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In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network
(MFSNN) inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic
neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation
procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse
and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller
by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on
computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.

1. Introduction

In 1971, Professor Chua theoretically formulated and defined
the memristor and described that the memristance (short for
resistor of a memristor) is characterized by the relationship
between the electrical charge 𝑞 and flux 𝜑 passing through
a device [1]. However, it was only after the first physical
realization of the memristor in nanoscale at Hewlett-Packard
(HP) Lab in 2008 that it immediately garnered extensive
interests among numerous researchers [2–4]. The reported
experiments confirmed that the memristor possesses switch-
ing characteristic, memory capacity, and continuous input
and output property. Due to these unique properties, mem-
ristors are being explored for many potential applications
in the areas of nonvolatile memory [5, 6], very-large-scale
integrated (VLSI) circuit [7], artificial neural networks [8–10],
digital image processing [11–13], and signal processing and
pattern recognition [14]. At present, a considerable number
of models of different complexity have been proposed in the
literatures, such as Pickett’s model [15], spintronic memristor
model [16], nonlinear ionic drift model [17], boundary

condition-based model [18], and threshold adaptive mem-
ristor model [19]. These published models exhibit desired
nonlinearity of nanoscale structures. This paper still applies
the TiO

2
memristor model on account of its simplified

expressions and the same ideal physical behaviors.
Brain neural network emerges from the interactions of

dozens, perhaps hundreds, of brain regions, each containing
millions of neurons [20]. They are highly evolved nervous
systems capable of high-speed information processing, real-
time integration of information across segregated sensory
channels, and brain regions [20, 21]. In order to obtain
the similar intelligence of human brain, artificial neural
network is designed to imitate the human brain not merely
on architecture but also on work patterns. The connection
structure of artificial neural networks is generally divided into
feedforward, feedback, single-layer, multilayer, and so forth.
Most of these connection architectures are approximately
regular. However, the bioneurological researches show that
brain neural network has random features to a certain degree
and exhibits “small-world” effectiveness, that is, high levels
of clustering and short average path length [22]. Therefore,
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Figure 1: Schematic model of the HP memristor.

it becomes a hot issue to design bionics neural network
with randomness in architecture based on the background of
neurobiology.

Notably, Watts and Strogatz revealed a significant effect
that is in common among complex networks. They pointed
out that the real architecture of network is nearly a middle
model between regular connection and random connection
and defined it as small-world network (WS model) in 1998
[23]. Over the past several years, a large number of inves-
tigations on complex networks have provided new insight
into biological neural networks. Bassett concluded that
human brain functional networks have small-world network
topology derived from a series of magneto encephalography
experiments [22]. Douw et al. found that the cognition is
related to the resting-state small-world network topology
[24]. In literature [25], the authors applied small-world prop-
erties into prefrontal cortex that correlate with predictors of
psychopathology risk, which holds promise as a potential
neurodiagnostic for young children. Taylor has studied the
protein structures and binding based on small-world network
strategies and has made great progress [26]. Simard built up
a small-world neural network through rewiring the regular
connections and found that the small-world neural network
has faster learning speed and smaller error than that of
the regular network and random network with the same
size [27]. In this paper, we incorporate the memristor into
the multilayer feedforward small-world neural network to
build up a new type of memristive neural network that
is easy of VLSI implementation and closer to biological
networks. Furthermore, based on the proposed memristive
neural network, a novel memristive intelligent PID controller
is put forward. The nanoscale memristor is beneficial for
easily adjusting the PID control parameters and the hardware
realization of modern intelligent microcontrol system.

This paper is organized as follows. In Section 2, we derive
the mathematical model of a nonlinear memristor which
takes into account the nonlinear dopant drift effect nearby the
terminals and the boundary conditions and give its Simulink
model correspondingly. Following that, the concepts and
design algorithm of the memristive small-world neural net-
work are described in detail in Section 3. Section 4 designs

a memristive PID controller by combining the proposed
neural network with the standard PID control theory. In
order to guarantee the feasibility and effectiveness of the
proposed scheme, the computer simulations are performed
in Section 5. Finally, we give the conclusions in Section 6.

2. The Nonlinear Memristor Model

2.1. The Mathematical Model of the Memristor. A memristor
or memristive device is essentially a two-terminal passive
electronic element with memory capacity. Its memristance
state depends on the amplitude, polarity, and duration of
the external applied power. The physical model of the HP
memristor from [28], shown in Figure 1, consists of a two-
layer thin film (thickness 𝐷 ≈ 10 nm) of TiO

2
sandwiched

between two platinum electrodes. One of the layers, which is
described as TiO

2−𝑥
, is doped with oxygen vacancies (called

dopants) and thus it exhibits high conductivity. The width 𝑤
of the doped region is modulated depending on the amount
of electric charge passing through the memristor. The other
TiO
2
layer owning an insulating property has a perfect 2 : 1

oxygen-to-titanium ratio, and this layer is referred to the
undoped region.Generally, an external excitation V(𝑡) applied
across the memristor may cause the charged dopants to
drift and the boundary between the two regions would be
moved correspondingly with the total memristance changed
eventually.

The total resistance of the memristor,𝑀, is a sum of the
resistances of the doped and undoped regions:

𝑀(𝑡) = 𝑅on (
𝑤 (𝑡)

𝐷
) + 𝑅off (1 −

𝑤 (𝑡)

𝐷
) , (1)

where 𝑅on and 𝑅off are the limited values of the memristance
for 𝑤 = 𝐷 and 𝑤 = 0, respectively. Setting the internal state
variable as 𝑥 = 𝑤/𝐷, ∈ [0, 1], (1) can be rewritten as

𝑀(𝑡) = 𝑅off + (𝑅on − 𝑅off) 𝑥 (𝑡) . (2)

When 𝑡 = 0, the initial memristance is

𝑀
0
= 𝑅off + (𝑅on − 𝑅off) 𝑥0. (3)
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Figure 2: The influence of different values of the integer 𝑃 on the memristor. (a) Joglekar window function for 𝑃 = 1, 𝑃 = 3, 𝑃 = 5, and
𝑃 = 10. (b) Relationship between memristance versus charge for the nonlinear memristor model. As the integer 𝑃 increases, the graphs tend
to linearity.

Themovement speed of the boundary between the doped
and undoped regions depends on the resistance of doped
area, the passing current, and other factors according to the
state equation:

𝑑𝑥

𝑑𝑡
= 𝑘𝑖 (𝑡) 𝑓 (𝑥) , 𝑘 =

𝜇V𝑅ON
𝐷2

, (4)

where 𝜇] ≈ 10
−14m2 s−1 V−1 is the average ionic mobil-

ity parameter. As we all known, small voltages can yield
enormous electric fields in nanoscale devices, which can
secondarily produce significant nonlinearities in the ionic
transport. As for amemristive device, these nonlinearities are
manifested particularly at the thin film edges, especially at the
two boundaries. This phenomenon, called nonlinear dopant
drift, can be simulated by multiplying a proper window
function 𝑓(𝑥) on the right side of (4). Based on [28], there
are several kinds of classical window functions, such as
Joglekar window function and Biolek window function. This
paper chooses the Joglekar window function which can be
described by

𝑓 (𝑥) = 1 − (2𝑥 − 1)
2𝑃
, (5)

where 𝑃 is a positive integer called the control parameter.
Figure 2(a) exhibits the behavior of the Joglekar window

function for different values of 𝑃. Figure 2(b) shows the
graphs of the memristance versus charge of the memristor.
As the value of𝑃 becomes smaller, the nonlinearity increases.
On the other hand, as the integer𝑃 increases, themodel tends
to the linear model. Based upon this, as well as the literature

[3, 28], we set the value of the integer 𝑃 = 1 in this window
function and obtain

𝑓 (𝑥) = 4𝑥 − 4𝑥
2
. (6)

Substituting (6) into (4),

∫

𝑥(𝑡)

𝑥0

(
1

𝑥 (𝜏)
+

1

1 − 𝑥 (𝜏)
) 𝑑𝑥 (𝜏) = ∫

𝑡

0

4𝑘𝑖 (𝜏) 𝑑𝜏, (7)

where the internal state variable satisfies 𝑥(𝜏) ∈ [𝑥
0
, 𝑥(𝑡)] and

the integration time is 0 ≤ 𝜏 ≤ 𝑡.
Assume 𝑞

0
= 0; we can get

𝑥 (𝑡)

1 − 𝑥 (𝑡)
=

𝑥
0

1 − 𝑥
0

× 𝑒
4𝑘𝑞(𝑡)

. (8)

The initial value of the state variable can be expressed as

𝑥
0
=
𝑅off − 𝑅0
Δ𝑅

. (9)

Then, the expression of 𝑥(𝑡) can be calculated as

𝑥 (𝑡) = 1 −
1

𝐴𝑒4𝑘𝑞(𝑡) + 1
, (10)

where𝐴 is a constant and its value is determined by 𝑅off , 𝑅on,
and 𝑅

0
:

𝐴 =
𝑅off − 𝑅0
𝑅
0
− 𝑅on

. (11)
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Figure 3: The nonlinear memristor model and its characteristic curves. (a) The equivalent circuit of the memristor and its 3D symbol. (b)
The relationship between memristance and the charge.
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Figure 4: The Simulink model of the nonlinear memristor.

Combining (2)–(11), the resistance of memristor can be
rewritten as

𝑀(𝑡) = 𝑅on + Δ𝑅
1

𝐴𝑒4𝑘𝑞(𝑡) + 1
, (12)

where Δ𝑅 = 𝑅off − 𝑅on.
Giving a sine stimulus to the memristor, we get the

simulation results using MATLAB software. It is noteworthy
that the memristor is a two-terminal element with polarity,
which is shown in Figure 3(a). When the current flows into
the memristive device from the positive pole to the negative
pole, one can get the relationship curve (the blue line)
between memristance and charge through it as shown in
Figure 3(b). On the contrary, when the current flows into the
memristor from the negative pole to the positive pole, the
relationship curve is denoted by the red dashed line. When

the charge is close to or exceeds the charge threshold values,
the resistance of the memristor reaches and stays at 𝑅on and
𝑅off , respectively. Notably, the threshold value denotes the
quantity of electric charge required when the memristance
reaches the limit resistance. The parameters of the model are
𝑅on = 100Ω, 𝑅off = 20 kΩ, 𝑀

0
= 10 kΩ, 𝐷 = 10 nm,

and 𝜇] ≈ 10
−14m2s−1V−1. Moreover, the simulation results

in Figure 3(b) are consistent with the results concluded by
Adhikari et al. in [8, 29].

2.2. The Simulink Model of the Memristor. For the sake
of analyzing the characteristics of the memristor model
comprehensively, a Simulinkmodel is built upon (2)–(12) and
illustrated in Figure 4. The model mainly consists of input
and outputmodules, internal operationmodules (multipliers,
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Figure 5: The results of the memristor Simulink model. (a) The input current source. (b) Relationship between the current 𝑖 and the voltage
V. (c) Relationship between the memristance𝑀 and the charge 𝑞. (d) Relationship between the memristance𝑀 and the voltage V.

adders, and modules), and parameter control modules. The
model parameters are the same as those in Figure 3. The
signal stimulus applied into the memristor is a sinusoidal
current source with amplitude of 0.5mA and frequency of
1Hz.

The simulation results are exhibited in Figure 5. The cur-
rent flowing through the memristor is shown in Figure 5(a).
The typical hysteresis loop in Figure 5(b) shows its switching
characteristic; that is, the memristance can switch between
high resistance and low resistance. Figure 5(c) illustrates that
the memristance is a nonlinear function of the flow of charge
as discussed previously. Figure 5(d) shows the relationship
between the memristance 𝑀 and the charge 𝑞. Notably, in
the part of the higher memristance state, the change ratio
of the memristance is low, while, in the part of the lower
memristance state, the change ratio of the memristance is
high.

3. The Memristive Multilayer Feedforward
Small-World Neural Network

3.1. The Multilayer Feedforward Small-World Neural Network.
Generally, small-world phenomenon indicates that a network
has highly concentrated local connections and also includes a
few random long connections. In real world, a large number
of networks have the small-world effect, such as disease
transmission network, social network, and the food chain
network [22]. As is known to all, in the classical multilayer
feedforward neural network, such as BP network, the 𝑖th
neuron in the 𝑙th layer V𝑙

𝑖
only connects its neighboring

neuron sets 𝑉𝑙−1 and 𝑉
𝑙+1. In addition, all connections

are feedforward and no connections exist between neurons
within the same layer.This kind of network can be considered
as a regular network. Based on [27] and the construction
process of WS small world model, we introduce Algorithm 1
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Figure 6:The construction progress of the multilayer feedforwardWS small-world neural network. (a)The regular network (𝑃 = 0). (b)The
multilayer feedforward WS small-world neural network (0 < 𝑃 < 1).
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For 𝑛
2
= 1 To 𝑛

𝑙

If rand < 𝑝
𝑤
𝑙1(𝑙1+1)

𝑛1𝑛2
= 0

𝑛
3
= randint(1, 𝑛

𝑙
)

𝑡 = 1

While 𝑡 = 1
𝑝
2
= rand

For 𝑙
2
= 𝐿 − 2 To 𝑙

1
+ 2

If 𝑝
2
< 𝑝
1
(𝑙
2
)

𝑏
𝑙1 𝑙2

𝑛1𝑛3
= rand

𝑡 = 0

Break
Finish!

Algorithm 1: Constructive procedure of the small-world neural
network.

which is used to construct multilayer feedforward neural
network model according to the rewiring probability. The
specific construction process is given as follows.

Step 1. Initialization: assuming the number of the network
layers is 𝐿, each layer has 𝑛

𝑙
neuron nodes and the rewiring

probability is 𝑃.

Step 2. Generate the multilayer feedforward regular neural
network, as shown in Figure 6(a).

Step 3.As shown in Algorithm 1 where 𝑝
1
(ℎ) is the probabil-

ity to select reconnection layer, selection probability between
two neurons decreases exponentially. 𝛼 and 𝛽 are the distance
coefficients, rand and randint both are MATLAB functions,
the former is used to generate a number between (0, 1)

randomly, and the latter can be used to randomly generate
an integer from 1 to 𝑛

𝑙
. Since the connections of the (𝐿 −

1)th layer cannot generate new long-connections if they are
disconnected, the connections of the last two layers are not
reconnected in the network.

As shown in Figure 6(a), when the rewiring probability
𝑃 = 0, the connection of the network maintains completely
regular mode. Nonetheless, when 𝑃 ranges from 0 to 1,
the long cross-layer connections are generated according
to the rewiring probability 𝑃 and the probability of recon-
nection layer selecting. The resulting structure is between
completely regular and random connection mode, as shown
in Figure 6(b).

More specially, we set the network connection matrix as
𝑊, where𝑊𝑙denotes the connection submatrix between the
𝑙th layer and the (𝑙 + 1)th layer. 𝑤𝑙

𝑖𝑗
∈ 𝑅 is the connection

weight between the neuron 𝑖 of the 𝑙th layer and the neuron 𝑗
of the (𝑙 + 1)th layer. If there exists connection between these
two neurons, then 𝑤𝑙

𝑖𝑗
̸= 0; otherwise, 𝑤𝑙

𝑖𝑗
= 0. Therefore, the

regular network connection matrix can be expressed as the
following equation:

𝑊 =
(
(
(

(

0 𝑊
1

0 0 0 0 0

0 0 𝑊
2

0 0 0 0

0 0 0 𝑊
3

0 0 0

0 0 0 0 𝑊
4

0 0

0 0 0 0 0 𝑊
5

0

0 0 0 0 0 0 𝑊
6

0 0 0 0 0 0 0

)
)
)

)

, (13)

in which the number zero means no connection exists
between the corresponding layers. As for multilayer feedfor-
ward small-world neural network, because of the reconnec-
tion performance, the connection matrix changes into as

𝑊
󸀠
=
(
(
(

(

0 𝑊
1
𝐵
3

1
𝐵
4

1
𝐵
5

1
𝐵
6

1
𝐵
7

1

0 0 𝑊
2
𝐵
4

2
𝐵
5

2
𝐵
6

2
𝐵
7

2

0 0 0 𝑊
3
𝐵
5

3
𝐵
6

3
𝐵
7

3

0 0 0 0 𝑊
4
𝐵
6

4
𝐵
7

4

0 0 0 0 0 𝑊
5
𝐵
7

5

0 0 0 0 0 0 𝑊
6

0 0 0 0 0 0 0

)
)
)

)

, (14)

where𝑊𝑙 represents the reconnection submatrix between the
𝑙th layer and the (𝑙 + 1)th layer, and the 𝐵𝑙

󸀠

𝑙
is the submatrix

between two nonadjacent layers, which 𝑙 ∈ {1, 2, . . . 5}, 𝑙󸀠 ∈
{3, 4, . . . 7}.
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3.2. The Combination of the MFSNN and the Memristor

3.2.1. The Memristive Synapse. The nanoscale memristor has
high potential of information storage on account of the non-
volatility with respect to long periods of power-down, so
it can be used as electric synapse in the artificial neural
networks, and the primary reasons are manifold. Firstly, as
a kind of analog component, this device can realize weight
updating continuously. Moreover, the memristor possesses
the capacity of information storage due to the nonvolatility.
This feature is consistent with the memory ability of the neu-
rons in human’s brain. Additionally, the memristive neural
network can be further integrated in crossbar array which
has significant advantages in better information processing
capacity and huger storage.

According to the nonlinear memristor model in
Section 2, the memristive conductance can be calculated
from (12) as

𝐺 (𝑡) =
1

𝑀 (𝑡)
=

1

𝑅on + Δ𝑅 (1/ (𝐴𝑒
4𝑘𝑞(𝑡) + 1))

. (15)

Differentiating (15) with respect to time 𝑡, we can be
obtain

𝑑𝐺 (𝑡)

𝑑𝑡
=

4𝑘𝐴𝑒
4𝑘𝑞(𝑡)

Δ𝑅

(𝑅on𝐴𝑒
4𝑘𝑞(𝑡) + 𝑅off)

2
×
𝑑𝑞 (𝑡)

𝑑𝑡
, (16)

where the current 𝑖(𝑡) = 𝑑𝑞(𝑡)/𝑑𝑡. Notably, when Δ𝑡 → 0,
𝑑𝐺(𝑡) ≈ Δ𝐺. Hence, the rate of the memristive conductance
Δ𝐺 can be described as the synapse weight update rule.
The relationship curve between the rate of the memristive
conductance change and the current is shown in Figure 7.
When the current is tiny, the memristive conductance is
almost invariant. While the current tends to ±4mA, the
memristive conductance changes suddenly. So the current
threshold value of thememristive synapse can be set as |𝐼th| =
4mA.

3.2.2. The Memristive Activation Function. In the standard
MFSNN, the activation function for each neuron is usually
the nonlinear Sigmoid function. Particularly, the activation
function of the hidden layer adopts bipolar Sigmoid function,
but the output layer activation function is unipolar Sigmoid
function.

Based on the constitutive relationship of the memristor, a
lot of nonlinear curves can be simulated and substituted [5, 6,
11, 12]. Based on the Simulink model of the nonlinear mem-
ristor described in Section 2, we get its simplified Simulink
model accordingly as shown in Figure 8(a). Furthermore, we
design a package of the memristive device (in Figure 8(b))
which can be considered as a system with single-input and
double-output. In this system, the input variable is the current
𝐼, and the output variable is thememristance𝑀(𝑡) and charge
𝑞(𝑡), respectively.

Then, the behavior of the output curve can be adjusted
efficiently by the parameter control module, gain module,
and internal operationmodule, which is crucial to implement
the activation function in the neural network. Here, we set

Δ
G
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4

2
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−2

−4
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−8

×10−3

−4 −2 0 2 4
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Figure 7:The relationship curve between the rate of the memristive
conductance change and the current.

the activation functions for the hidden layer and output
layer neurons of the memristive MFSNN as ℎ(𝑥) and 𝑦(𝑥),
respectively.

Figure 9(a) exhibits the constructing principle diagram
of the memristive activation function in the hidden layer,
in which the red dotted line frame represents the parameter
adjustment area. 𝐾

1
is the adjustable gain which is used for

controlling the shape of the activation function, and𝐾
2
is the

fixed gain whose value is 𝐾
2
= 10
−4. The suitable parameters

of the memristor are chosen as 𝑅on = 100Ω, 𝑅off = 20 kΩ,
𝑀
0
= 10 kΩ, 𝐷 = 10 nm, and 𝜇] ≈ 10

−14m2s−1V−1. The
input signal is a sinusoidal current with an amplitude of
0.5mA and a frequency of 1Hz. Notably, the polarity of the
voltage applied into the memristor is opposite to the polarity
of the memristor itself; that is, the current flows through
the memristor from the negative polar to the positive polar.
Figure 9(b) shows the memristive activation function of the
hidden layer, and its shape varies with different values of𝐾

1
.

Similarly, Figure 10(a) is the constructing principle dia-
gram of the activation function of the output layer. In the
parameter adjustment part (the red dotted line frame), 𝐾

3

is an adjustable gain and 𝐾
4
is the fixed gain whose value

is 𝐾
4
= 2 × 10

−4. The parameters are the same with the
simulation in Figure 9. Figure 10(b) shows the memristive
activation function of the output layer. Obviously, as the value
of 𝐾
3
increases, the graphs tend to flatten.

4. The Memristive Intelligent PID Controller

So far, the PID control has found widespread applications
in the modern control field. By adjusting the control action
of the proportion, integration, and differentiation, we get
an interactive nonlinear relationship among these control
variables. The neural network has the ability of expressing
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the nonlinearity, which can be used in the PID control
for implementing the optimal nonlinear relationship among
control variables. In this work, we build up a more intelligent
PID controller with the parameters (𝑘

𝑝
, 𝑘
𝑖
, and 𝑘

𝑑
) self-tune

based on the presented memristive multilayer feedforward
small-world neural network.

According to the literature [30], the classical incremental
digital PID control algorithm can be described as

𝑢 (𝑘) = 𝑢 (𝑘 − 1) + 𝑘
𝑝
(𝑒 (𝑘) − 𝑒 (𝑘 − 1))

+ 𝑘
𝑖
𝑒 (𝑘) + 𝑘

𝑑
(𝑒 (𝑘) − 2𝑒 (𝑘 − 1) + 𝑒 (𝑘 − 2)) ,

(17)

where the 𝑘
𝑝
, 𝑘
𝑖
, and 𝑘

𝑑
are the coefficient of the proportion,

integration, and differentiation, respectively.
In Figure 11, the ANN is the memristive multilayer feed-

forward small-world neural network. Its learning algorithm
consisted of the backward error propagation and the forward
input signal propagation. Different from the traditional mul-
tilayer feedforward neural network, the state of the neurons in
each layer not only affects the state of the neurons in the next
layer but also affects the state of the neurons in the cross-layer.

Based on the novel neural network presented in Section 3,
we set the 𝑗, 𝑖, and 𝑙 that represent the input layer, hidden
layer, and output layer, respectively. The number of the input
layer is 1 which is same with that of the output layer, and
the number of the hidden layer is 𝑆. 𝑥

𝑖
represents the input

vector of the network, then the set of the input samples is
𝑂
1

𝑗
= [𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑁
]. The number of the input vectors

is dependent on the complexity of the system. Notably, the
superscript 1 represents the first layer in the whole neural
network.

The input and output vectors of the first hidden layer can
be expressed as

net𝑖1
𝑖
(𝑘) =

𝑁

∑

𝑗=0

𝑤
𝑖1

𝑖𝑗
𝑂
1

𝑗

𝑂
𝑖1

𝑖
(𝑘) = ℎ (net𝑖1

𝑖
(𝑘))

𝑖 = 1, 2, 3, . . . , 𝑄,

(18)

where the superscript 𝑖
1
denotes the first hidden layer of the

network and ℎ(𝑥) is the memristive bipolar sigmoid function
proposed in Section 3.

By that analogy, the input and output vectors of the 𝑆th
hidden layer can be written as

net𝑖𝑠
𝑖
(𝑘) =

𝑁

∑

𝑗=0

𝑤
𝑖𝑠

𝑖𝑗
𝑂
1

𝑗
+

𝑠−1

∑

𝑎=1

𝑠

∑

𝑏=1

𝑤
𝑖𝑠

𝑖𝑎𝑖𝑠
net𝑖𝑠
𝑏
(𝑘)

𝑂
𝑖𝑠

𝑖
(𝑘) = ℎ (net𝑖𝑠

𝑖
(𝑘))

𝑖 = 1, 2, 3, . . . , 𝑄.

(19)

Finally, the input and output vectors of the output layer
can be obtained as

net𝑠+2
𝑙
(𝑘) =

𝑁

∑

𝑗=0

𝑤
𝑠+2

𝑖𝑙
𝑂
1

𝑗
+

𝑠

∑

𝑎=1

𝑠

∑

𝑏=1

𝑤
𝑠+2

𝑖𝑎𝑙
net𝑠+2
𝑏
(𝑘)

𝑂
𝑠+2

𝑙
(𝑘) = 𝑦 (net𝑠+2

𝑙
(𝑘))

𝑙 = 1, 2, 3,

(20)

where 𝑦(𝑥) denotes the memristive unipolar sigmoid func-
tion. The three nodes of the output layer are corresponding
with the nonnegative adjustable parameters 𝑘

𝑝
, 𝑘
𝑖
, and 𝑘

𝑑
of

the PID controller, respectively.
From [27], we conclude the weight update algorithm of

the memristive multilayer feedforward small-world neural
network as below:

Δ𝑤
𝑠+2

𝑙𝑖
(𝑘) = 𝛼Δ𝑤

𝑠+2

𝑙𝑖
(𝑘 − 1) + 𝜂𝛿

𝑠+2

𝑙
𝑂
𝑠+1

𝑖
(𝑘)

𝑤
𝑠+2

𝑙𝑖
(𝑘 + 1) = 𝑤

𝑠+2

𝑙𝑖
(𝑘) + Δ𝑤

𝑠+2

𝑙𝑖
(𝑘) ,

(21)

where 𝛼 is the inertial coefficient, whose scope ranges from 0
to 1, and 𝜂 ∈ (0, 1) is the learning rate.

5. Computer Simulations and Results

In this section, somenumerical simulations of thememristive
multilayer feedforward small-world neural network PID
controller have been executed on MATLAB software. The
mathematical model of the controlled plant is given as

𝑦out (𝑘) =
𝑎 (𝑘) 𝑦out (𝑘 − 1)

1 + 𝑦2out (𝑘 − 1)
+ 𝑢 (𝑘 − 1) , (22)

where the 𝑎(𝑘) is slow time-variant and its expression is
𝑎(𝑘) = 1.2(1 − 0.8𝑒

0.1𝑘
).

The memristive neural network under investigation is
constituted by seven layers with four neurons in the input
layer, three neurons in the output layer, and five in each of the
five hidden layers. The learning rate of the network 𝜂 = 0.4,
and the inertial coefficient 𝛼 = 0.05. The initial weighs as
random values fall in [−0.5 0.5], and the value of the rewiring
probability is chosen as 𝑃 = 0, 𝑃 = 0.08, 𝑃 = 0.1, and 𝑃 = 0.2,
respectively. The parameters are 𝑅on = 100Ω, 𝑅off = 20 kΩ,
𝑀
0
= 10 kΩ, 𝐷 = 10 nm, and 𝜇] ≈ 10

−14m2s−1V−1, 𝐾
1
and

𝐾
3
are user-specified parameters whose value both are 20000,

and the action time is 𝑡𝑠 = 0.001 s. When the system works
steadily, the tracking results can be gotten as follows.

Figure 12(a) shows the input signal (step response curve
𝑟in(𝑘) = 1.0) and the output curves under a different rewiring
probability 𝑃. As can be seen from the figure, when the
time 𝑡 = 0.5 s, the whole system reaches the steady state.
Making a further analysis, we can conclude that when the
rewiring probability 𝑃 = 0, the memristive neural network
keeps regularly in architecture. Its respond speed is slower
than that of network when the rewiring probability 𝑃 =

0.08 and 𝑃 = 0.1. Moreover, Figure 12(b) exhibits the
error curves between the input signal and the output signal
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Figure 12:The simulation results of the memristive neural network PID controller (𝑟in(𝑘) = 1.0) under a different rewiring probability 𝑃. (a)
The step response curve. (b) The error curves. (c) The curves of the control parameters when the rewiring probability 𝑃 = 0.08.

correspondingly. When the rewiring probability 𝑃 = 0.08

and 𝑃 = 0.1, the network spends less time on approaching
the predefined approximation error than the regular network
(when 𝑃 = 0). Figure 12(c) shows the output variables of
the memristive multilayer feedforward small-world neural

network when 𝑃 = 0.08 which are the control parameters 𝑘
𝑝
,

𝑘
𝑖
, and 𝑘

𝑑
, correspondingly.

In order to verify the superior performance of the
memristive small-world neuronal networks andfigure out the
optimal structure, we conducted a series of simulations to
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Figure 13: The convergence performance of the memristive neural network under different 𝑃. (a) The relationship between iteration and
rewiring probability. (b) The effective approximation number in 50 times simulations under varying rewiring probability.

observe the convergence performance of the proposed net-
work under different𝑃. Figure 13(a) shows the approximation
speed (iteration times) of different network structures, that
is, the smallest iteration number for reaching the predefined
approximation error 𝜀 = 0.0001. Each drawn point is the
average value of 50 times runs. It can be observed that
the small-world networks (0 < 𝑃 < 1) need much less
iteration times than the regular neural network (when 𝑃 =

0), which demonstrates its advantage in processing speed.
Furthermore, when 𝑃 = 0.08, the network has the fast
approximation speed.

Notably, the mathematical function of this system has the
local minimum, for getting out of the local minimum, we
define the maximum allowable iteration times to be 10000,
as previously mentioned for each 𝑃, and we performed the
simulation for 50 times, where the effective approximation
times, that is, error < 0.0001 within 10000 iterations, are
presented in Figure 13(b). It can be found that the small-world
networks have higher accuracy rate than the regular network.

6. Conclusions

A mathematical closed-form charge-governed memristor
model is recalled firstly and the corresponding Simulink
model is presented. Using the change rule of memconduc-
tance, a memristive realization scheme for synaptic weight
is proposed. Moreover, the activation functions in electric
neurons are also implemented based on the single-input
and double-output package of the memristor. Combining
the proposed memristive synapse and activation functions, a
memristor-basedMFSNN is addressed. It exhibits advantages
in computation speed and accuracy over the traditional
multilayer neural networks by considering the small-world
effect. Meanwhile, it has potential of hardware realization
of the neural network because of the nanoscale size of the
memristive synapse. These superior properties can further
improve the application of the neural networks, such as in
the intelligent controller design. Motivated by this, we apply

the memristor-based MFSNN to classical PID control, and
the proposed memristive PID controller may possess the
following superiorities. (i) Its nanoscale physical implemen-
tation could promote the development of themicrocontroller.
(ii) Because of the participation of the memristive neural
network, the proposed PID controller can realize the param-
eters self-adjustment. (iii) The control speed and accuracy
are improved. Eventually, extensive numerical simulations
justify the effectiveness and efficiency of the memristive PID
controller over the regular neural network PID controller.
This work may provide a theoretical reference to physically
realize the small-world neural networks and further promote
the development of modern intelligent control technology.
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