ings [24, 25]. Coordinates of masked stroke lesions were
used to identify the hemisphere and corresponding ana-
tomical structure in Talairach brain atlases [26]. The
anatomical atlas labels were retrieved with the help of
the “AtlasReader” python package [27].

Visually rated variables
WMH of presumed vascular origin were classified ac-
cording to the widely used Fazekas scale [28]. The acute
stroke lesion was not included in the Fazekas score.
Fazekas grade of 1 was considered normal for all ages.
The following Fazekas grades were used to identify
WMH pathology. Fazekas grade 2 was considered nor-
mal in patients 71 years or older, whereas Fazekas grade
3 was always regarded as pathological [29]. MTA was
assessed according to the established MTA scale [30].
Findings were considered pathological where the mean
MTA of both sides was ≥1.5 under the age of 75, a value
≥2 below the age of 85, and a value of ≥2.5 below 95

years, as recommended by Ferreira et al. [31]. For a
thorough description of the methods of visual assess-
ment please see Schellhorn et al. [20]. Please see Supple-
ment A4 for a description of the Fazekas scale, and
MTA scale.

Clinical characteristics
Demographic and clinical variables were recorded at the
time of the index stroke by study nurses and stroke phy-
sicians. The following data were included: Age, years of
education, gender, stroke severity measured with the
National Institute of Health Stroke Scale (NIHSS),
hypertension, hypercholesterolemia, smoking, diabetes
mellitus, clinical history of previous stroke and clinical
stroke subtype according to the “Trial of ORG 10172 in
Acute Stroke Treatment (TOAST)” classification [32].

Cognitive assessment
Pre-stroke cognitive impairment was assessed by inter-
views of relatives or caregivers, using the Global Deteri-
oration Scale (GDS). The GDS ranges from 1 to 7. A
GDS score of 3 or above is categorized as pathological
[33], with 3 representing mild NCD and values from 4
to 7 are representing major NCD.
The diagnosis of post-stroke NCD was based on the

“Diagnostic Statistical Manual of Mental Disorders
(DSM5)” implementing neuropsychological test scores.
Five of six cognitive domains cited in the DSM-5 were
assessed with a domain specific test: perceptual-motor
function, language, executive function, learning and
memory, and complex attention. Social cognition was
not measured. The perceptual-motor function was tested
with the visuospatial/executive domain from MoCA.
Language was evaluated with the verbal fluency test -
category (animals). Executive function was measured
with the trail making test B and verbal fluency test – let-
ter (FAS). Learning and memory was evaluated with the
word list recall test. Complex attention was measured
with the trail making test -A [8].
Patients scoring < − 1.5 SD in at least one cognitive

domain were defined as having poststroke NCD. Ac-
cording to these criteria the cognitive status after 3
months was classified into normal cognition, mild NCD
or major NCD. All patients with either mild or major
NCD were classified as any NCD.
Major NCD was defined as post stroke NCD and de-

pendency in I-ADL; whereas mild NCD was defined as
post stroke NCD with independence in I-ADL, as previ-
ously published [8]. Moreover, cognitive status during
hospital stay and after 3 months was additionally
assessed with the “Montreal Cognitive Assessment Test
(MoCA) [34], which is a comprehensive screening test
used to detect NCD.
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Statistical analysis
In order to perform logistic regression analyses, the
three cognitive outcome categories were dichotomized
in two different ways: (a) normal cognition versus any
NCD; and (b) major NCD versus normal cognition or
mild NCD. This allowed us to separately analyze
predictors of any NCD and major NCD. We attempted
ordinal logistic regression with three possible cognitive
outcomes (normal, mild NCD and major NCD) as the
dependent variable. However, the ordinal logistic model
turned out to be unsuited for our study as the odds ra-
tios differed considerably between the thresholds.
The predictor variables stroke volume, strategic in-

farct, affected hemisphere, MTA pathology, and WMH
pathology were analyzed one at a time for any NCD and
major NCD using univariate logistic regression and all
together in one multiple logistic regression model. We
analyzed further if the pre-stroke cognitive status influ-
enced the effect of the investigated predictor variables.
For this purpose, the logistic regression analyses were
repeated with pre-stroke GDS included in the logistic re-
gression model.
All results were adjusted for the known important

confounders age, sex, and education if not explicitly
marked as unadjusted. Missing values were handled
using available case analysis, that is, each analysis in-
cludes all the cases with available data on the variables
in that analysis. Two-sided p-values < 0.05 were consid-
ered as indicators of statistical significance, and we re-
ported 95% confidence intervals (CI), where relevant.
Statistical analyses were carried out using the software
Stata 16 [35].

Results
Study population
The total Nor-COAST study population consisted of
815 participants. Study specific MRI scans that fulfilled
all quality requirements were performed in 347 (42.6%)
of all Nor-COAST participants. The remaining 468
(57.4%) were not eligible for this MRI study due to
severe functional impairment, not able to cooperate,
medical contraindication, incomplete or inadequate
MRI-protocol, or because the patient declined participa-
tion in the MRI sub study. Of the 347 patients with
study specific MRI scans 70 failed quality control due to
technical reasons, movement or missing sequences.
Cognitive status according to DSM-5 criteria was per-
formed in 231 (66.6%) patients 3 months after the
stroke, resulting in a study sample of 231. Participation
in this study is shown in Fig. 1 below. The mean (SD)
time to hospital admission was 13 [27] hours. The mean
(SD) time to MRI was 8 [16] days.
For the whole study sample at baseline the mean age

(SD) of patients was 71.8 (11.1), 101 (43.7%) were

female, mean length of education was 12.3 (3.7) years,
32 (13.6%) had a history of previous clinical stroke. The
mean (SD) MoCA score was 23.1 (3.1) 3 month after
stroke. Stroke subtype according to TOAST classifica-
tion (n = 208): Large-vessel disease 18 (8.7%), cardioem-
bolic disease 44 (21.2%), small-vessel disease 59 (28.4%),
other etiology 4 (1.9%), undetermined etiology 83
(39.9%). A hemorrhagic stroke was identified in 17
(7.4%) patients. Mild pre-stroke NCD was evident in 13
(5.6%) and major pre-stroke NCD in 10 (4.4%) of the pa-
tients. A complete frequency table of GDS grades versus
post-stroke cognitive outcome can be found in the Sup-
plemental Table A1. Clinical characteristics grouped by
cognitive outcome are summarized in Table 1.

MRI
Imaging markers
The mean (SD) stroke volume was 8.7 (17.4) ml, the left
hemisphere was affected in 102 (45.1%) of the patients,
both hemispheres in 6 (2.7%), 23 (9.9%) had suffered a
strategic stroke. An overview of all affected locations is
given in Supplemental Table A2. Pathologic WMH score
was found in 90 (39%) and 82 (35.5%) had pathologic
MTA score. Imaging findings grouped by cognitive out-
come are summarized in Table 2. Imaging examples of
WMH, MTA and stroke lesion volume for the three
cognitive outcomes are given in Fig. 2.

Cognitive outcome after 3 months
Three months after the stroke 128 (55.4%) had any
NCD, mild NCD was found in 63 (27.3%) and major
NCD in 65 (28.1%).

Any NCD
Any NCD after 3 months was significantly associated
with WMH pathology (odds ratio (OR) = 2.73 [1.56 to
4.77]), MTA pathology (OR = 1.95 [1.12 to 3.41]) and left
hemispheric stroke (OR = 1.8 [1.05 to 3.09]). The
resulting ORs remained approximately constant after
adjusting for age, sex, education (see Table 3). Further
inclusion of pre-stroke cognitive status and subsequently
all predictor variables (stroke volume, WMH pathology,
MTA pathology, left hemispheric stroke and strategic in-
farct) in the multivariate logistic regression resulted in
persistent robust ORs (see Supplemental Table A3).

Major NCD
Major NCD after 3 months was significantly associated
with stroke lesion volume (OR = 1.04 [1.02 to 1.06]) and
WMH pathology (OR = 3.09 [1.71 to 5.58]). The
resulting ORs remained approximately constant after
adjusting for age, sex, education (see Table 3). Further
inclusion of pre-stroke cognitive status and subsequently
all predictor variables (stroke volume, WMH pathology,
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MTA pathology, left hemispheric stroke and strategic in-
farct) in the multivariate logistic regression resulted in
persistent robust ORs (see Supplemental Table A3).
A comparison of our findings compared to those of

other studies investigating the relationship between neu-
roimaging biomarkers and cognitive impairment is sum-
marized in Table 4.

Discussion
In this prospective observational cohort study of stroke
survivors, we analyzed the associations between neuro-
imaging findings in the acute phase and NCD 3 months
after the index stroke. Any NCD was significantly associ-
ated with WMH pathology, MTA pathology and left
hemispheric stroke. Major NCD was significantly associ-
ated with stroke lesion volume and WMH pathology.

The fraction of patients in our study with major
NCD was 28.1%, which is in line with published prev-
alences that range from 7.4% in population-based
studies to 41.3% in hospital-based studies. The wide
range of prevalence is explained by varying diagnostic
criteria [39].
Our results indicate that the stroke lesion volume is a

significant predictor of major NCD, even though the
mean stroke lesion volume is small. For every ml the
stroke volume increases, the OR of major NCD increases
by 1.04. This is consistent with another study with
mainly small stroke lesion volumes (mean 7.6 ml) [14],
where the authors reported a significant, but small pro-
portion of the cognitive performance to be explained by
the stroke size. Three studies with mean initial stroke
volume above 50 ml showed that when the initial stroke
lesion volume is larger, the stroke lesion volume

Fig. 1 Study population overview
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becomes a very strong predictor of clinical outcome
measured by the modified Rankin score [40–42]. These
reports are consistent with our findings. Since the odds
of major NCD increases with every ml lesion volume, a
small stroke lesion contributes to favorable clinical out-
come after endovascular stroke therapy [43], especially
when the WMH burden is low [44]. Thus, reducing the
stroke lesion volume is important for reducing the odds
of major NCD.
WMH pathology was in our study associated with any

NCD and major NCD 3 months after stroke. This is in
accordance with other studies which reported an associ-
ation between WMH burden and cognitive symptoms
[45–48]. The presence of severe WMH at baseline dou-
bled the future risk of stroke and increased the risk of
dementia four-fold in the “Framingham Offspring Study”
[49]. Other studies confirm that WMHs are strongly as-
sociated with cerebrovascular disease [50], vascular risk
factors, and dementia [49, 51, 52]. The underlying path-
ology is believed to reflect demyelination and axonal loss

related to chronic ischemia caused by small vessel dis-
ease (SVD) [53]. SVD, for which WMH is an imaging
marker, has recently been linked to glymphatic dysfunc-
tion. This glymphatic dysfunction may lead to a progres-
sion of neurodegenerative dementias in the same
patients at risk for vascular dementia [54, 55] and it
might explain the overlap between these entities.
We found a statistically significant positive association

between MTA pathology and any NCD. This has been
shown to varying degrees in previous studies [9, 14].
While MTA pathology mostly occurs in the context of
neurodegenerative disease [56], it has also been associ-
ated with pure vascular cognitive impairment [57, 58].
High grades of MTA are strongly associated with de-
mentia, especially Alzheimer’s disease [56]. Fiford et al.
on the other hand have suggested that vascular damage,
like WMH, is associated with greater atrophy of the
hippocampus compared to controls [59]. Consequently,
MTA pathology in a stroke cohort might be related to
SVD as well as neurodegeneration.

Table 1 Baseline characteristics in the cognitive outcome groups 3 months after index stroke

Normal cognition Mild NCDc Major NCD Any NCD Total

n = 103 n = 63 n = 65 n = 128 n = 231

Female - n (%) 46 (44.7) 23 (36.5) 32 (49.2) 55 (43.0) 101 (43.7)

Age (years) - mean (SD) 69.4 (11.2) 69.7 (6.7) 77.5 (10.3) 73.6 (10.7) 71.8 (11.1)

Education (years) - mean (SD) 13.2 (3.8) 12.7 (3.5) 10.5 (3.2) 11.6 (3.5) 12.3 (3.7)

Time (hrs) to admission – mean (SD) 11 (27) 10 (16) 19 (34) 15 (27) 13 (27)

Hypertension - n (%) 43 (41.8) 31 (49.2) 35 (53.9) 66 (51.6) 109 (47.2)

Diabetes mellitus - n (%) 13 (12.6) 10 (15.9) 16 (24.6) 26 (20.3) 39 (16.9)

Hypercholesterolemia - n (%) 33 (32.0) 28 (44.4) 29 (44.6) 57 (44.5) 90 (39.0)

Smoker - n (%)

previous 36 (35.0) 24 (38.1) 30 (46.2) 54 (42.2) 90 (39.0)

current 25 (24.3) 13 (20.3) 11 (16.9) 24 (18.8) 49 (21.2)

NIHSSa score - mean (SD) 3.1 (3.8) 3.1 (2.4) 5.2 (6.7) 4.2 (5.2) 3.7 (4.6)

Previous clinical stroke - n (%) 11 (10.7) 7 (11.1) 14 (21.5) 21 (16.4) 32 (13.6)

MoCAb - mean (SD) 26.3 (2.7) 24.5 (3.1) 19.3 (5.4) (n = 64) 22.2 (5.0) (n = 127) 23.1 (5.1) (n = 230)

aNIHSS National Institute of Health Stroke Scale. bMoCA “Montreal Cognitive Assessment Test”, scored at 3 months. cNCD Neurocognitive disorder

Table 2 Baseline imaging findings according to cognitive outcome groups 3 months after acute stroke

Normal cognition
n = 103

Mild NCDd

n = 63
Major NCD
n = 65

Any NCD
n = 128

Total
n = 231

Stroke volume (ml) - mean (SD) 7 (10.8) 4.1 (7) 16.1 (27.7) 10.2 (21.2) 8.7 (17.4)

Stroke volume (ml) – median (IQR)a 1.7 (0.5–9.1) 1.7 (0.5–3.7) 2.9 (0.7–21-1) 1.9 (0.6–7.5) 1.8 (0.2–5.3)

Hemorrhagic stroke - n (%) 5 (4.6) 7 (11.1) 5 (7.7) 12 (9.4) 17 (7.4)

Left hemisphere – n (%) 38 (37.6) 33 (55) 31 (47.7) 64 (51.2) 102 (45.1)

Both hemispheres – n (%) 2 (2) 3 (5) 1 (1.5) 4 (3.2) 6 (2.7)

Strategic infarct - n (%) 10 (9.7) 6 (9.5) 7 (10.8) 13 (10.2) 23 (9.9)

Pathologic WMHb score - n (%) 27 (26.2) 25 (39.7) 38 (58.5) 63 (49.2) 90 (39)

Pathologic MTAc score - n (%) 28 (27.2) 27 (42.9) 27 (41.5) 54 (42.2) 82 (35.5)
aIQR Inter quartile range, bWMH White matter hyperintensities. cMTA Medial temporal lobe atrophy. dNCD Neurocognitive disorder
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We propose that stroke lesion volume and WMH
pathology are important predictors for the development
of major NCD 3 months after an acute stroke. An
underlying mechanism might be that an acute stroke,
even with a small lesion volume, unmasks the effects of
reduced brain resilience as indicated by the presence of
WMHs and MTA, and triggers the development of any
NCD [60]. This makes the use of imaging markers as
predictors valuable and suggests that reducing stroke
size may prevent the early development of post-stroke
NCD. The WMH pathology and MTA pathology may

be modifiable by targeting risk factors for SVD, i.e.
hypertension [61, 62]. Strategic infarcts were not fre-
quent in our study. This may explain why we did not
find an association with NCD.
Although the study sample in the present study is

quite representative for the general stroke population
[63], a weakness of our study was that the most se-
verely affected stroke patients were not included,
which makes the results most relevant for patients
with moderate to mild stroke and smaller stroke
lesions.

Fig. 2 Examples of WMH, MTA and stroke lesion volume for normal cognition, mild and major NCD. a.) Normal cognitive status after 3 months
with normal MTA (medial temporal lobe atrophy) and WMH (white matter hyperintensity) score and an average stroke volume for this group; b.)
mild NCD (neurocognitive disorder) with a relatively small stroke volume, pathologic MTA and pathologic WMH score; c.) Major NCD with a larger
stroke volume, normal MTA and pathologic WMH score

Table 3 Results from logistic regression analyses with any or major neurocognitive disorder as outcome variable

Imaging marker n Any NCD
OR [95%CI]

p-value Major NCD
OR [95%CI]

p-value

Stroke lesion volume (ml) Unadjusted 231 1.01 [0.99 to 1.03] 0.176 1.04 [1.02 to 1.06] 0.001

Adjusteda 231 1.01 [0.99 to 1.03] 0.275 1.04 [1.01 to 1.06] 0.001

WMH pathology Unadjusted 231 2.73 [1.56 to 4.77] 0.001 3.09 [1.71 to 5.58] 0.001

Adjusteda 231 2.37 [1.33 to 4.23] 0.003 2.54 [1.33 to 4.84] 0.005

MTA pathology Unadjusted 231 1.95 [1.12 to 3.41] 0.019 1.43 [0.79 to 2.59] 0.231

Adjusteda 231 2.13 [1.18 to 3.87] 0.013 1.87 [0.95 to 3.68] 0.069

Left hemispheric stroke Unadjusted 226 1.80 [1.05 to 3.09] 0.032 1.12 [0.63 to 2.01] 0.693

Adjusteda 226 1.74 [1 to 3.04] 0.051 1.01 [0.53 to 1.93] 0.966

Strategic infarct Unadjusted 231 1.05 [0.44 to 2.51] 0.91 1.13 [0.44 to 2.89] 0.796

Adjusteda 231 1 [0.4 to 2.48] 1 1.17 [0.41 to 3.3] 0.770

The Odds Ratio (OR) of any NCD or major NCD in the presence of a defined imaging marker is shown in the table above. ORs are reported unadjusted and
aadjusted for age, sex, and education
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Table 4 Comparison of our results with the literature

Study Study
population n

Follow-up Time
months

Results Conclusion

Stroke volume

Puy [14] 365 6 Mean (SD) stroke volume 7.6 (23.121) Increasing stroke volume is associated
with lower Global Cognitive Score

Munsch
[24]

428 3 Median [IQR] stroke volume (ml) for good outcome
6 [0–196]
Median [IQR] stroke volume (ml) for poor outcome
17 [0–211]

Higher stroke volume is associated
with lower MoCA score

Jokinen
[9]

560 36 Mean (SD) stroke volume (ml) 25.7 (39.8)
Stroke volume affected Trail Making, Stroop dots
and verbal fluency among others

Estimated total infarct volume is
associated with specific cognitive deficits

Nor-
COAST

231 3 Mean (SD) stroke volume (ml) for mild NCD 4.1 (7)
Mean (SD) stroke volume (ml) for major NCD 16.1
(27.7)

Increasing stroke volume is associated
with major NCD

White matter hyperintensities (WMH)

Puy [14] 365 6 Median [IQR] WMH score 1 [1–2] WMH were not associated with Global
Cognitive Score

Jokinen
[9]

560 36 WMH significantly predicted Trail Making time,
verbal fluency and visual reproduction among
others.

WMH are associated with specific
cognitive deficits post-stroke

Molad
[16]

397 24 WMH affected Global Cognitive Score, memory
score and executive function score among others

WMH burden was associated with poor
post-stroke cognitive performance

Nor-
COAST

231 3 Any NCD group: 49.2% pathological WMH
Major NCD group: 58.5% pathological WMH

WMH pathology is significantly associated
with any and major post-stroke NCD

Medial temporal lobe atrophy (MTA)

Puy [14] 365 6 Median [IQR] MTA 2 [0–3] MTA a week determinant of Global
Cognitive Score

Jokinen
[9]

560 36 MTA is associated with processing speed, executive
function, and memory

MTA is a strong predictor of cognitive
performance

Firbank
[36]

79 3 Mean (SD) MTA score for no dementia: 2.6 (1.8)
Mean (SD) MTA score for dementia: 3.1 (1.9)

MTA is the strongest predictor of
memory function post-stroke

Nor-
COAST

231 3 Normal cognition group: 27.2% pathological MTA
Any NCD group: 42.2% pathological MTA

MTA is associated with any NCD

Left hemispheric stroke

Puy [14] 365 6 Percantage of patients with left hemispheric stroke:
47%

Left hemispheric stroke was moderately
associated with Global Cognitive Score

Dienanta
[37]

32 0.5 Normal MMSE Score left hemispheric stroke: 53%
Abnormal MMSE Score lef hemispheric stroke: 47%

Left hemispheric stroke was not associated
with post-stroke cognitive outcome

Sagnier
[38]

265 3 Language, abstraction, and delayed recall
performances were associated with left sided stroke

Left sided stroke was associated with
cognitive impairment

Nor-
COAST

231 3 Percentage of left hemispheric stroke in normal
post-stroke cognition group: 37.6%
Percantage of left hemispheric stroke in any NCD
group: 51.2%

Left hemispheric stroke was not associated
with mild or major NCD

Stratgic stroke

Puy [14] 365 6 Percantage of patients with strategic strokes: 25% Strategic strokes were strongly associated
with Global Cognitive Score

Munsch
[24]

428 3 Median (range) number of eloquent voxels in good
outcome group: 25 (0–821)
Median (range) number of eloquent voxels in poor
outcome group: 138 (0–13,359)

Strategic strokes were significantly
associated with poor cognitive outcome
(MoCA)

Zhao [25] 410 3 to 6 Infarcts in left basal ganglia, left and right frontal,
left parietal and left occipital influenced the MoCA
score most

Strategic infarcts were associated with
MoCA score
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Another weakness was the relatively low number of in-
cluded brain MRIs were 231, which represented 67% of
the Nor-COAST study MRIs and 28% of the total Nor-
COAST cohort, either due to the lack of imaging or
cognitive testing. This highlights the difficulty to recruit
elderly patients to longitudinal neuroimaging and cogni-
tive testing, even though the imaging protocol was
significantly shortened compared to our pilot study. To
increase the imaging rate, future studies should favor
analyses based on standard clinical protocols or incorp-
orate new methods for MRI sequence acceleration and
reconstruction. This would also reduce a selection bias
towards recruiting participants with lower NIHSS scores.
A more comprehensive neuropsychological test-battery
would have been preferable but was not feasible in this
elderly stroke cohort. Finally short follow-up of only 3
months after stroke could perhaps have been even bet-
ter. However, no significant difference has been shown
between the results of 3 and 18months post-stroke cog-
nitive testing in Nor-COAST [64].
A strength of our study is the prospective inclusion of

acute stroke patients, which were scanned with a time
effective imaging protocol adapted to an older stroke co-
hort. This imaging protocol and the used neuroimaging
markers in our study could be implemented in clinical
practice.
The identified brain pathologies associated with

post-stroke NCD are straightforward to assess on
clinical brain-MRIs in the form of WMH-burden and
MTA-score. WMH and MTA are visual scores that
can be evaluated readily by neuroradiologists or expe-
rienced clinicians in a routine stroke setting. While
multiple tools have been developed for the volumetric
WMH-assessment, they are still almost exclusively
available in a research setting. It is of importance to
differentiate WMH related to healthy ageing from
pathological WMH, as done in our study. Another
strength is the use of a neuropsychological assessment
that is based on DSM-5 and evaluated for the Nor-
COAST stroke cohort [8]. According to the DSM-5
criteria, impairment any cognitive domain is sufficient
to diagnose NCD, and memory impairment (which is
more appropriate for the diagnosis of Alzheimer’s dis-
ease), is not mandatory. As such, the DSM-5 criteria
help to obtain robust and reproducible cognitive as-
sessments in stroke cohorts.

Conclusions
Development of major and any NCD 3 months after
stroke is associated with acute stroke lesion volume and
WMH pathology. MTA pathology is associated with any
NCD. Thus, it might be possible to assess the risk of
post-stroke NCD development based on clinically ac-
cessible stroke imaging. The current acute stroke ther-
apy aims to reduce the stroke volume, and this seems to
be a good strategy, not only for reducing physical dis-
ability, but also the development of major NCD in stroke
survivors.
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