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Abstract

Background: It is currently accepted that the perturbation of complex intracellular networks, rather than the
dysregulation of a single gene, is the basis for phenotypical diversity. High-throughput gene expression data allow
to investigate changes in gene expression profiles among different conditions. Recently, many efforts have been
made to individuate which biological pathways are perturbed, given a list of differentially expressed genes (DEGs).
In order to understand these mechanisms, it is necessary to unveil the variation of genes in relation to each other,
considering the different phenotypes. In this paper, we illustrate a pipeline, based on Structural Equation Modeling
(SEM) that allowed to investigate pathway modules, considering not only deregulated genes but also the connections
between the perturbed ones.

Results: The procedure was tested on microarray experiments relative to two neurological diseases: frontotemporal
lobar degeneration with ubiquitinated inclusions (FTLD-U) and multiple sclerosis (MS). Starting from DEGs and
dysregulated biological pathways, a model for each pathway was generated using databases information biological
databases, in order to design how DEGs were connected in a causal structure. Successively, SEM analysis proved if
pathways differ globally, between groups, and for specific path relationships. The results confirmed the importance of
certain genes in the analyzed diseases, and unveiled which connections are modified among them.

Conclusions: We propose a framework to perform differential gene expression analysis on microarray data based on
SEM, which is able to: 1) find relevant genes and perturbed biological pathways, investigating putative sub-pathway
models based on the concept of disease module; 2) test and improve the generated models; 3) detect a differential
expression level of one gene, and differential connection between two genes. This could shed light, not only on the
mechanisms affecting variations in gene expression, but also on the causes of gene-gene relationship modifications in
diseased phenotypes.
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Background
Most of known diseases are complex diseases. This means
that they are caused by the combination of genetic and
environmental factors. The introduction of the concept of
network biology [1] allowed the application of network
based approaches for studying this type of diseases. These
approaches rely on the possibility to represent molecules,
as proteins or genes, as interaction networks. Microarray
experiments of gene expression represent a useful tool to
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examine the change of gene expression profile in diseases.
Many efforts were performed to build, starting from gene
expression, molecular networks. This activity is sometimes
referred to as reverse engineering of gene regulatory net-
works [2]. One type of method applied for this goal, relies
on the Structural Equation Modeling (SEM), a general
methodology used to address questions about complex sys-
tems [3]. SEM finds a number of applications in biological
networks, for example in the inference of causal phenotype
networks (see [4] for a review), genome-wide association
studies (GWAS) and gene-environment interactions [5,6],
as well as to measure effects of quantitative trait loci
(QTLs) in linkage analyses [7-9]. The use of SEM in the
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analysis of microarray is not new. One of the first appli-
cations is shown by [10], who demonstrated that co-
variance structure analysis is a useful statistical method
to find common transcriptional factors for a set of
genes and to specify and evaluate hypothesized bio-
logical pathways. [11] applied SEM systematically for
gene network reconstruction using gene expression
data pre-processed with genetic algorithms. In most of
the applications of SEM the aim is to infer networks
starting from data. Thus, we can define these ap-
proaches as exploratory approaches. More recently,
[12] described a confirmatory approach in microarray
analysis.
In this paper we propose a SEM pipeline that, from

initial and revised a priori network models, obtained by
pathway analysis [13], is able to compare the path
strengths between several groups and to determine the
effect of factors analyzed on the paths. Our framework
takes into consideration the generation of pathway
models based on the principles of network theory such
as the small network phenomena and the detection of
modules [14]. Firstly considering how differentially
expressed genes (DEGs) are connected by other genes
in the microarray, we try to bring out which modifications
in the gene network could be responsible of the differ-
ences observed between groups considered. Our approach
relies on: 1) curated biological pathway databases, 2) the
principles that characterize disease genes in biological net-
works, 3) grouping genes in Protein Information Resource
(PIR) super-families [15] for facilitating the interpretation
of the model. The proposed SEM pipeline is a combin-
ation of data-driven and knowledge-driven approaches. In
fact, in order to generate perturbed pathway modules, we
used curated biological pathways, representing the a priori
biological knowledge about genes and their connections.
The hardest part is to highlight which portion of the
pathway is actually distinctive of the phenomenon be-
ing analyzed. We consider, as initial model, the one ob-
tained from the shortest paths between every couple of
DEGs. This process preserves the biological knowledge
Figure 1 Pipeline proposed to generate and evaluate genetic pathwa
completely, as the connections in the new model are not
inferred, but already present in the original pathway. The
model is then fitted with SEM and improved by balancing
between data-driven and knowledge-driven evidences
obtained by the combination of SEM with the knowledge
enclosed in public databases, relative to real and putative
connections among genes. Finally, SEM with multiple
group analyses supplies useful information to clinicians
and biologists about experimental group differences,
unveiling which connections and genes are statistically
significant in the perturbed pathway models.
Methods
Illustration of the proposed pipeline
The pipeline, similar to that described by [12], is illus-
trated in Figure 1. In step-1, DEGs were obtained by Sig-
nificance Analysis of Microarray (SAM) [16] and the
perturbed pathways by Signaling Pathway Impact Analysis
(SPIA) [17] using KEGG database [18]; in step-2, the
pathway models were generated by network analysis and
evaluated with SEM in step-3 for: 1) improving the
models generated by the biological pathways found; 2)
testing if the pathway models differ across groups by
multiple group analysis; 3) screening of single differences
in expression (gene nodes) and in regulation (gene-gene
edges) across groups. We used the implementation
provided by the R packages samr [19] and SPIA [20] for
SAM/SPIA procedures.
Structural equations models (SEM)
SEM is a statistical procedure for confirmatory causal
inference originated from path analysis proposed in
1921 by the American geneticist Sewall Wright [21]. It is
based on multivariate linear regression equations, where
the response variable in one regression equation may ap-
pear as a predictor in another equation. Indeed, variables
may influence one-another reciprocally, either directly or
through other variables as intermediaries. Additionally,
correlated or uncorrelated unmeasured variables may
y models.
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indicate the presence of unobserved factors that influences
observed variables.
In general, a SEM consists of a structural model describ-

ing (causal) relationships among latent (hidden) variables
and a measurement model describing the relationships
between the observed measurements and the underlying
latent variables [22]. Here we consider SEM with observed
variables only, and therefore no measurement models
have been used [23]. Specifically, let V to be the index set
of the Y observed variables, represented as the “parent”
set {pa(i)|i ∈V}, i.e. the explanatory variables of Yi, or as
the “siblings” set {sib(i)|i ∈V}, i.e. the unmeasured linked
variables with Yi, respectively. These sets determine a
system of linear equations:

Y i ¼
X

j∈pa ið Þ βijY j þ Ui i∈V

and a covariance structure:

cov Ui;Uj
� � ¼ ψij if i ¼ j or j∈sib ið Þ

0 otherwise

�

The system of linear equations affirms that every node
is characterized by the relationships with his parents,
while the covariance structure describes the relation-
ships between unobserved nodes.
They encode two distinct causal assumptions: (1) a

“weak” assumption on the possible existence of (direct)
casual influences of explanatory variables on Yi, and (bi-
directed) correlated unmeasured variables Ui, quantified
by the regression (path) coefficients βij, and the covari-
ances ψij, respectively; and 2) a “strong” assumption based
on the absence of (direct) causal influences or (bi-di-
rected) correlations of any observed/unobserved variables
neither in the “parents” set pa(i) nor in the “siblings” set
sib(i). In other terms, a weak assumption excludes some
values for a parameter (the null value zero), but permits a
range of other values; while, strong assumptions assume
that parameters take specific values (null value zero or a
fixed a priori value). The linear equations and the covari-
ance structure can be encoded and visualized in a “path
diagram”, that is, a mixed graph G = (V,E) featuring both
directed (→) and bi-directed (↔) edges. The vertex set V
includes the genes and the edge set E represents relations
or reactions among vertexes. The “activity” of a given gene
is embedded in a path diagram: the actions performed by
a gene on downstream molecules, and the signals that it
receives from upstream regulators. “Directed edges” be-
tween two genes (j→i, if and only if j ∈ pa(i)), measured by
path coefficients (ranging usually from −1 to 1, if genes
are standardized), represent expected change in the activ-
ity of the downstream gene, given a unit of change in the
upstream gene while the values of the other genes remain
constant. Considering that paths reflect a direct influence
of one gene on another, negative path coefficients indicate
ensemble inhibition (negative control) and positive paths
measure net activation (positive control). “Bi-directed
edges” between two genes (j↔i if and only if j ∈ sib(i), or
equivalently, if and only if i ∈ sib(j)) encode a hidden
common cause that may be interpreted as latent or unob-
served measurement of upstream regulators that could
account for the observed covariances (correlations) be-
tween the two genes.
One important feature of SEM is that direct and indirect

effects can be computed and compared. “Directed paths”
between two genes are the sequence of all the directed
edges (j→ k1,…→…, km→ i) from genes Yj to Yi. Each
directed path is a channel along which information (gene’s
activities) can flow, and so a “total effect” (TE) of gene Yj
on gene Yi is defined as the total sum of the products of
the sequence of arrows (edges) along all directed paths
from Yj to Yi. Accordingly, a “indirect effect” (IE) of gene Yj
on gene Yi represents the portion of the total effects not
considering the directed edge effect (DE), i.e. TE =DE + IE.
The well-known SEM analysis consists of four steps

[22]: a) definition and identification of an initial path
model, b) estimation of parameters, c) evaluation of the
fitting, and d) model modification.
Initial model building
Specification of initial pathway models (step a) was ob-
tained taking the perturbed pathways and converting
them in directed graphs or gene networks. Generalizing,
each pathway can be seen as a mixed graph. The idea is
to understand how DEGs are connected in the perturbed
pathways by other microarray genes. A natural way to
solve this problem is to identify the shortest paths (geo-
desic distance) between DEGs. The geodesic distance
dgeo(yi, yj) between two DEGs, yi and yj, is defined as the
minimum distance between these two genes. The function
get.shortest.paths( ) of the R package igraph was used to
compute all the shortest paths [24]. Define the microarray
genes, DEGs, and not DEGs in the following way: MG =
{mg1, mg2, …, mgm}; DEG = {deg1, deg2 ,…, degn} and
NDEG = {ndeg1, ndeg2,…,ndegm-n}, where MG = DEG ∪
NDEG and DEG ∩ NDEG = {∅}. Each shortest path could
be represented as a list of nodes Yk = (yi, yi+1 ,..., yj-1, yj) and a
list of the corresponding edges Ek = (ei(i+1), ..., e(j-1)j)
where (yi, yj) ∈ DEG; (yi+1 ,…, yj-1) ∈ (DEG ∨ NDEG); Yk ⊆
Y and Ek ⊆ E. The shortest paths for each pathway consti-
tute k (k = 1, …, K) subgraphs Gk = {Yk,Ek} of the original
pathway, G = {Y, E}. Not all DEGs and NDEGs will be in-
cluded in the shortest paths. Therefore, we define two new
sets: DEG(s) and NDEG(s) respectively, the sets of DEGs
and the set of not DEGs that include all genes in shortest
paths, where DEG(s) ⊆ DEG and NDEG(s) ⊆ NDEG.
To reach the final model the NDEG(s) that connect DEG(s)

are grouped in basis to their PIR superfamily (PIRSF).
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Based on the evolutionary relationships of whole proteins,
this classification system allows annotation of both spe-
cific biological and generic biochemical functions. The
PIRSF can be represented as SUPF = {supf1, supf2,…,
supfg}, where ∀ supfi⊆ NDEG(s) and ∀i≠j supfi ∩
supfj = {∅}. Using this information, each original shorthest
path Gk = {Yk,Ek} is transformed in a new shortest paths,
G*k = {Y*k = (y*i, y*i+1,…, y*j-1, y*j), E*k = (e*i(i+1),…,
e*(j-1)j) }, where (y*i+1,…, y*j-1) ∈ (DEG(s) ∨ SUPF ∨
NDEG(s)) and E*⊆ E. The function to obtain the final
graph, G* = (Y*,E*), is described in the following pseudo-
code:

Conversion of shortest paths

1: Input: list of DEGs, original graph G = (Y, E), list of SUPF

2: Output: new graph with PIRSF G*=(Y*,E*)

Steps:

3: for (i=1 to K=number of shortest paths) do

4: Create two new lists Yk* and Ek*

5: Assign the first element of Yk to Yk* and c=2

6: for (d=2 to|Yk|) do

7: if (Yk [d] DEGs) AND (Yk [d] Yk*) AND (Ek [d-1] Ek*

8: Yk*[c]=Yk [d]

9: Ek*[c-1]=Ek [d-1]

10: c=c+1

11: else if (Yk [d] SUPF AND Ek [d-1] Ek*)

12: Yk*[c]= SUPF that contains Yk [d]

13: Ek*[c-1]=Ek [d-1]

14: c=c+1

15: else Yk*[c]=Yk [d]

16: Ek*[c-1]=Ek [d-1]

17: c=c+1

18: Yk*[|Yk|] ← Yk [|Yk|]

19: Ek[|Yk|-1] ← E*[|Yk|-1]

20: save Gk*=(Yk*,Ek*)

21: return G*=(Y*,E*)

The graph G* = (Y*,E*) is the fusion of all shortest paths
found, where each node and each edge cannot be present
more than once, the self-loops are not considered but the
feed-backs and cycles were preserved. To ensure the iden-
tification of the initial models, the “block-recursive” criter-
ion of Rigdon [25] and the “bow free” criterion of Brito
and Pearl [26] were applied. The first affirms that recipro-
cal relationships, feedback loops, or covariances are segre-
gated into groups, or blocks, with no more than two
equations per block. The second affirms that a model is
ensured if variables standing in direct causal relation-
ships (directed edges) do not have correlated errors
(bi-directed edges). So a new graph is attained in
which the DEGs are connected by other DEGs, PIRSFs
or NDEGs. In this way a model was created for each
significant pathway found.
Successively, PIRSFs composite variables are defined

considering not DEGs, present in shortest paths, as
causal indicators of latent (hidden) constructs [27]. To
generate the PIRSFs, a principal component analysis
(PCA) was performed on genes belonging to a PIRSF
and the principal component scores of the first princi-
pal component (PC1) were considered as the values
that characterize the PIRSF. Only PIRSFs for which the
PC1 represents 50% or more of the total variance are
considered. At the end of process we have the initial
SEM model.
The pathway graph conversion, the graph analysis, and

the PC1 scores are obtained by graphite [28], igraph
[24] and stats [29] R packages, respectively, while R
functions for network analysis are implemented ad hoc, and
are available Additional file 1.

SEM fitting
For parameter estimation (step-b), the classic derivation of
the Maximum Likelihood estimation (MLE) is used, that
assumes all observed variables are jointly Gaussian. The
system of structural equations and covariance structure of
unmeasured variables can be written compactly in a
matrix form as: Y = BY + U, and Cov(U) = Ψ. This specifi-
cation induces a structure on the covariance matrix of the
joint distribution of the genes Y as:

Σ θð Þ ¼ I−Bð Þ−1Ψ I−Bð Þ−T

where θ=(β; ψ) is the list of the free parameters in the
model of dimension t. The unknown parameters are
estimated so that the implied covariance matrix Σ(θ) is
close to the observed sample covariance matrix S.
The assessment of the model (step-c) involves the Like-

lihood Ratio test (LRT) converted to a Chi-square test of
the fitted model. Specifically, let Σ0 = E(S) to be the true
population covariance matrix, and Σ(θ) the model-implied
covariance matrix. The hypothesis to be tested is:

H0 : Σ0 ¼ Σ θð Þ vs: H1 : Σ0≠Σ θð Þ
The chi-square test is then χ2 = −2logLRT = −2[logL

(Σ(θ)) − logL(Σ0)] with d = p(p + 1)/2-t degree of free-
dom (d.f.). logL( ) represents the log-likelihood of the
model, p the number of genes, t the number of parameters
of the fitted model. Not-significant P-values (P >0.05) indi-
cate that the model provides a good fit to the data. The
P-values are derived by using the χ2(d) distribution or a
resampling bootstrap distribution [30].
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An alternative procedure [31] assumes that in the
population, a model-implied covariance matrix Σ(θ0),
which is approximately correct, is in the neighborhood
of Σ0. So the null hypothesis of “exact fit” is replaced by
the null hypothesis of “close fit”:

H0 : Σ θ0ð Þ−Σ θð Þ < ε ¼ 0:05 vs: H1 : ε > 0:05

and the Root Mean Square Error of Approximation
(RMSEA) measures the discrepancy ε for the fitted model:

RMSEA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max 0; χ2−dð Þ=d n−1ð Þ

p

P-values for RMSEA are set up from the non-central
χ2(λ,d) distribution with non-centrality parameter, λ = (n-
1) × d × 0.052 or from a resampling bootstrap distribution.
The null hypothesis of close fit is not rejected if P > 0.05.
We also consider the Standardized Root-Mean-square

Residual (SRMR), one of the most used SEM fit indices.
SRMR is a measure based on the differences between
observed (s) values and the ones obtained from the
model (σ) of the covariance matrix:

SRMR ¼
Xp

j¼1

Xp

k¼jþ1
sjk−σ jk
� �2

=sjjskk

p pþ 1ð Þ=2

SRMR values <0.10 are assumed as an adequate fitting
measure, whereas values <0.05 may be considered as a
good fit [32].
Finally, the model refinement (step-d) is obtained add-

ing new directed or bi-directed edges to the initial model.
This modification was needed considering that the initial
model is only a simplified representation of the whole
pathway. The criteria used for the refinement are based
on the combination of three elements. First, the modifica-
tion indexes (MI), that is an estimate of the decrease
in the χ2-score statistic that would result by freeing
each fixed (=0) parameter in the model; second, z-tests
(=parameter estimate/standard error) of the MLE; and
finally, biological evidences obtained by STRING database
[33] and by the existence of a direct path between the
nodes that MI proposes to connect. The following heuris-
tic stepwise strategy was used:

Heuristic stepwise procedure:
Input: list of the fixed (=0) parameters (paths and/or

covariances) in the model.
Output: new free parameters (paths and/or covariances)

in the model.
Steps:

1. freeing just a single parameter (path coefficient or
covariance) at a time, and these in turn are sorted in
descending order of magnitude using MI;
2. verify if the edge (path coefficient or covariance) to
add is present in STRING or when the edge is a
path coefficient, if it represents a direct path that
connects the nodes in the pathway selected, and
then add this new edge in the model;

3. fit the model and if the new edge is statistically not
significant (P>0.05, one-sided), using a z value
(z<|1.64|), remove it and repeat step 1-2;

4. STOP the selection procedure if the model achieves
a non significant LRT (P >0.05) or RMSEA (P of “close”
fit >0.05) or SRMR <0.1, otherwise repeat step 1-3

Multiple-group analysis
When data are observed from multiple subsamples, the
representation of groups with “indicator variables”, con-
sidered as nodes, allows to recognize DEGs. Instead, “mul-
tiple-group analysis” allows to identify differentially regu
lated genes (DRGs) across groups.
Specifically, define μ1(θ) and Σ1(θ) as the model-implied

mean vector and covariance matrix of group 1 (experimen-
tal group) respectively and μ2(θ) and Σ2(θ) as the corre-
sponding moments of group 2 (control group). For each
models, two omnibus tests are performed considering the
two experimental conditions (groups), one for the differen-
tial expression genes (nodes) and the other for the strength
of the edges. In the first case, the hypothesis to be tested is:

H0 : μ1 θð Þ ¼ μ2 θð Þ vs: H1 : μ1 θð Þ≠μ2 θð Þ
while, in the second case, is:

H0 : Σ1 θð Þ ¼ Σ2 θð Þ vs: H1 : Σ1 θð Þ≠Σ2 θð Þ
In the “null” model (H0), the mean or covariance esti-

mates are constrained to be equal across groups; in the “al-
ternative” model (H1), they are allowed to differ across
groups. The statistical significance is determined by com-
parison of LRT chi-square (χ2diff) values at a given degree
of freedom (d.f. diff). If there is a significant difference (P <
0.05) in the chi-squared goodness-of-fit index, the groups
differ significantly for one or more specific gene expression
(nodes) and/or gene-relationships (edges). Finally, three
path-coefficient differences are screened: 1) “up/down”
expression (gene nodes), testing the “zero value” for the
group indicator variable (C = experimental =1, and C =
control = 0) path coefficients; 2) “up/down” regulation
(gene edges), testing the “zero value” for the differences of
path coefficients across groups; 3) “on/off” regulation (gene
edges) with respect to a priori KEGG gene regulation
target, testing the “zero value” of the edge coefficients
across groups.
Specifically, assume C to be the path coefficient matrix

of the group indicator variables and ci be an element of
the matrix C. Let B1 and B2 to be the corresponding
path coefficient matrices in the experimental and control
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groups; D = B1 – B2 and dij be an element of the matrix
D. We consider the test statistics:

tC ¼ ci=SE cið Þ and tD ¼ dij=SE dij
� �

t1 ¼ bij1=SE bij1
� �

and t2 ¼ bij12=SE bij2
� �

where SE( ) is the estimated standard error of the pa-
rameters. The statistic tC can be used to test the condi-
tional “up/down” expression level difference of one gene
between groups, given the parents of the gene in the
network. Similarly, tD checks the conditional “up/down”
expression regulatory differences of one gene on another
between groups. Moreover, t1 and t2 check the “on/off”
regulatory differences compared to a priori KEGG path-
way. The P-values of these statistics (two-sided, for tC
and tD and one-sided, for t1 and t2) are derived either
asymptotically from the N(0,1)-distribution or empiric-
ally from the nonparametric-based or using model-based
bootstrap distribution with B bootstrap samples (usually,
B = 100, or 1000).
Note that the marginal bivariate test of DEGs with

SAM approach can be regarded as the special case of
the conditional test with tC, when the pathway graph is
G = (Y, ∅), so pa(y) =∅ for all genes ∈Y.
We use the implementation provided by the lavaan

[34] R package for estimation, evaluation, and modifica-
tion of SEM data analysis, and R codes is available in
Additional file 1.

Results
The above described method was applied to two gene
expression microarrays datasets, one from a study on
FTLD-U and the other on MS.

FTLD-U analysis
The data were obtained from a microarray experiment that
analyzes various brain regions of patients affected by
FTLD-U in presence of the mutation in the progranulin
gene. Two groups were selected: one affected by FTLD
with mutation in the progranulin gene (15 samples) and
the other constituted by the control (17 samples). Data are
Table 1 Perturbed pathways obtained by SPIA on FTLD-U dat

Name pathway pSize NDE pNDE

Glutamatergic synapse 77 11 0.000

GABAergic synapse 60 10 0.000

Calcium signaling pathway 166 17 0.000

Amphetamine addiction 55 8 0.001

Gap junction 85 10 0.001

MAPK signaling pathway 235 18 0.001

ECM-receptor interaction 82 7 0.022

pSize = number of genes in the pathway; NDE = number of DEGs in the pathway; p
perturbation; Status = direction of the perturbation.
freely available at Gene Expression Omnibus (GEO) data-
base with ID GSE13162. For our analysis, we used normal-
ized expression values submitted in the database. In the
first step, SAM was performed using a delta value of 1.03
and a minimum fold-change of 2. The number of genes
up-expressed was 207 while the number of gene down-
expressed 244. Using this list of DEGs, the SPIA analysis
found seven important pathways for the explanation of the
role of the progranulin mutation on the FTLD-U, as
showed in the Table 1.
The most of the dysregulated pathways, as the MPAK sig-

nalling pathway, the calcium signalling pathway, the gap
junction and the ECM-receptor interaction, confirm the
analysis of [35]. The dysregulated pathways with a signifi-
cant p-PERT were the glutamatergic synapse and GABAer-
gic synapse. The role of the glutamate in the acute and
neurodegenerative processes were well described in litera-
ture [35-38]. Meldrum [36] illustrated three different patho-
logical mechanisms of action of the glutamate in the
neurodegeneration. Glutamate can be neurotoxic through
an agonist effect on the N-methyl-D-aspartate (NMDA), α-
amino-hydroxy-5-methyl-4-isoaxaleproprionicacid (AMPA),
kainate or Group I metabotropic receptors. The relative
contribution of these different classes of receptors vary ac-
cording to the neurons involved and a variety of other cir-
cumstances. Selective neuronal death subsequent to the
epileptics status appears to be highly dependent on NMDA
receptor activation. Acute neuronal degeneration after tran-
sient global or focal cerebral ischemia seems to be
dependent on both NMDA and AMPA receptors. Regard-
ing the GABAergic pathway, a loss of glutamatergic pyram-
idal cells and calbindin-D28k-immunoreactive GABAergic
neurons in the frontal and temporal cortices of patients
with FTLD [39] and FTLD with motor neuron disease [40]
was reported.
SEM analysis of glutamatergic synapse KEGG pathway
For sake of brevity, model specification was obtained only
for the glutamatergic synapses pathway, but the same pro-
cedure could be used for all significant pathways. We
a

tA pPERT pGFdr Status

−6.557 0.064 0.006 Inhibited

0.632 0.804 0.017 Activated

0.072 0.993 0.021 Activated

−2.685 0.457 0.047 Inhibited

5.216 0.454 0.047 Activated

−5.802 0.253 0.047 Inhibited

6.150 0.015 0.047 Activated

NDE = p-value of the enrichment; tA = total perturbation; pPERT = p-value of the
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started from the original KEGG pathway and then, passing
through the shortest paths model, we reached the PIRSF
model. Four composite variables (PCA1) were generated:
1) PLC-beta (PIRSF000956) by entrez ID genes 5330,
5331, 23236: variance explained 66%; 2) adenylate cyclase
(PIRSF001445) by entrez ID genes 113, 114, 155: variance
explained 68%; 3) GTP-binding regulatory protein Gs
alpha chain (PIRSF002400) by entrez ID genes 2776, 2778:
variance explained 53%; 4) ionotropic glutamate receptor
(PIRSF002437) by entrez ID genes 2902, 2903, 2905: vari-
ance explained 54%. The graph reduction of the model
specification process was the following: from KEGG
(mean degree = 11.431, number nodes(edges) = 92 (526))
to DEGs shortest paths model (mean degree = 3.769 ,
number nodes(edges) = 26 (49)), and to PIRSF model
(mean degree = 2.947, number nodes(edges) = 19 (28)).
The initial fitting indices were poor (χ2 (df) = 600.1 (25), P <
0.001, RMSEA (P-close) =0.320 (<0.001), SRMR =
0.450). This is likely because the existing pathway data-
bases do not even contain all pathway information pre-
sented in the public literature [41], and because the
model generated was a simplification of the real con-
nections between nodes. Twenty-two directed edges
were added, six using STRING database and sixteen
using graph information. The final pathway model was
an adequate approximation of the observed covariance
matrix, as demonstrated by the SRMR index (0.092).
Two-group analysis of the final pathway model revealed a
Table 2 Single node and edge differences found between FTL

Path Type FTLD-U Progranulin (P)

1742← group Group on node −6.024

5532← group Group on node 9.606

2785← group Group on node 8.453

5534← group Group on node 7.233

gtp_bind← group Group on node 2.374

2911 < − > 9454 Binding/association 0.178

3708 < −9456 Binding/association 0.457

ade_cycl < −gtp_bind activation −2.044

5613 < −107 Indirect −0.012

5613 < −ade_cycl Indirect 0.446

5579 < −plc_b Indirect 3.677

22941 < −1742 String 1.306

plc_b < −9229 Directed path 0.262

ade_cycl < −5532 Directed path −0.463

ade_cycl < −5534 Directed path −0.713

5613 < −22941 Directed path −0.581

22941 < −glutam_recp Directed path 0.044

9455 < −glutam_recp Directed path −0.128

glutam_recp = PIRSF ionotropic glutamate receptor; ade_cycl = PIRSF adenylate cycl
Gs alpha chain.
significant global mean (χ2 diff(df) = 48.5 (19), P < 0.001
of H0: μ1 = μ2 subject to Σ1 = Σ2) and covariance differ-
ences (χ2 diff (df) = 110.9 (51), P < 0.001 of H0: Σ1 = Σ2

subject to μ1≠ μ2). The specific tests that consider the ef-
fect of the progranulin mutation on every gene and every
edge are summarized in Tables 2 and 3.
Four genes and one PIRSF of the glutamatergic model

resulted influenced by the group: genes 1742 or PSD-95,
5532 or PPP3CB, 2785 or GNG3, 5534 or Ppp3r1 and the
PIRSF of the glutamate receptor. An important role could
be played by PSD-95 gene that is believed to be involved
in the synapse maturation, in the induction of a network
of neurotransmitter receptors, scaffolding proteins and
ionotropic glutamate receptors [42]. The gene PPP3CB
and the gene GNG3 are associated to the Wnt signalling
correlated to the dysregulation in the case of progranulin
deficiency [43]. To note that four of the nodes influenced
by the group were involved in the perturbed edges de-
scribed in the Table 1. Giving a look to the significant
edges found, the relationships 22941 <−1742 and 22941 <
−PIRSF “glutamate receptors” are well note in the litera-
ture. In fact, the gene 229141 or SHANK2 plays a critical
role both in the integration of the various postsynaptic
membrane proteins, cell-adhesion molecules, signal com-
ponents, scaffolding proteins, and actin-based cytoskeleton,
part of the PSD protein network (activated by the PSD-95)
[44], and in the organization of the glutamate receptors
[45]. The edges 3708 <−9456 that involves the gene Itpr1
D-U with progranulin mutation and control groups

Control (C) Difference (95% CI) P-value up/down

−5.540 −0.484(−0.87; −0.10) 0.014 P down-expressed

10.706 −1.101 (−1.64; −0.56) 0.000 P down-expressed

9.734 −1.281 (−1.95; −0.62) 0.000 P down-expressed

8.308 −1.075 (−1.65; −0.51) 0.000 P down-expressed

2.626 −0.252 (−0.44; −0.06) 0.000 P down-expressed

0.813 −0.635 (−1.27; −0.00) 0.049 P down-regulated

−0.205 0.662 (0.34; 0.98) 0.000 P up-regulated

−0.840 −1.204 (−2.28; −0.13) 0.028 P down-regulated

−0.324 0.312 (0.02; 0.60) 0.034 P up-regulated

−0.413 0.858(0.43; 1.20) 0.000 P up-regulated

1.110 2.567(0.86; 4.28) 0.003 P up-regulated

0.570 0.736(0.12; 1.35) 0.002 P up-regulated

0.558 −0.297(−0.56; −0.03) 0.028 P down-regulated

0.208 −0.671(−1.16; −0.18) 0.007 P down-regulated

−0.168 −0.545(−1.05 -0.05) 0.032 P down-regulated

−0.039 −0.542(−0.95; −0.13) 0.010 P down-regulated

−0.278 0.322(0.09; 0.55) 0.006 P up-regulated

−0.462 0.334(0.04; 0.92) 0.024 P up-regulated

ise; plc_b = PIRSF PLC-beta; gtp_bind = PIRSF GTP-binding regulatory protein



Table 3 Not significant (null edge) in FTLD-U with progranulin mutation and in control groups

Progranulin (P) Control (C)

Paths Type Estimate P-value Estimate P-value P/C

2911 < −5534 Activation −0.024 0.238 0.232 0.927 OFF/OFF

gtp_bind < −2911 Activation −0.049 0.167 −0.138 0.500 OFF/OFF

1742 < −glutam_recp Binding/association −0.192 0.008 −0.376 0.200 ON/OFF

50944 < −9229 Binding/association 0.131 0.138 0.160 0.282 OFF/OFF

22941 < −9229 Binding/association −0.245 0.811 −0.034 0.276 OFF/OFF

9456 < −22941 Binding/association −0.114 0.632 0.130 0.553 OFF/OFF

9456 < −50944 Binding/association 0.742 0.133 0.931 0.098 OFF/OFF

9455 < −22941 Binding/association 0.142 0.224 −0.407 0.042 OFF/ON

9454 < −50944 Binding/association 0.519 0.466 0.226 0.358 OFF/OFF

3708 < −9455 Binding/association −0.322 0.067 −0.137 0.432 OFF/OFF

3708 < −9454 Binding/association 0.462 0.055 0.216 0.001 OFF/ON

107 < −gtp_bind Activation 0.198 0.525 0.136 0.743 OFF/OFF

plc_b < −gtp_bind Activation −0.275 0.225 −0.234 0.127 OFF/OFF

5613 < −107 Indirect −0.012 0.000 −0.324 0.926 ON/OFF

1742 < −50944 String 0.971 0.013 1.166 0.062 ON/OFF

3708 < −2911 String −0.068 0.054 0.143 0.501 OFF/OFF

9229 < −50944 String −0.490 0.116 −1.755 0.502 OFF/OFF

ade_cycl < −5532 Directed path −0.463 0.169 0.208 0.022 OFF/ON

ade_cycl < −5534 Directed path −0.713 0.107 −0.168 0.003 OFF/ON

glutam_recp < −5532 Directed path −0.531 0.000 −1.017 0.061 ON/OFF

5579 < −9456 Directed path 0.228 0.000 0.654 0.470 ON/OFF

5579 < −5534 Directed path 0.295 0.000 0.986 0.388 ON/OFF

5613 < −22941 Directed path −0.581 0.741 −0.039 0.001 OFF/ON

22941 < −glutam_recp Directed path 0.044 0.000 −0.278 0.696 ON/OFF

3708 < −22941 Directed path 0.264 0.000 0.443 0.072 ON/OFF

1742 < −9229 String −0.626 0.027 −1.399 0.126 ON/OFF

glutam_recp = PIRSF ionotropic glutamate receptor; ade_cycl = PIRSF adenylate cyclise; plc_b = PIRSF PLC-beta; gtp_bind = PIRSF GTP-binding regulatory protein
Gs alpha chain.
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and the gene HOMER1 were very interesting. The relation-
ships are involved in the spinocerebellar ataxia in human
as described by [46]. Also other links that include the
PIRSF adenylate cyclase, GTP-binding regulatory protein
and the PLC-beta could be useful to interpret the role of
mutation in the progranulin gene group.
The comparison with KEGG edges revealed that 17

edges were not active (off ) in the “mutant” group and 21
in the “control”. In contrast the edges activated (on) was
9 and 5 in mutant and control, respectively (cf. Table 3).
The Figure 2 illustrates the model and the links found
statistically significant between the yes/no mutant
groups.

Multiple sclerosis
MS is a neurodegenerative disease with a presumed
autoimmune component. The genome-wide expression
study in peripheral blood mononuclear cells (PBMC),
from 12 MS patients and 15 controls, was performed in
order to identify DEGs and dysregulated pathways. Data
are freely available at GEO database with ID GSE21942.
For the analysis, we used expression values submitted in
the database. The SAM was performed using a delta
value of 0.95 and a minimum fold-change of 2. The
number of genes up-expressed was of 133 while the
number of gene down-expressed of 92. Using this list of
DEGs, the SPIA analysis found three important path-
ways that could be involved in the mechanism of the
development of the MS, as showed in the Table 4.
The first, B cell receptor (BCR) signaling pathway, is an

important component of adaptive immunity. B cells pro-
duce and secrete millions of different antibody molecules,
each of which recognizes a different antigen. This signal-
ling ultimately results in the expression of immediate early
genes that further activate the expression of other genes
involved in B cell proliferation, differentiation and



Figure 2 Final model of the Glutamatergic synapse pathway. The graph displays which nodes and edges are different between the yes/no
mutant groups. The nodes (with “Entrez” name) or edges are mapped with different colours according to up/down expression or regulation, respectively.
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immunoglobulin (Ig) production as well as other pro-
cesses. The role of B cells is well known in MS [47, 48].
The second one, Fc gamma R-mediated phagocytosis
pathway, includes specialized cell types as macrophages,
neutrophils, and monocytes that take part in host-defence
mechanisms. Expression of the inhibitory Fc gamma
Table 4 Perturbed pathways obtained by SPIA on MS data

Name pathway pSize NDE p

B cell receptor signaling pathway 73 8 0

Fc gamma R-mediated phagocytosis 89 4 0

Salmonella infection 71 5 0

pSize = number of genes in the pathway; NDE = number of DEGs in the pathway; p
perturbation; Status = direction of the perturbation.
receptor IIB (FcγRIIB) plays an important role during per-
ipheral B cell development, which prevents memory B
cells with low affinity or self-reactive receptors from enter-
ing the germinal center and becoming IgG positive plasma
cells [49]. Furthermore, the decreased expression of Fc
gamma RIIB or non-functional Fc gamma RIIB variants
NDE tA pPERT pGFdr Status

.000 6.822 0.372 0.000 Activated

.015 −13.66 0.006 0.036 Inhibited

.001 −4.901 0.174 0.041 Inhibited

NDE = p-value of the enrichment; tA = total perturbation; pPERT = p-value of the
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are consistently associated with the development of
autoimmune tissue inflammation [49–51]. Considering
the connection between the Fc gamma R-mediated
phagocytosis and B cells, and the association of this
pathway with autoimmune inflammation, we could
conclude that also this pathway could be implicated in
the MS phenotype.
Salmonella infection, the third pathway, may appear

less interesting, nevertheless it is connected with re-
sponse to infections that, as showed for the two previous
pathways, plays an important role in MS.

SEM analysis of Fc gamma R-mediated phagocytosis KEGG
As an example, we analyzed the Fc gamma R-mediated
phagocytosis pathway. The model was obtained starting
from the KEGG pathway and finding the shortest paths
between DEGs (no PIRSF reduction was performed). The
graph reduction of the model specification was from KEGG
pathway (mean degree = 10.404, number nodes(edges) = 94
(489)) to DEGs shortest paths model (mean degree =
3.647, number nodes(edges) = 17(31)). The initial model
had a poor fit (χ2 (df) = 339.410 (105), P < 0.001, RMSEA
(P-close) =0.288 (<0.001), SRMR = 0.321) and the final
model was adequate considering the SRMR index (0.098)
and RMSEA (P-close) 0.111 (0.059). To reach the final
model, twenty edges were added: fifteen using as driving
criteria the presence of a directed path between the nodes
in the original pathway, and five using STRING database
information.
Two-group analysis of the final pathway-model revealed

a significant global mean (χ2 diff(df) = 40.3 (16), P < 0.001
of H0: μ1 = μ2 subject to Σ1 = Σ2) and covariance
Table 5 Single node and edge differences found between MS

Path Type Multiple sclerosis ( MS ) Con

382← group Group on node −9.002 −

10093← group Group on node −0.452 0

5580← group Group on node −3.054 −

5321← group Group on node 0.694 1

1399← group Group on node 4.688 6

8613 ↔ 8612 Indirect 0.001 −

23396← 8613 Indirect 0.643 −

23396← 5880 Activation 0.079 1

23396← 8612 Indirect −6.219 −

10093← 8936 Activation 0.576 0

5581← 8613 Indirect 0.002 0

5581← 8612 Indirect 1.343 0

382← 1399 Directed path 0.970 0

7454← 5338 Directed path 1.070 0

5604← 8613 Directed path 0.618 3

23396← 1399 Directed path −0.323 −
differences (χ2 diff (df) = 124.4 (48), P < 0.001 of H0: Σ1 =Σ2

subject to μ1≠ μ2).
The specific tests, that analyze the effect of the disease-

model on genes and edges, are reported in Tables 5 and 6.
Five genes resulted group-sensitive: the genes 382 or
ARF6, 10093 or ARPC4, 5580 or PRKCD, 5321 or
plag2g4a, 1399 or CRKL. The gene ARF6, as showed by
[52], could be implicated in the disruptive effects of IL-1b,
a gene recently associated with MS [53]. In addition, other
group sensitive genes could be associated with MS [54,55].
Considering the edges perturbed, the links between the
gene 382 or ARF6 and the gene 1399 or CRKL resulted
very interesting. The IL-1 beta, as reported [52], has an ef-
fect on the endothelial stability by the cascade MYD88 –
ARNO and ARF6, a known regulator of adherents protein
localization. In turn the gene CRKL, an adapter protein
required for the spreading of epithelial colonies and break-
down of epithelial colonies and the breakdown of adher-
ents junctions in response to hepatocyte growth factor,
modulates the gene ARF6 [56]. So the genes IL-1b, ARF6
and CRKL could be involved in the same pathological
mechanism. Other interesting significant edges were the
connections between gene 23396 or PIP5K1C with gene
8612 or Ppap2c and with gene 8613 or Ppap2b. The gene
PIP5K1C catalyzes the synthesis of phosphatidylinositol
4,5-bisphosphate, an essential lipid molecule in various
cellular processes. As described by [57] the phosphati
dylinositol-4, 5-bisphosphate synthesis has a critical role
in the regulation of multiple steps of the synaptic vesicle
cycle. This gene is connected with Ppap2c and Ppap2b,
genes that have a role in metabolic pathways controlling
the synthesis of glycerophospholipids and triacylglycerols,
and control groups

trol (C) Difference (95% CI) P-value Up/down

7.963 −1.04 (−1.65; −0.43) 0.001 MS down-expressed

.032 −0.48 (−0.93; −0.04) 0.033 MS down-expressed

2.648 −0.41 (−0.70; −0.11) 0.007 MS down-expressed

.240 −0.55 (−1.00;-0.09) 0.020 MS down-expressed

.126 −1.44 (−1.82;-1.05) 0.000 MS down-expressed

0.002 0.003 (0.001;0.004) 0.038 MS up-associated

4.981 5.62 (2.44; 8.81) 0.001 MS up-regulated

.207 −1.13 (−1.91;-0.35) 0.005 MS down-regulated

0.945 −5.27 (−6.62; −3.92) 0.000 MS down-regulated

.267 0.31 (0.08; 0.53) 0.007 MS up-regulated

.953 −0.95 (−1.41; −0.49) 0.000 MS down-regulated

.104 1.24 (0.78; 1.70) 0.000 MS up-regulated

.144 0.83 (0.19; 1.46) 0.011 MS up-regulated

.111 0.96 (0.28; 1.64) 0.006 MS up-regulated

.133 −2.52 (−4.64; −0.39) 0.020 MS down-regulated

0.755 0.43 (0.24; 0.62) 0.000 MS up-regulated



Table 6 Not significant (null edge) in MS and in control groups

Multiple sclerosis (MS) Control (C)

Paths Type Estimate P-value Estimate P-value MS/C

23396← 382 Activation 0.114 0.657 0.082 0.324 OFF/OFF

10093← 7454 Activation 0.419 0.199 0.065 0.726 OFF/OFF

5580← 8612 Indirect 0.326 0.388 5.119 0.144 OFF/OFF

5894← 5580 Activation 0.338 0.207 −0.103 0.657 OFF/OFF

5894← 5581 Activation 1.399 0.436 −2.815 0.349 OFF/OFF

5595← 5604 Phoshorylation −0.107 0.808 −0.963 0.408 OFF/OFF

1794← 1399 Binding/association 0.056 0.399 −0.007 0.747 OFF/OFF

8936← 5880 Activation 0.015 0.972 −0.410 0.240 OFF/OFF

7454← 382 Directed path 0.057 0.753 −0.076 0.696 OFF/OFF

5604← 5338 Directed path −0.024 0.810 −0.170 0.454 OFF/OFF

5595← 5338 Directed path 0.124 0.404 0.590 0.065 OFF/OFF

5338← 382 Activation 0.164 0.612 0.216 0.007 OFF/ON

5580← 8613 Indirect 3.021 0.133 −0.819 0.019 OFF/ON

5604← 5894 Activation 0.160 0.183 0.273 0.041 OFF/ON

5321← 5595 Activation 0.356 0.535 −0.285 0.052 OFF/ON

382← 5880 Activation 0.302 0.455 1.314 0.002 OFF/ON

5580← 382 Directed path −0.073 0.688 0.156 0.005 OFF/ON

382← 1399 Directed path 0.144 0.414 0.970 0.001 OFF/ON

7454← 5338 Directed path 0.111 0.358 1.070 0.002 OFF/ON

10093← 382 Directed path 0.269 0.252 0.498 0.001 OFF/ON

7454← 5880 String evidence 0.109 0.621 0.864 0.077 OFF/OFF

5581← 5595 String evidence 0.001 0.978 0.049 0.001 OFF/ON

23396← 5880 Activation 1.207 0.000 0.079 0.708 ON/OFF

5581← 8613 Indirect 0.953 0.000 0.002 0.921 ON/OFF

10093← 5880 Directed path 1.044 0.000 0.365 0.397 ON/OFF

8613← 1399 Directed path −0.024 0.027 −0.093 0.225 ON/OFF

8936← 1794 Directed path 1.819 0.008 −1.627 0.608 ON/OFF

5580← 5338 String evidence 0.417 0.004 0.258 0.222 ON/OFF

Pepe and Grassi BMC Bioinformatics 2014, 15:132 Page 11 of 15
http://www.biomedcentral.com/1471-2105/15/132
and in receptor-activated signal transduction mediated by
phospholipase D, considered a susceptibility factor in scler-
osis [58].
The comparison with KEGG edges showed that in the

model pathway, 22 edges were not active (off) in the MS
patients and 18 in controls. In contrast, the edges acti-
vated (on) were 6 and 10 in MS patients and control sub-
jects respectively (cf. Table 6). The Figure 3 illustrates the
pathway model and the links found statistically significant
between the MS/control groups.

Discussion
This work illustrated a new procedure based on Structural
Equation Modeling (SEM) to discover and compare per-
turbed pathway-modules, similar to that proposed by [12].
Unlike these authors, new pathway analysis (SPIA) and
new model generation, based on mixed graph theory and
principles of network biology, were added. Starting from
the significant dysregulated pathways, a model for each
pathway was generated, that allowed both to verify how
DEGs were connected between them in a causal structure
and to improve the model interpretation by grouping
not DEGs in PIR superfamilies. To note that the initial
model is not inferred by data, because connections
among genes represent the biological knowledge
enclosed in the pathway and in PIRSFs. The use of SEM
proved to be very versatile in the downstream analysis
of microarray data. It was used to: 1) test and improve
the generated models (this could be a useful way to
overcome the limitation of accuracy relative to the pub-
lic pathway database); 2) verify the overall differences
between groups, and 3) individuate differential expres-
sion level of one gene and differential connection be-
tween two genes.



Figure 3 Final model of Fc gamma R-mediated phagocytosis pathway. The graph displays which nodes and edges are different between
the disease/control groups. The nodes (with “Entrez” name) or edges are mapped with different colours according to up/down expression or
regulation, respectively.

Pepe and Grassi BMC Bioinformatics 2014, 15:132 Page 12 of 15
http://www.biomedcentral.com/1471-2105/15/132
Our procedure was tested on two experiments of gene
expression microarray data finalized to unravel the bio-
logical mechanisms that allowed us to explain the differ-
ences between yes/no mutant groups and disease/healthy
groups. Starting from the output of SPIA, the model gen-
eration procedure, illustrated in this paper, was applied.
The first step was to obtain a subgraph for each perturbed
pathway containing only the genes present in the
microarray. Then, the connections between DEGs through
shortest paths were found, and finally not DEGs were
grouped in PIRSFs. The models generated were tested and
improved using an integrate approach based on the com-
bination between SEM and other type of evidences as
explicated in the STRING database. Once a good model
has been determined, a two-groups SEM analysis has
been performed to unveil significant differences between
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groups. Studying each link present in the final perturbed
model, we hypothesized which connections could be al-
tered. For example in FTLD-U experiment, we found the
connection between SHANK2 and PSD-95, and in MS we
hypothesized that the genes IL-1b, ARF6 and CRKL could
be involved in a same pathological mechanism. These re-
sults confirmed and could be able to elucidate the mecha-
nisms that lead to the pathogenesis and progression of the
observed diseases.
The framework illustrated, being a composition of dif-

ferent methods, could be easily adapted to new solutions.
The idea is to have a general and modular framework
where different other methods could be taken in consider-
ation in each step of the pipeline.
First, alternative ways to select DEGs and perturbed

pathways could be considered. In [59] a unified framework
was proposed to jointly find significant perturbed path-
ways and DEGs by sparse Linear Discriminant Analysis
(sLDA). Other methods for identifying DEGs and differen-
tial connections, based on Graphical Gaussian Modeling
(GGM), are the following: a first one generates networks
directly from very high dimensional data, determining the
pattern of zeros in the inverse covariance matrix [60]; a
second one defines Bayesian networks (directed acyclic
graph: DAGs) on a structure of dependence derived from
external resources [61]; the last one derives DAGs from
external resources converting them into undirected cycle-
free graphs [62]. An additional approach for conducting a
differential analysis of networks directly from data by
measuring gene association/interaction with connectivity
scores, based on Partial Least Squares (PLS), was sug-
gested by [63].
Second, we used PCA to create new observed composite

variables that represent PIRSFs. Another plan could be to
take advantage of the potentiality of SEM in the creation
of latent variables as proposed by [64] in transcriptional
regulation of protein-DNA interactions. A valid alternative
to the modification indices of SEM could be the PC-
algorithm [65], that allow to infer causal information from
data. The idea in this case is to fix an initial model, pro-
vided by the perturbed pathways model, and then use the
PC-algorithm to add new links supervised by STRING
knowledge. Lastly, since in SEM multigroup analysis nu-
merous hypothesis are tested, multiple testing control pro-
cedures using the method of [66] can be desirable.

Conclusions
The pipeline proposed introduces in the analysis of gene
expression data the main principles that govern biological
networks as well described by [14]. Otherwise from
reverse-engineering gene regulatory networks, that build
networks directly from data, our initial models are ob-
tained by a biological curated pathway database (KEGG)
and then modified on the basis of the knowledge provided
by another database (STRING). The principal evidence is
that the manifestation of a particular phenotype depends
on the interactions existing among many causal agents.
This was obtained taking in consideration not only DEGs
but also how genes interact. The pipeline has been vali-
dated on two expression datasets. In both the cases, we
tested the models, improved them and individuated the
gene expression levels and the connections that were per-
turbed and that could justify the different phenotypes ob-
served. The results were satisfactory and strongly
coherent with experimental findings available in literature,
considering that most of the genes in the model are
known to characterize the phenomena analyzed and that
links perturbed were previously connected to the progres-
sion of the diseases.
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