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A B S T R A C T   

Acute stress is pervasive in everyday modern life and is thought to affect how people make choices and learn 
from them. Reinforcement learning, which implicates learning from the unexpected rewarding and punishing 
outcomes of our choices (i.e., prediction errors), is critical for adjusted behaviour and seems to be affected by 
acute stress. However, the neural mechanisms by which acute stress disrupts this type of learning are still poorly 
understood. Here, we investigate whether and how acute stress blunts neural signalling of prediction errors 
during reinforcement learning using model-based functional magnetic resonance imaging. Male participants 
completed a well-established reinforcement-learning task involving monetary gains and losses whilst under stress 
and control conditions. Acute stress impaired participants’ (n = 23) behavioural performance towards obtaining 
monetary gains (p < 0.001), but not towards avoiding losses (p = 0.57). Importantly, acute stress blunted sig
nalling of prediction errors during gain and loss trials in the dorsal striatum (p = 0.040) — with subsidiary 
analyses suggesting that acute stress preferentially blunted signalling of positive prediction errors. Our results 
thus reveal a neurocomputational mechanism by which acute stress may impair reward learning.   

1. Introduction 

Acute stress is ubiquitous in our day-to-day life. Acute stress has 
major implications for well-being and mental health and, as a conse
quence, a high societal impact. For example, it is estimated that stress- 
related disorders, such as depression, anxiety disorders, and alcohol 
and drug use disorders, affect more than one in six people across Eu
ropean Union countries, and that the total costs of mental health have 
surpassed €600 billion – or more than 4% of gross domestic product – 
across the 28 European Union countries (OECD & European Union, 
2018). Given that stress has been strongly associated with a broad range 
of psychopathology (Bogdan and Pizzagalli, 2006; Koob and Volkow, 
2016; Mkrtchian et al., 2017; Pizzagalli, 2014; Saal et al., 2003; Sinha, 
2007), investigating the mechanisms by which acute stress influences 
cognition and behaviour is critical not only for understanding the effects 
of acute stress on day-to-day life, but may also offer important insights 
into the design of prevention and treatment strategies for individuals 
with stress-related clinical disorders. 

Acute stress is thought to have a deleterious impact on the ability to 
learn from the outcomes of our choices and to make choices that lead to 
the most rewarding and least punishing outcomes, which is crucial for 
adaptive behaviour (Porcelli and Delgado, 2017). A growing body of 
evidence suggests that reward learning is impaired by acute stress 
(Berghorst et al., 2013; Bogdan et al., 2011; Bogdan and Pizzagalli, 
2006; Carvalheiro et al., 2021; Cremer et al., 2021; de Berker et al., 
2016; Ehlers and Todd, 2017; Morris and Rottenberg, 2015; Paret and 
Bublatzky, 2020), although the evidence for an impairing effect of acute 
stress on punishment learning is less robust (Carvalheiro et al., 2021; de 
Berker et al., 2016; Petzold et al., 2010). Yet, surprisingly little is known 
about the neural mechanisms that underlie the impairing effects of acute 
stress on reinforcement learning. Here, we use behavioural and 
model-based functional magnetic resonance imaging (fMRI) (O’Doherty 
et al., 2007) data to investigate the impact of acute stress on rein
forcement learning and the underlying neurocomputational 
mechanisms. 

Reinforcement-learning theory provides a powerful 
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neurocomputational framework to understand how individuals learn to 
maximise rewards and minimise punishments (Maia and Frank, 2011; 
Sutton and Barto, 1998). According to reinforcement-learning theory, 
individuals gradually learn to select more and more often the actions 
that optimise reinforcements in a given context by learning the values of 
the executed actions (Maia and Frank, 2011; Sutton and Barto, 1998). 
Prediction errors — the difference between an experienced and an ex
pected outcome — are used to progressively update the values of the 
executed actions driving gradual learning (Maia and Frank, 2011; 
Schultz et al., 1997; Sutton and Barto, 1998). Positive prediction errors 
indicate that outcomes are better than expected, and negative prediction 
errors indicate that outcomes are worse than expected (Schultz et al., 
1997). Prediction errors can therefore be used to learn which actions are 
advantageous or disadvantageous. For example, when an action results 
in an outcome that is better than expected, a positive prediction error 
occurs, and the value of the action is increased, leading to increased 
likelihood of selecting that action in the future. Prediction error signals 
are thought to be encoded in the phasic activity of dopamine neurons 
(Schultz et al., 1997). Extant evidence indicates that brain areas with 
dense dopaminergic projections, such as the dorsal striatum and the 
nucleus accumbens, show activity correlated with prediction errors 
(O’Doherty et al., 2004; Pessiglione et al., 2006; Valentin & O’Doherty, 
2009) and that prediction error signals in the dorsal striatum correlate 
with behavioural performance efficacy in a reward-based learning task 
(Schönberg et al., 2007). Indeed, the striatal dopaminergic system seems 
to be critical for prediction-error-based reward learning (Daw and 
Tobler, 2014; Glimcher, 2011; Maia and Frank, 2011; Pessiglione et al., 
2006). 

The striatal dopaminergic system also seems to be particularly sen
sitive to acute stress (Booij et al., 2016; Cabib and Puglisi-Allegra, 2012; 
Pruessner et al., 2004). Acute stress elicits a myriad of physiological and 
functional changes in the brain in response to perceived adverse changes 
in the environment (de Kloet et al., 2005; Hermans et al., 2014; Joëls 
and Baram, 2009), including increased dopamine release in the striatum 
(Abercrombie et al., 1989; Booij et al., 2016; Cabib and Puglisi-Allegra, 
2012; Hermans et al., 2014; Joëls and Baram, 2009; Pruessner et al., 
2004; Vaessen et al., 2015). Specifically, studies with non-human male 
animals suggest that acute stress increases aberrant spontaneous 
phasic-dopamine release (Anstrom et al., 2009; Anstrom and Wood
ward, 2005; Valenti et al., 2011). Such exaggerated, aberrant sponta
neous dopamine release is thought to blunt adaptive phasic dopamine 
responses that signal positive prediction errors (Daberkow et al., 2013; 
Maia and Frank, 2017; Werlen et al., 2020) and, more tentatively, 
negative prediction errors (Maia and Frank, 2017). Thus, stress-induced 
dopamine aberrant release may lead to impairments in reward learning, 
and more speculatively in punishment learning. 

Extant neural evidence on how acute stress directly affects prediction 
error signals in the human striatum during reward learning is still scarce 
(Cremer et al., 2021; Robinson et al., 2013), but indirect neural evidence 
indicates that women who show the greatest increase in interleukin-6 
(an inflammatory marker) in response to a stressor also show the 
greatest reduction in signalling of prediction errors in the nucleus 
accumbens during reinforcement learning (Treadway et al., 2017). 
Moreover, we previously showed, using computational modelling, that 
acute stress decreases the learning rate for positive prediction errors (i. 
e., how quickly better-than-expected outcomes are integrated over time) 
(Carvalheiro et al., 2021), which seems to be consistent with the idea 
that acute stress might impair reward learning by blunting neural sig
nalling of prediction errors. 

In this study, we aimed to investigate the impact of acute stress on 
striatal prediction error signalling during reinforcement learning. As 
mentioned above, extant literature suggests that acute stress disrupts 
reward learning to a larger extent than punishment learning. Thus, given 
the putative impact of acute stress on aberrant phasic-dopamine release, 
and the role of adaptive phasic-dopamine responses on prediction error 
signalling, we predicted that 1) acute stress would impair reward 

learning and, relatedly, that 2) acute stress would blunt prediction error 
signals in the striatum during reward learning. Additionally, given that 
striatal dopamine prediction errors are also implicated in punishment 
learning (Oleson et al., 2012; Palminteri and Pessiglione, 2017; Seymour 
et al., 2007), we explored whether and how acute stress would impact 
punishment learning. Finally, we assessed whether acute stress would 
preferentially blunt positive or negative prediction error signals during 
reward and punishment learning. 

Thirty-seven male participants completed an adapted version of a 
well-established reinforcement-learning task involving monetary gains 
and losses (Pessiglione et al., 2006) inside the MRI scanner, whilst under 
acute stress and control conditions (Fig. 1). This reinforcement-learning 
task disentangles reward from punishment learning and has been used to 
assess fluctuations in dopamine-prediction errors signals; using this task, 
combined with pharmacological manipulations of the dopaminergic 
system, Pessiglione et al. (2006) showed that dopamine-related drugs 
modulate prediction errors expressed in the striatum during reward (but 
not during punishment) learning. During the stress condition, partici
pants were exposed to an uncontrollable sound, a constant alarm, which 
was previously shown to be effective in increasing self-reported stress 
levels and skin conductance responses rate (Carvalheiro et al., 2021). To 
check the success of the acute-stress manipulation, we collected 
self-reported stress levels at the end of each block. Given that we were 
primarily interested in assessing the effects of acute stress on behaviour 
and on the neural correlates of prediction errors, we had a priori defined 
that all participants who reported to be non-responsive to the stress 
manipulation (i.e., who did not report higher stress levels in the stress 
condition than in the control condition) would be excluded from the 
main analyses. This resulted in a final pool of 23 participants for 
behavioural and neuroimaging data analyses. For completeness, we also 
analysed the data from the total sample, which yielded findings for the 
impact of acute stress on reward learning consistent with those from the 
analyses of the aforementioned subsample of interest (see the Supple
mentary Material for analyses and results concerning the total sample). 

To assess whether acute stress impaired reward learning, we 
inspected the impact of acute stress on task performance. Next, to 
examine whether and how acute stress blunted signalling of prediction 
errors in the striatum, we used trial-wise prediction errors, estimated by 
a well-established reinforcement-learning model (Frank et al., 2007), as 
parametric modulators of striatal — dorsal striatum and nucleus 
accumbens — BOLD response at the time of the outcomes in gain (i.e., 
reward learning) and loss (i.e., punishment learning) trials (Pessiglione 
et al., 2006). 

2. Material and methods 

2.1. Participants 

We scanned a total of 42 right-handed male participants with no 
reported history of neurological or psychiatric disorders. One partici
pant was excluded due to incidental findings and 4 participants were 
excluded due to technical problems during the scanning session. We 
assessed whether the stress manipulation increased stress levels by 
comparing the self-reported stress levels of the remaining 37 partici
pants that completed the task in the stress and control conditions. We 
established a priori that only participants who responded to the stress 
manipulation would be included in our primary analyses. Self-reported 
stress levels were higher in the stress condition than in the control 
condition in 23 participants. Thus, we report results from data analyses 
of those 23 participants (age range = 18–29 years; M = 23.0 years, SD =
3.3 years). For completeness, we also analysed the data from the total 
sample (n = 37); those analyses can be found in the Supplementary 
Material. 

All participants provided their informed consent before the experi
mental session. All experimental procedures were approved by the 
Ethics Committee of Hospital of Braga. 
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2.2. Reinforcement-learning task 

After a short practice (12 trials) outside the scanner to familiarise 
participants with the task timings and response keys, participants 
completed four blocks of an adapted version of a well-established rein
forcement-learning task (Pessiglione et al., 2006) whilst inside the 
scanner (Fig. 1). The task was divided in two runs, each run consisting of 
a stress block and a control block, totalling four blocks. Stress and 
control blocks were administered alternately and in a counterbalanced 
order across the two runs. Each block included three pairs of abstract 
stimuli, and each pair of stimuli was presented 24 times, totalling 72 
trials per block. New abstract stimuli were used in each block. Each pair 
of stimuli was associated with a valence: one pair of stimuli was asso
ciated with gains (gain 0.5€ or no change), a second pair was associated 
with losses (loss 0.5€ or no change), and a third pair was associated with 
neutral, or non-financial outcomes (look at a 0.5€ coin or no change). 
Therefore, each block included stimuli associated with gain, loss and 
neutral outcomes. The outcome probabilities were reciprocally 0.75 and 
0.25 for the stimuli in each of the three pairs. That is, in gain trials, one 
stimulus was associated with a probability of 0.75 of winning 0.5€ and 
with a probability of 0.25 of winning nothing (“correct” stimulus), and 
the other stimulus was associated with a probability of 0.25 of winning 
0.5€ and with a probability of 0.75 of winning nothing (“incorrect” 
stimulus); in loss trials, one stimulus was associated with a probability of 
0.75 of losing 0.5€ and with a probability of 0.25 of losing nothing 
(“incorrect” stimulus), and the other stimulus was associated with a 
probability of 0.25 of losing 0.5€ and with a probability of 0.75 of losing 
nothing (“correct” stimulus). We included neutral trials to replicate the 
task described by Pessiglione et al. (2006) and for fMRI checks of simple 
contrasts (data not shown), but given that neutral trials were not asso
ciated with monetary outcomes (i.e., there were no correct/incorrect 
responses during neutral trials), participants behavioural performance 
during these trials was not analysed; regressors for neutral trials were 
included in the fMRI analyses only for control purposes (i.e., regressors 
of no interest). On each trial, one pair was randomly presented on the 
MRI screen, with one stimulus from the pair on the left and the other on 
the right of a central fixation cross (the stimuli position was counter
balanced across trials). Participants were instructed to choose between 
the two visual stimuli displayed on the screen to maximise payoffs. 
Missing choices occurred when participants did not press the response 

keys within 2000 ms (total of 0.20% missing choices: 8 in the stress 
condition and 5 in the control condition, in a total of 6624 trials) and 
were signalled with a “Missed” message (no other outcome was pro
vided). Missing choices were not considered for behavioural data ana
lyses and, where necessary, a regressor for missing choices was included 
in fMRI analyses for control purposes only (i.e., regressor of no interest). 
Before starting the task, participants were informed that they would be 
paid the amount of money obtained during their most profitable block, 
although they all left with the same fixed compensation (15€) for their 
participation. The experiment was programmed and presented with 
Cogent 2000 (http://www.vislab.ucl.ac.uk/cogent.php) implemented 
in MATLAB R2015a (MathWorks). 

2.3. Acute-stress manipulation 

During the scanning session, participants performed two blocks of 
the reinforcement-learning task whilst exposed to a stressor (i.e., stress 
condition) and two blocks without the stressor (i.e., control condition) 
(Fig. 1). By exposing participants to the stressor during the task, we 
aimed to make sure that acute stress was contingent on the learning 
processes. To elicit stress responses, we exposed participants to a pre
dictable, but uncontrollable auditory stimulus: a constant alarm 
(“Annoying modern office building alarm.wav”, retrieved from free 
sound.org, and programmed to loop uninterruptedly), played through 
the scanner with the volume set to the maximum. This uncontrollable 
sound was always constant and repetitive, to minimise the potential 
entanglement between stress and distraction, as evidence suggests that 
unpredictable changes in sound sequences seem to induce distraction 
more robustly (Hughes, 2014; Parmentier, 2014; Parmentier et al., 
2008). Stress blocks were further signalled by a warning sign and a red 
background (Fig. 1a), and control blocks were signalled by a safe sign 
and blue background (Fig. 1b). 

Stress levels were assessed by asking participants at the end of each 
block to rate how stressed they felt during that block on a scale of 1 
(nothing) to 9 (extremely). We showed in a previous behavioural study 
that this stress manipulation increased self-reported stress levels and 
skin conductance responses rate in men (Carvalheiro et al., 2021). 

Fig. 1. Reinforcement-learning task. Inside the scanner, participants chose between two abstract visual stimuli and observed the outcome of their choice, whilst 
under acute stress (a) and under control conditions (b). In the depicted gain trials, the chosen stimulus was associated with a probability of 0.75 of winning 0.5€ and 
with a probability of 0.25 of winning nothing. The other (not chosen) stimulus was associated with a reciprocate probability of 0.75 of winning nothing and a 0.25 
probability of winning 0.5€. In the depicted loss trials, the chosen stimulus was associated with a probability of 0.75 of losing 0.5€ and with a probability of 0.25 of 
losing nothing. The other (not chosen) stimulus was associated with a reciprocate probability of 0.75 of losing nothing and a 0.25 probability of losing 0.5€. 
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2.4. Task-performance analyses 

To examine the impact of acute stress on behavioural choice per
formance during the reinforcement-learning task, we applied a gener
alized linear mixed-effects (glme) model to participants’ trial-by-trial 
choice data (with correct and incorrect choices coded as 1 and 0, 
respectively). We used a “logit” link function to account for the binomial 
distribution of the data. We included as predictor variables in the glme 
model: condition (stress or control), valence (gain or loss), block number 
(1 or 2), trial number (1–24), and the interaction of interest (condition 
× valence). The glme included a fixed intercept, as well as random in
tercepts for each participant. We fitted the glme model to the behav
ioural data using MATLAB’s fitglme function and performed planned 
post-hoc analyses via contrast matrices using MATLAB’s coefTest 
function. 

2.5. fMRI data acquisition and preprocessing 

A Siemens Verio 3T MRI scanner at the Clinical Academic Center – 
Braga with a 32-channel head coil was used to acquire a 5.5 min 3D T1- 
weighted anatomical scan and multislice T2*-weighted echo planar 
images (EPIs) with BOLD contrast. The T2* EPI sequence used the 
following acquisition parameters: field of view = 200 × 200 mm, matrix 
size = 66 × 66 mm, interleaved slice order acquisition, 42 slices with 
slice thickness of 3 mm with no gap between slices, flip angle of 60◦, 
echo time of 22 ms, and repetition time of 2000 ms. Functional task- 
related data were acquired in two runs, separated by a short break 
during which participants remained inside the scanner in the same po
sition. Fieldmaps were acquired for use in the unwarping stage of data 
preprocessing. Imaging data were analysed using SPM12 (www.fil.ion. 
ucl.ac.uk/spm). Data preprocessing followed a standard sequence: the 
first five volumes were discarded, and data were realigned to the sixth 
volume, unwarped using a fieldmap (normalised to the Montreal 
Neurological Institute, MNI, template), and coregistered to the partici
pant’s own anatomical image. The anatomical images were normalised 
using a unified segmentation procedure (Ashburner and Friston, 2005), 
combining segmentation, bias correction, and calculation of the wrap
ping or distortions needed to map the anatomical image into Montreal 
Neurological Institute space (i.e., deformation fields), and then applying 
these warps to the EPI data. The voxel size was resampled to 1.5 × 1.5 ×
1.5 mm. Last, a Gaussian kernel of 8 mm FWHM was applied to smooth 
the images spatially. 

2.6. fMRI data analyses 

2.6.1. Primary general linear model 
The primary fMRI analyses were based on a single general linear 

model, as in previous studies that used a similar reinforcement-learning 
task (Kumar et al., 2018; Pessiglione et al., 2006; Treadway et al., 2017). 
Each trial was modelled as having two time points: stimuli and outcome 
onsets. Note that, although our analyses focused on the prediction errors 
at the onset of outcomes, the onsets of stimuli were also modelled, to 
account for likely shared variance between BOLD signals at the time of 
the stimuli and outcomes. Separate regressors were created for the 6 
types of stimuli [2 conditions (stress/control) × 3 valences (gain/
loss/neutral)] and the 6 types of outcomes [2 conditions (stress/control) 
× 3 valences (gain/loss/neutral)] in each run (see Supplementary Fig. 5 
for an example of a first-level design matrix); the regressors were 
modelled as stick functions and convolved with SPM’s canonical he
modynamic response function (Pessiglione et al., 2006). Each time point 
was regressed with a parametric modulator, separately for gain and loss 
trials: stimuli onset was modulated by the value of the chosen option, 
Qchosen(t); and, importantly, outcome onset was modulated by the pre
diction error, δ(t). Such values and predictions errors were estimated 
trial-wise using a well-established reinforcement-learning model (Frank 
et al., 2007). Briefly, in this reinforcement-learning model, the value of 

the chosen stimulus, Qchosen, is updated on each trial, t, according to the 
following learning rule: Qchosen(t + 1) = Qchosen(t)+ α*δ(t). The pre
diction error, δ(t), is the difference between the actual and the expected 
outcome: δ(t) = r(t) − Qchosen(t), where the reinforcement r(t) is either 
0.5, 0, or − 0.5. The used reinforcement-learning model included sepa
rate learning rates for positive (α+) and negative (α-) prediction errors to 
account for the differential neural signalling of positive and negative 
prediction errors (Maia and Frank, 2011; Schultz et al., 1997). The 
reinforcement-learning model also included the inverse temperature 
parameter, β, which controls the amount of noise in choice selection (see 
Supplementary Material for a detailed description of the 
reinforcement-learning model). Values and prediction errors were esti
mated using the parameters α± and β estimated for each subject in each 
condition and used as separate parametric modulators of neural activity 
at the time of stimuli and outcomes, respectively, either in gain or loss 
trials, in each condition. We also included an additional regressor to 
model missed trials, when participants did not select one of the two 
symbols and there was no outcome. For participants with visible head
motion in a particular scan (scans with >1 mm or 1◦ movement relative 
to the next) an extra regressor was included. Those images were 
removed and replaced with an image created by interpolating the two 
adjacent images to prevent distortion of the between-subjects mask 
(seven participants with visible headmotion; less than 1% of the total 
time series for each of them). Six headmotion parameters modelled the 
residual effects of headmotion. Data were high-pass filtered at 128s to 
remove low-frequency drifts, and the general linear model included an 
AR(1) autoregressive function to account for autocorrelations intrinsic 
to the fMRI time series. 

Our primary analyses focused on prediction errors at outcome. First- 
level contrast images were calculated by applying appropriate linear 
contrasts to the parametric modulators of interest — prediction errors — 
and were entered into second-level analyses. Second-level one-sample t- 
tests were conducted for each contrast using the summary-statistics 
approach to random-effects analysis. Regions of interest (ROI) ana
lyses in the dorsal striatum and nucleus accumbens were conducted 
using an initial threshold of p < 0.001 (uncorrected) and responses were 
considered significant if they survived voxel-level small-volume family- 
wise error correction (SVC-FWE) at p < 0.05. The a priori ROIs — dorsal 
striatum and nucleus accumbens — were anatomically defined using 
masks. Specifically, a bilateral mask for the dorsal striatum was defined 
using a conjunction of the left and right putamen and caudate from the 
automated anatomical labelling (AAL) atlas. A bilateral mask for the 
nucleus accumbens was defined using a conjunction of the left and right 
nucleus accumbens from the Individual Brain Atlases using Statistical 
Parametric Mapping (IBASPM). As the bilateral nucleus accumbens 
mask had a slight overlap with the dorsal striatum mask, we subtracted 
the mask of the nucleus accumbens from the dorsal striatum mask. The 
atlases and the conjunctions were implemented using the WFU PickAtlas 
Toolbox in SPM12. Individual BOLD estimates (i.e., regression slopes) of 
prediction error parametric modulators were extracted from signifi
cantly activated clusters using the MarsBaR toolbox (Brett et al., 2002). 
For completeness, we also explored the impact of acute stress at the 
whole-brain level. Regions are reported at FWE corrected p < 0.05 at 
cluster level following an initial uncorrected threshold of p < 0.001 
(minimum of 10 contiguous voxels). 

2.6.2. Subsidiary general linear models 
To better understand the impact of acute stress on prediction error 

signals, we generated two subsidiary general linear models. Note that 
these two subsidiary models did not include any parametric modulators, 
as our purpose was to visualise how the BOLD response varied along 
different magnitudes of prediction errors. 

For the first subsidiary model, we split prediction errors into four 
equally sized bins. The boundaries of the bins did not differ significantly 
between the stress and control conditions, in gain (all p > 0.071, paired 
t-tests) nor in loss (all p > 0.13, paired t-tests) trials (Supplementary 
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Table 2). Specifically, this first subsidiary general linear model included 
separate regressors for trials corresponding to each bin, in each valence 
(gain and loss) and condition (stress and control), modelled at the 
stimuli and outcome onset (as in the primary general linear model) 
resulting in thirty-two regressors, plus regressors for neutral trials in 
each condition, missing trials (if applicable) and headmotion (and 
visible headmotion, if applicable), for each run. 

For the second subsidiary model, we split prediction errors into 
negative and positive. This model included separate regressors for trials 
corresponding to negative and positive prediction errors, in each 
valence (gain and loss) and condition (stress and control), modelled at 
the stimuli and outcome onset (as in the primary general linear model) 
resulting in sixteen regressors, plus regressors for neutral trials in each 
condition, missing trials (if applicable) and headmotion (and visible 
headmotion, if applicable), for each run. 

In both subsidiary models, the average BOLD estimates at the 
outcome onset (when prediction errors occur) were extracted from the 
significant dorsal striatum cluster identified in the primary general 
linear model, using the MarsBaR toolbox (Brett et al., 2002). 

3. Results 

3.1. Behavioural analyses 

3.1.1. Manipulation check 
First, we computed the difference in self-reported stress levels be

tween the stress and control conditions in the total sample (n = 37). 
Twenty-three participants reported higher stress levels in the stress 
condition than in the control condition (Fig. 2a). Then, we conducted 
analyses of variance (ANOVAs) with condition (stress and control) and 
block (1 and 2) as within-subject factors in those 23 participants (see 
Supplementary Material for manipulation-check analyses of the total 
sample). Self-reported stress levels differed significantly between con
ditions (F1,22 = 69.28, p < 0.001, ƞ2 = 0.76) (Fig. 2b), but there was no 
main effect of block (F1,22 = 0.008, p = 0.93, ƞ2 = 0) and the condition ×
block interaction was also non-significant (F1,22 = 1.21, p = 0.28, ƞ2 =

0.052). This suggests that self-reported stress levels increased with the 
acute-stress manipulation and remained stable across blocks within each 
condition for these participants. Participants whose self-reported levels 

Fig. 2. Manipulation check and task performance. (a) Difference in self-reported stress levels between the stress and control conditions (averaged across blocks). 
Each grey dot represents a participant (n = 37). Participants who reported higher stress levels in the stress than in the control condition correspond to the dots above 
the horizontal dashed line (n = 23). (b) Self-reported stress levels in stress (red) and control (blue) conditions (averaged across blocks) in the pool of participants that 
reported higher stress levels in the stress than in the control condition (n = 23). (c) Learning curves represent the trial-by-trial percentage of participants (n = 23) 
who chose the correct gain stimulus (associated with a probability of 0.75 of winning 0.5€; upper part of the graph) and the incorrect loss stimulus (associated with a 
probability of 0.75 of losing 0.5€; lower part of the graph), in the stress and control conditions. Each central line represents the mean and each filled area the 
±standard error of the mean. (d) Percentage of correct choices per participant (n = 23) in gain and loss trials, across the stress and control conditions (averaged 
across blocks). In graphs b and d, connected dots represent data points from the same participant, and more transparent (opaque) dots represent less (more) 
overlapping data points; error bars displayed on the sides of those scatter plots indicate the mean ± standard error of the mean. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of this article.) 
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of stress did not increase with the acute stress induction were excluded 
from the following analyses (but see Supplementary Material for total 
sample analyses). 

3.1.2. Task performance 
To assess whether acute stress blunted reward learning, we examined 

the impact of acute stress on choice performance during the 
reinforcement-learning task (Fig. 2c). We used a generalized linear 
mixed-effects (glme) model, which accounted for the binomial distri
bution of the trial-by-trial data (correct or incorrect responses). The 
glme model included condition (stress or control), valence (gain or loss), 
block number (1 or 2), trial number (1–24), and the interaction of in
terest (condition × valence) as predictor variables. We found a signifi
cant condition × valence interaction (β = − 0.39, p = 0.0038, 95% CI =
[− 0.66, − 0.13]) (Fig. 2d). Planned post-hoc analyses showed that under 
stress, comparatively to the control condition, participants performed 
significantly worse when learning to obtain gains (F1, 4400 = 20.23, p <
0.001), but not when learning to avoid losses (F1, 4400 = 0.32, p = 0.57). 
Additionally, we identified one participant who showed an abnormally 
low percentage of correct answers during trials in the control condition 
(8.3%, Fig. 2d), which might reflect aberrant learning (although the 
overall performance of this participant during the whole task was above 
chance levels). Therefore, we repeated the analyses excluding this 
participant and confirmed that the significance of the interaction 
remained unchanged (condition × valence interaction: β = − 0.69, p <
0.001, 95% CI = [− 0.97, − 0.41]). 

In sum, acute stress selectively impaired choice performance towards 
monetary gains during the reinforcement-learning task. 

3.2. fMRI analyses 

3.2.1. Primary general linear model 

3.2.1.1. Prediction error signals in the striatum. To examine the impact of 
acute stress on prediction error signalling in the striatum during rein
forcement learning, we generated a primary fMRI general linear model 
that included prediction errors as parametric modulators of BOLD 
response in the striatum (dorsal striatum and nucleus accumbens) at the 
time of the outcomes in gain and loss trials, in the stress and control 
conditions (see “Material and methods” and Supplementary Fig. 5 for 
further details on the primary general linear model). Prediction errors 
were estimated in the stress and control conditions using a 
reinforcement-learning model that has been extensively used to inves
tigate the behavioural and neural impact of pharmacological manipu
lations and genetic variations in the dopaminergic system in humans 
(Diederen et al., 2017; Doll et al., 2011; Frank et al., 2007; Frank and 
Fossella, 2011; Grogan et al., 2017; Rutledge et al., 2009). The 
computational modelling methods, results and respective discussion can 
be found in the Supplementary Material (see “Computational model
ling” section). Parametric analyses incorporating prediction errors allow 
a more precise estimation of how brain activity fluctuates during 
learning compared to examination of outcome-associated activation 
alone (O’Doherty et al., 2007). 

As expected, we observed that BOLD response in the dorsal striatum 
and nucleus accumbens — regions consistently shown to respond to 
unexpected rewards and punishments (Fouragnan et al., 2018; Garrison 
et al., 2013; Pessiglione et al., 2006) — scaled parametrically with the 
magnitude of prediction errors at the time of the outcomes, during gain 
and loss trials, in both conditions. Specifically, we identified a positive 
parametric modulation of prediction errors in the dorsal striatum 
bilaterally (i.e., the magnitude of the prediction errors correlated posi
tively with BOLD response in this region on a trial-by-trial basis), during 
gain and loss trials, in both conditions [all Z > 4.12, p < 0.05, voxel-level 
small-volume family-wise error corrected (SVC-FWE)]. We also found a 
positive parametric modulation of prediction errors in the nucleus 

accumbens during gain trials, in both conditions, and during loss trials in 
the control condition (all Z > 3.63, p < 0.05, SVC-FWE; see Supple
mentary Table 1 for whole-brain and all SVC-FWE results). 

3.2.1.2. Effects of acute stress on prediction error signals in the striatum. 
After confirming that striatal activity scaled parametrically with the 
magnitude of prediction errors, we inspected whether acute stress 
affected prediction error signals in the striatum. To examine whether 
acute stress would blunt signalling of prediction errors in the striatum 
during reward learning, first we tested the main effect of stress using the 
control > stress contrast for the parametric modulation of prediction 
errors at the time of the outcomes delivered across gain and loss trials in 
each condition. A significant main effect would mean that acute stress 
decreased prediction error signals across gain and loss trials. Second, we 
tested the contrast for the condition (stress or control) × valence (gain or 
loss) interaction. A significant interaction would mean that acute stress 
affected prediction error signals differently in gain and loss trials. 

The contrast control > stress showed a significant main effect of 
stress on the parametric modulation of prediction errors in the dorsal 
striatum ([x = 32, y = 0, z = 12], Z = 4.08, k = 26, p = 0.040, SVC-FWE) 
(Fig. 3a), meaning that prediction error signals were decreased in the 
stress condition compared with the control condition, both in gain and 
loss trials (Fig. 3b). Confirmatory one sample t-tests comparing the 
parameter estimates (i.e., the regression slopes from the primary general 
linear model) extracted from the identified dorsal striatum cluster 
against zero, indicated that the parametric modulation of prediction 
errors was significantly higher than zero in the control condition, both 
for gain and loss trials (both p < 0.023), but not in the stress condition 
(both p > 0.33) (Fig. 3b). We did not observe any significant responses 
for the parametric modulation of prediction errors in the nucleus 
accumbens for the control > stress contrast (nor for the inverse contrast 
stress > control). 

For the contrast that tested the condition × valence interaction, we 
did not find any significant activations in the dorsal striatum nor in the 
nucleus accumbens. This non-significant interaction, together with the 
significant main effect described above, indicates that acute stress 
blunted prediction errors in the dorsal striatum both in gain and loss 
trials. 

For completeness, we also explored whether acute stress affected 
prediction error signals in other brain areas by searching for significant 
activations in the whole brain. For the contrast control > stress, no 
significant activations were found (FWE corrected p < 0.05 at cluster 
level following an initial uncorrected threshold of p < 0.001). For the 
contrast that tested the condition × valence interaction we found sig
nificant activations in two temporal clusters (Supplementary Fig. 6a), 
one of which extended to the insula ([− 47 6–11], Z = 4.23, k = 218, p =
0.015, FWE corrected p < 0.05 at cluster level following an initial un
corrected threshold of p < 0.001), which has been associated with 
prediction error signals during punishment learning (Garrison et al., 
2013; Pessiglione et al., 2006). Within this cluster, we found a positive 
parametric modulation of prediction errors during gain trials in the 
control condition, but in the stress condition such modulation was 
negative and significantly decreased compared with the control condi
tion (t22 = 3.2, p = 0.0041); during loss trials, we found a negative 
parametric modulation of prediction errors in the control condition, but 
in the stress condition such modulation was positive and significantly 
increased compared with the control condition (t22 = 2.98, p = 0.0069) 
(Supplementary Fig. 6b). 

3.2.1.2.1. Associations between prediction error signals in the striatum 
under acute stress and self-reported stress levels. To assess whether the 
identified modulation of prediction errors under stress varied with self- 
reported stress responsivity, we correlated the parameter estimates 
extracted from the dorsal striatum cluster with the difference in self- 
reported levels between the stress and control conditions. We found a 
trend towards a negative association between the parametric 
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modulation of prediction errors during gain trials in the stress condition 
and self-reported stress responsivity (rs = − 0.40, p = 0.059); moreover, 
such negative association was stronger and significant in the total 
sample (rs = − 0.52, p < 0.001; Supplementary Fig. 4), which allowed us 
to obtain a more complete picture of how prediction error signalling 
varied across a larger range of self-reported stress responsivity levels. 
These results indicate that participants who reported the greatest in
crease in stress levels in response to the acute stressor showed the 
greatest reduction in signalling of prediction errors in the dorsal stria
tum during gain trials under acute stress. 

Overall, we found that the BOLD response in the dorsal striatum 
scaled parametrically with the magnitude of prediction errors during 
reward and punishment learning, both under acute stress and control 
conditions. More importantly, we found that signalling of prediction 
errors in the dorsal striatum was blunted by acute stress. Additionally, 
such blunting was related to self-reported stress responsivity levels. 

3.2.2. Subsidiary general linear models 
To illustrate the effect of acute stress on the parametric modulation 

of prediction errors in the dorsal striatum described in the previous 

section, we conducted a subsidiary general linear model. In this sub
sidiary model, we extracted estimates of BOLD response across trials of 
different categories of prediction error magnitudes from the dorsal 
striatum cluster that we had previously identified (cluster represented in 
Fig. 3a). Specifically, in this subsidiary model, trials from each condition 
(i.e., stress and control) and valence (i.e., gain and loss) were further 
divided into four bins corresponding to quartiles of magnitude of pre
diction errors (see Supplementary Table 2 for median and boundaries of 
each bin). Parameter estimates of BOLD response at the outcome onset 
were extracted from the dorsal striatum cluster for each subject (see 
“Material and methods” for full description) and plotted to illustrate the 
variation in the BOLD response in the dorsal striatum cluster along the 
magnitude of prediction errors. The blunting effect of stress on predic
tion error signals in the dorsal striatum (both in gain and loss trials) 
seemed to be mostly driven by decreased signalling of prediction errors 
of higher magnitude (Fig. 3c). Relatedly, the 1st bin and 4th bins 
roughly corresponded to negative and positive prediction errors, 
respectively (Supplementary Table 2), suggesting that acute stress 
mostly decreased positive prediction error signals. 

To further explore whether acute stress had preferentially blunted 

Fig. 3. Effects of acute stress on prediction error 
signalling in the dorsal striatum. (a) Cluster in the 
dorsal striatum where the modulation of prediction 
errors at the time of the outcome was significantly 
decreased in the stress condition compared with the 
control condition (SVC-FWE, p < 0.05). (b) Bars 
depict parameter estimates (i.e., regression slopes) 
for the BOLD response at the dorsal striatum cluster 
[from (a)] modulated by trial-by-trial prediction 
errors, in gain and loss trials, across the stress (red) 
and control (blue) conditions (n = 23). (c, d) 
Graphs represent the modulation of BOLD response 
by prediction errors at the time of the outcome in 
gain (left) and loss (right) trials, in the dorsal 
striatum cluster identified in the primary general 
linear model [depicted in (a)], in the stress (red) 
and control (blue) conditions (n = 23). BOLD 
response estimates within the dorsal striatum clus
ter were extracted for each participant. Error bars 
indicate the mean ± standard error of the mean. In 
(c), data for illustrative graphs were derived from a 
subsidiary model where trials were divided into 
quartiles of magnitude of prediction errors (with the 
lowest and highest magnitudes corresponding to 
bins 1 and 4, respectively). In (d), the plotted data 
were obtained from a second subsidiary model 
where trials were divided into negative and positive 
prediction errors. (For interpretation of the refer
ences to colour in this figure legend, the reader is 
referred to the Web version of this article.)   
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signalling of positive prediction errors during reward and punishment 
learning, we conducted an additional parametric modulation model 
similar to the primary general linear model, but this time we modelled 
positive and negative prediction errors separately for either gain or loss 
trials. We did not find any parametric modulations of the dorsal striatum 
or nucleus accumbens response by positive nor negative prediction er
rors, likely due to reduced variance within each parametric modulator. 
Therefore, and for completeness, we performed a second subsidiary 
general linear model (see “Material and methods” for full description). 
In this subsidiary model, trials from each condition (i.e., stress or con
trol) and valence (i.e., gain or loss) were further divided according to the 
prediction error valence (i.e., positive or negative). We extracted esti
mates of BOLD response in the dorsal striatum cluster (cluster repre
sented in Fig. 3a) at the outcome onset, when positive or negative 
prediction errors occurred, and performed an ANOVA on those estimates 
derived from the subsidiary model. We found a significant condition ×
prediction error valence interaction (F1,22 = 8.84, p = 0.007, η2 = 0.29) 
(Fig. 3d), indicating that acute stress differently affected positive and 
negative prediction errors, both in gain and loss trials (the condition ×
prediction error valence × trial valence interaction was non-significant, 
F1,22 = 0.047, p = 0.83, η2 = 0.0020). Post-hoc planned comparisons 
were non-significant, but inspection of effect sizes suggested that acute 
stress decreased positive prediction error signals (paired t-tests in gain 
trials: t22 = − 1.36, p = 0.19, Cohen’s d = − 0.28; in loss trials: t22 =

− 1.12, p = 0.27, Cohen’s d = − 0.23) to a larger extent than negative 
prediction errors (paired t-tests in gain trials: t22 = 0.48, p = 0.64, 
Cohen’s d = 0.10; in loss trials: t22 = 0.86, p = 0.40, Cohen’s d = 0.18) 
(Fig. 3d), in line with the previous subsidiary analysis of prediction error 
bins depicted in Fig. 3c. Additionally, we repeated all the fMRI analyses 
excluding the participant who responded correctly in only 8.3% of gain 
trials during the control condition, and the interpretation of the results 
remained unchanged (see Supplementary Fig. 7). 

Taken together, subsidiary data suggests that acute stress mostly 
decreased positive prediction errors signals. 

4. Discussion 

4.1. Effects of acute stress on prediction error signals during 
reinforcement learning 

Acute stress is ubiquitous in modern day-to-day life and previous 
studies have found that it impacts reinforcement learning. Yet, the 
mechanisms that underlie the impact of acute stress on reinforcement 
learning are still poorly understood. Acute stress alters human striatal 
dopaminergic functioning (Booij et al., 2016; Cabib and Puglisi-Allegra, 
2012; Pruessner et al., 2004; Vaessen et al., 2015), and dopaminergic 
functioning plays a key role in signalling of prediction errors (Daw and 
Tobler, 2014; Glimcher, 2011; Maia and Frank, 2011; Pessiglione et al., 
2006) — the result of a positive or negative difference between obtained 
and expected outcomes — which drive reward and punishment learning. 
Thus, we set out to test whether acute stress impaired reward learning by 
blunting prediction error signals in the striatum and further explored the 
putative impact of acute stress on punishment learning. 

In line with extant literature (Berghorst et al., 2013; Bogdan et al., 
2011; Bogdan and Pizzagalli, 2006; Cremer et al., 2021; de Berker et al., 
2016; Ehlers and Todd, 2017; Morris and Rottenberg, 2015; Paret and 
Bublatzky, 2020), we replicated our previous finding that acute stress 
impairs reward-seeking performance (Carvalheiro et al., 2021). We had 
originally shown this in a larger, independent university male sample (n 
= 62), but we now show additionally that this behavioural impairment 
was accompanied by blunted signalling of prediction errors in the dorsal 
striatum. Although neural data indicated that acute stress also blunted 
prediction error signals in the dorsal striatum during punishment 
learning, this was not observed at the behavioural level. Relatedly, 
subsidiary analyses suggested that acute stress blunted positive predic
tion error signals preferentially, which might explain the differential 

impact of acute stress on reward and punishment learning. 
Our finding that acute stress blunted signalling of prediction errors 

— and mostly positive prediction errors — in the dorsal striatum during 
reward learning is consistent with a neurobiological framework of 
stress-induced dopamine disruptions. Prediction errors are encoded in 
phasic activity of dopaminergic neurons (Daw and Tobler, 2014; 
Glimcher, 2011; Schultz et al., 1997). Phasic bursts of dopaminergic 
neurons are thought to adaptively encode positive prediction errors, 
whereas dopamine dips have been associated with the adaptive encod
ing of negative prediction errors (Daw and Tobler, 2014; Schultz et al., 
1997). However, phasic-dopamine responses do not seem to be always 
adaptive, and there is evidence that dopamine can be phasically released 
in an aberrant spontaneous manner (Grace, 2016; Maia and Frank, 2017; 
Sulzer et al., 2016; Wightman et al., 2007). Relatedly, studies with 
non-human male animals suggest that acute stress induces aberrant 
spontaneous dopamine release (Anstrom et al., 2009; Anstrom and 
Woodward, 2005; Valenti et al., 2011). It is therefore possible that, if 
acute stress increases aberrant spontaneous phasic-dopamine release, 
then phasic dopamine release that signals positive prediction errors is 
less easily differentiated from background fluctuations in dopamine 
levels, resulting in a low signal to noise ratio (Grace, 2016; Sulzer et al., 
2016). 

In addition, if there is increased aberrant spontaneous release of 
dopamine, then less dopamine may be available to be released from 
dopaminergic neurons when positive prediction errors occur (Sulzer 
et al., 2016). Thus, stress-induced aberrant dopamine release may 
indirectly or directly blunt positive prediction errors that signal unex
pected rewards (Daberkow et al., 2013; Maia and Frank, 2017; Werlen 
et al., 2020), resulting in impaired reward learning. Furthermore, we 
previously showed, using computational modelling, that acute stress 
decreases the learning rate for positive prediction errors (Carvalheiro 
et al., 2021), which is in striking agreeement with our neuroimaging 
data. Stress-induced blunted prediction errror signals — and preferen
tially positive prediction errors — in the dorsal striatum during reward 
learning might explain why individuals have difficulties in updating 
their behaviour in response to unexpected rewards when under acute 
stress. 

Previous work suggests that punishment learning may not be 
affected by acute stress to the same extent as reward learning is (Ber
ghorst et al., 2013; Carvalheiro et al., 2021; Porcelli and Delgado, 2017). 
In this study we did not find evidence of a behavioural impairment of 
acute stress on punishment learning. Although our neuroimaging data 
initially suggested an effect of acute stress on the signalling of prediction 
errors in the dorsal striatum during punishment learning, further sub
sidiary analyses indicated that the main effect of stress on prediction 
errors seems to be mostly explained by decreased signalling of positive 
prediction errors. It is thus possible that acute stress compromises the 
ability to use dopamine phasic bursts that signal positive prediction 
errors but not to use dopamine dips that encode negative prediction 
errors. Indeed, empirical evidence suggests that aberrant spontaneous 
dopamine release decreases striatal adaptive phasic dopamine responses 
that signal positive prediction errors (Daberkow et al., 2013; Werlen 
et al., 2020), and, only more speculatively, negative prediction errors 
(Maia and Frank, 2017). Although positive prediction errors can also 
occur during punishment learning, in simple reinforcement-learning 
tasks, such as ours, punishment learning seems to be largely driven by 
negative prediction errors (Palminteri and Pessiglione, 2017). Conse
quently, stress-induced disruptions in positive prediction errors might 
not necessarily be reflected in impaired learning from punishments. 
Finally, non-dopaminergic mechanisms may also be involved in pun
ishment learning (Boureau and Dayan, 2011; Daw et al., 2002), which 
might partially explain why previous studies using similar 
reinforcement-learning tasks also did not find significant effects of 
pharmacological manipulations of the dopaminergic system on pun
ishment learning (Eisenegger et al., 2014; Pessiglione et al., 2006). 

The dorsal striatum has been associated with reward-based action 
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selection (O’Doherty et al., 2004; Schönberg et al., 2007) — and is thus 
thought to play a key role in instrumental learning tasks, such as ours, by 
maintaining information about action-contingent response-reward as
sociations to guide future choices based on the outcomes of past ones — 
whereas the ventral portion of the striatum, the nucleus accumbens, has 
been more implicated in classical conditioning (O’Doherty et al., 2004). 
By blunting prediction error signals in the dorsal striatum, acute stress 
may thus impair learning of stimulus-response-reward associations, 
which are crucial to perform our reinforcement-learning task. We did 
not find evidence for an effect of acute stress on prediction errors within 
the nucleus accumbens. Although previous studies suggest that acute 
stress affects prediction error signals in the nucleus accumbens (Rob
inson et al., 2013; Treadway et al., 2017), other recent study has found 
that acute stress affects prediction error signals in the dorsal striatum 
(putamen) but not in the nucleus accumbens (Cremer et al., 2021). In 
addition, although there is considerable evidence from non-human an
imal studies that acute stress affects dopaminergic functioning in the 
ventral tegmental area (Anstrom et al., 2009; Anstrom and Woodward, 
2005; Valenti et al., 2011), which densely projects to the nucleus 
accumbens, it is plausible that different dopaminergic subpopulations 
are affected to a different extent during stress depending on the task 
being executed, as well as on the duration and type of the stressor (Holly 
and Miczek, 2016). Our results provide evidence that acute stress blunts 
prediction error signals in the dorsal striatum, but different stressors 
may affect distinct regions of the striatum and the functions they support 
differently. 

Additionally, our exploratory whole-brain analyses suggest that 
acute stress might affect other brain areas, such as temporal areas and 
the insula. The anterior insula has been associated with prediction error 
signals in aversive contexts (Fouragnan et al., 2018; Garrison et al., 
2013; Pessiglione et al., 2006), but it is also thought to play an important 
role in signalling salience (Rutledge et al., 2010) or surprise of an 
outcome (i.e., unsigned prediction errors) (Fouragnan et al., 2018). Our 
whole-brain analyses, focused on a temporal cluster that extended to the 
insula in the control condition, pointed to a positive modulation of 
prediction errors (i.e., the BOLD response increased as the magnitude of 
prediction errors increased) during reward learning, but to a negative 
modulation of prediction errors (i.e., the BOLD response increased as the 
magnitude of prediction errors decreased) during punishment learning, 
which seems consistent with a role of the insula in coding salience 
(Rutledge et al., 2010); moreover, acute stress seems to affect these 
differential modulations during reward and punishment learning. Thus, 
it is possible that acute stress interferes not only with the parametric 
modulation of prediction errors in the dorsal striatum, but also with 
computations of salience in other brain areas. Further studies are 
required to better understand the impact of acute stress on the neuro
computational mechanisms of classical and instrumental reward and 
punishment learning and could focus not only on the striatum, but also 
on other brain areas, such as the anterior insula. 

Our findings suggest that, when under acute stress, the value of ac
tions that resulted in past rewarding outcomes is disrupted — due to 
blunted signalling and integration of positive prediction errors — and it 
is less likely that such action is chosen in the future. It is not well-known 
yet how this might translate into real-life settings, but it can be specu
lated that under stress people might not engage so much in novel 
pleasant actions, such as starting a new hobby, because the positive 
outcomes that result from those actions are more poorly signalled, 
decreasing the value of the actions and the likelihood of selecting them 
again in the future. This can be partially linked with experimental evi
dence that acute stress increases habitual behaviours (Porcelli and 
Delgado, 2017; Schwabe and Wolf, 2009; Smeets et al., 2019), which are 
characterised by a loss of sensitivity to the rewarding outcomes of ac
tions and do not require update of reward expectations (Lingawi et al., 
2016). In other words, it is possible that acute stress interferes with 
selection of actions that implicate update of expectations via prediction 
errors, and particularly positive prediction errors. Interestingly, it has 

been argued that effective psychotherapies, such as cognitive behav
ioural therapy, work by challenging and updating such expectations via 
prediction errors to induce new learning and behavioural change (Nair 
et al., 2020; Queirazza et al., 2019; Papalini et al., 2020). Therefore, our 
findings might have implications for the design of psychological in
terventions focused on targeting the negative impact of acute stress on 
reward learning. 

4.2. Limitations 

In this study, we induced acute stress in participants, using a repet
itive and uncontrollable sound. This manipulation was previously vali
dated outside the scanner [for a thorough discussion about the choice 
and validation of the stressor see Carvalheiro et al. (2021)]. In the 
current study, the stressor increased self-reported stress levels, although 
to a lesser extent than in our previous experiment. One potential 
explanation for this discrepancy is that, inside the scanner, the stressor 
was not as salient as it was outside the scanner. We used additional vi
sual cues as warning signals and coloured backgrounds to amplify the 
effects of the stress manipulation. Importantly, our data showed that, 
under acute stress, signalling of prediction errors during reward learning 
decreased as the difference in self-reported stress between the stress and 
control conditions (i.e., stress responsivity) increased, suggesting that 
prediction error signals are not only affected by the presence of acute 
stress, but also that these neural signals may vary negatively with 
perceived changes in stress levels. 

In the present work, we were unable to analyse physiological re
sponses due to technical limitations. However, we had previously shown 
that our stress manipulation increased skin conductance response rate 
(Carvalheiro et al., 2021). The inclusion of physiological measures, such 
as skin conductance, heart rate and cortisol, in future research would be 
useful to further validate the efficacy of our stress manipulation, while 
providing valuable information on individual differences in stress 
responsivity. 

The reinforcement-learning model used in this work, which includes 
separate learning rates for positive and negative prediction errors (Frank 
et al., 2007), is well-established and has been extensively used to 
investigate the cognitive and behavioural impact of pharmacological 
manipulations and genetic variations in the dopaminergic system in 
humans (e.g., Diederen et al., 2017; Doll et al., 2011; Frank and Fossella, 
2011; Frank et al., 2007; Grogan et al., 2017; Rutledge et al., 2009). 
However, given the inter-individual variability in the extent to which 
participants learned how to seek rewards and avoid punishments under 
acute stress and control conditions, it is possible that behavioural data 
from some participants might be better fit with alternative 
reinforcement-learning models (Wilson and Collins, 2019). 

Our fMRI study was not designed to test specific neural effects of 
acute stress on positive and/or negative prediction errors and can only 
provide tentative evidence for this association. We built subsidiary fMRI 
models to assess potential effects of acute stress that varied according to 
the sign of prediction error, and we conducted exploratory analyses on 
the estimates obtained from those models without correction for mul
tiple testing. Although our findings are preliminary, they seem relevant 
and could be used to generate and test specific hypothesis in future 
studies. 

fMRI studies have consistently shown that the reinforcement- 
learning task used in our work captures BOLD response in the striatum 
associated with prediction error signals (Pessiglione et al., 2006; Kumar 
et al., 2018; Lefebvre et al., 2017; Palminteri et al., 2015; Treadway 
et al., 2017; Voon et al., 2010). However, to better argue for a robust 
effect of acute stress on striatal prediction errors and to make inferences 
about individual differences, further investigations could benefit from 
examining the reliability of our task-fMRI measures (Elliott et al., 2020). 

To avoid potential confounding effects of menstrual-cycle-dependent 
variation on stress responsivity (Ossewaarde et al., 2010) as well as on 
reward and punishment learning (Diekhof and Ratnayake, 2016; Dreher 
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et al., 2007), only men were included in this study. Our behavioural 
findings seem to be in line with previous reports showing that acute 
stress disrupts reward learning in women (Berghorst et al., 2013; Bogdan 
et al., 2011; Bogdan and Pizzagalli, 2006; Morris and Rottenberg, 2015; 
Paret and Bublatzky, 2020), but further studies are needed to assess 
whether acute stress affects the same neurocomputational mechanisms 
of reinforcement learning in both men and women. Furthermore, given 
that our stress manipulation did not increase stress levels in all partici
pants, future studies should explicitly account for individual differences 
and for the modulatory role of those individual differences on the neural 
mechanisms that underlie altered reinforcement learning under acute 
stress. 

5. Conclusions 

We present evidence that acute stress blunts prediction error signals 
in the dorsal striatum during reinforcement learning. This effect seems 
to be mostly driven by decreased positive prediction error signals, which 
might explain why individuals learn worse from the rewarding out
comes of their choices when under acute stress. Our findings are 
consistent with a neurobiological framework of stress-induced dopa
mine disruptions and can contribute to a better understanding of the 
neural mechanisms that underlie the deleterious impact of acute stress 
on reward learning. Ultimately, this study may offer important mecha
nistic insights into the impact of acute stress in everyday life as well as 
on designing appropriate interventions. 
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de Kloet, E.R., Joëls, M., Holsboer, F., 2005. Stress and the brain: from adaptation to 
disease. Nat. Rev. Neurosci. 6 (6), 463–475. https://doi.org/10.1038/nrn1683. 

Diederen, K.M.J., Ziauddeen, H., Vestergaard, M.D., Spencer, T., Schultz, W., Fletcher, P. 
C., 2017. Dopamine modulates adaptive prediction error coding in the human 
midbrain and striatum. J. Neurosci. 37 (7), 1708–1720. https://doi.org/10.1523/ 
JNEUROSCI.1979-16.2016. 

Diekhof, E.K., Ratnayake, M., 2016. Menstrual cycle phase modulates reward sensitivity 
and performance monitoring in young women: preliminary fMRI evidence. 
Neuropsychologia 84, 70–80. https://doi.org/10.1016/j. 
neuropsychologia.2015.10.016. 

Doll, B.B., Hutchison, K.E., Frank, M.J., 2011. Dopaminergic genes predict individual 
differences in susceptibility to confirmation bias. J. Neurosci. 31 (16), 6188–6198. 
https://doi.org/10.1523/JNEUROSCI.6486-10.2011. 

Dreher, J.-C., Schmidt, P.J., Kohn, P., Furman, D., Rubinow, D., Berman, K.F., 2007. 
Menstrual cycle phase modulates reward-related neural function in women. Proc. 
Natl. Acad. Sci. Unit. States Am. 104 (7), 2465–2470. https://doi.org/10.1073/ 
pnas.0605569104. 

Ehlers, M.R., Todd, R.M., 2017. Acute psychophysiological stress impairs human 
associative learning. Neurobiol. Learn. Mem. 145, 84–93. https://doi.org/10.1016/j. 
nlm.2017.09.003. 

Eisenegger, C., Naef, M., Linssen, A., Clark, L., Gandamaneni, P.K., Müller, U., 
Robbins, T.W., 2014. Role of dopamine D2 receptors in human reinforcement 
learning. Neuropsychopharmacology 39 (10), 2366–2375. https://doi.org/10.1038/ 
npp.2014.84. 

Elliott, M.L., Knodt, A.R., Ireland, D., Morris, M.L., Poulton, R., Ramrakha, S., Sison, M. 
L., Moffitt, T.E., Caspi, A., Hariri, A.R., 2020. What is the test-retest reliability of 
common task-functional MRI measures? New empirical evidence and a meta- 

J. Carvalheiro et al.                                                                                                                                                                                                                            

https://doi.org/10.1016/j.ynstr.2021.100412
https://doi.org/10.1016/j.ynstr.2021.100412
https://doi.org/10.1111/j.1471-4159.1989.tb09224.x
https://doi.org/10.1111/j.1471-4159.1989.tb09224.x
https://doi.org/10.1038/sj.npp.1300730
https://doi.org/10.1038/sj.npp.1300730
https://doi.org/10.1016/j.neuroscience.2009.03.023
https://doi.org/10.1016/j.neuroimage.2005.02.018
https://doi.org/10.3389/fnhum.2013.00133
https://doi.org/10.3389/fnhum.2013.00133
https://doi.org/10.1016/j.biopsych.2006.03.037
https://doi.org/10.1016/j.biopsych.2006.03.037
https://doi.org/10.1523/JNEUROSCI.2661-11.2011
https://doi.org/10.1038/tp.2016.6
https://doi.org/10.1038/npp.2010.151
http://refhub.elsevier.com/S2352-2895(21)00120-X/sref10
http://refhub.elsevier.com/S2352-2895(21)00120-X/sref10
http://refhub.elsevier.com/S2352-2895(21)00120-X/sref10
https://doi.org/10.1016/j.neubiorev.2011.04.012
https://doi.org/10.1016/j.neubiorev.2011.04.012
https://doi.org/10.1016/j.bandc.2020.105657
https://doi.org/10.1016/j.bandc.2020.105657
https://doi.org/10.1016/j.neuroimage.2021.117747
https://doi.org/10.1523/JNEUROSCI.2136-12.2013
http://www.sciencedirect.com/science/article/pii/B9780124160088000152
http://www.sciencedirect.com/science/article/pii/B9780124160088000152
https://doi.org/10.1016/s0893-6080(02)00052-7
https://doi.org/10.1016/s0893-6080(02)00052-7
https://doi.org/10.1038/srep29816
https://doi.org/10.1038/srep29816
https://doi.org/10.1038/nrn1683
https://doi.org/10.1523/JNEUROSCI.1979-16.2016
https://doi.org/10.1523/JNEUROSCI.1979-16.2016
https://doi.org/10.1016/j.neuropsychologia.2015.10.016
https://doi.org/10.1016/j.neuropsychologia.2015.10.016
https://doi.org/10.1523/JNEUROSCI.6486-10.2011
https://doi.org/10.1073/pnas.0605569104
https://doi.org/10.1073/pnas.0605569104
https://doi.org/10.1016/j.nlm.2017.09.003
https://doi.org/10.1016/j.nlm.2017.09.003
https://doi.org/10.1038/npp.2014.84
https://doi.org/10.1038/npp.2014.84


Neurobiology of Stress 15 (2021) 100412

11

analysis. Psychol. Sci. 31 (7), 792–806. https://doi.org/10.1177/ 
0956797620916786. 

Fouragnan, E., Retzler, C., Philiastides, M.G., 2018. Separate neural representations of 
prediction error valence and surprise: evidence from an fMRI meta-analysis. Hum. 
Brain Mapp. 39 (7), 2887–2906. https://doi.org/10.1002/hbm.24047. 

Frank, M.J., Fossella, J.A., 2011. Neurogenetics and pharmacology of learning, 
motivation, and cognition. Neuropsychopharmacology 36 (1), 133–152. https://doi. 
org/10.1038/npp.2010.96. 

Frank, M.J., Moustafa, A.A., Haughey, H.M., Curran, T., Hutchison, K.E., 2007. Genetic 
triple dissociation reveals multiple roles for dopamine in reinforcement learning. 
Proc. Natl. Acad. Sci. Unit. States Am. 104 (41), 16311–16316. https://doi.org/ 
10.1073/pnas.0706111104. 

Garrison, J., Erdeniz, B., Done, J., 2013. Prediction error in reinforcement learning: a 
meta-analysis of neuroimaging studies. Neurosci. Biobehav. Rev. 37 (7), 1297–1310. 
https://doi.org/10.1016/j.neubiorev.2013.03.023. 

Glimcher, P.W., 2011. Understanding dopamine and reinforcement learning: the 
dopamine reward prediction error hypothesis. Proc. Natl. Acad. Sci. Unit. States Am. 
108 (Suppl. 3), 15647. https://doi.org/10.1073/pnas.1014269108. 

Grace, A.A., 2016. Dysregulation of the dopamine system in the pathophysiology of 
schizophrenia and depression. Nat. Rev. Neurosci. 17 (8), 524–532. https://doi.org/ 
10.1038/nrn.2016.57. 

Grogan, J.P., Tsivos, D., Smith, L., Knight, B.E., Bogacz, R., Whone, A., Coulthard, E.J., 
2017. Effects of dopamine on reinforcement learning and consolidation in 
Parkinson’s disease. ELife 6. https://doi.org/10.7554/eLife.26801. 

Hermans, E.J., Henckens, M.J.A.G., Joëls, M., Fernández, G., 2014. Dynamic adaptation 
of large-scale brain networks in response to acute stressors. Trends Neurosci. 37 (6), 
304–314. https://doi.org/10.1016/j.tins.2014.03.006. 

Holly, E.N., Miczek, K.A., 2016. Ventral tegmental area dopamine revisited: effects of 
acute and repeated stress. Psychopharmacology 233 (2), 163–186. https://doi.org/ 
10.1007/s00213-015-4151-3. 

Hughes, R.W., 2014. Auditory distraction: a duplex-mechanism account. PsyCh J. 3 (1), 
30–41. https://doi.org/10.1002/pchj.44. 
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