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Abstract

Background: In microarray gene expression profiling experiments, differentially expressed genes (DEGs) are
detected from among tens of thousands of genes on an array using statistical tests. It is important to control the
number of false positives or errors that are present in the resultant DEG list. To date, more than 20 different
multiple test methods have been reported that compute overall Type I error rates in microarray experiments.
However, these methods share the following dilemma: they have low power in cases where only a small number
of DEGs exist among a large number of total genes on the array.

Results: This study contrasts parallel multiplicity of objectively related tests against the traditional simultaneousness
of subjectively related tests and proposes a new assessment called the Error Discovery Rate (EDR) for evaluating
multiple test comparisons in microarray experiments. Parallel multiple tests use only the negative genes that
parallel the positive genes to control the error rate; while simultaneous multiple tests use the total unchanged
gene number for error estimates. Here, we demonstrate that the EDR method exhibits improved performance over
other methods in specificity and sensitivity in testing expression data sets with sequence digital expression
confirmation, in examining simulation data, as well as for three experimental data sets that vary in the proportion
of DEGs. The EDR method overcomes a common problem of previous multiple test procedures, namely that the
Type I error rate detection power is low when the total gene number used is large but the DEG number is small.

Conclusions: Microarrays are extensively used to address many research questions. However, there is potential to
improve the sensitivity and specificity of microarray data analysis by developing improved multiple test
comparisons. This study proposes a new view of multiplicity in microarray experiments and the EDR provides an
alternative multiple test method for Type I error control in microarray experiments.

Background
The microarray has become an important platform for a
variety of bioscience and medical research areas. It
allows researchers to detect the expression of thousands
of genes simultaneously and to identify the differentially
expressed genes (DEGs) based on statistical analysis of
sample comparisons. However, due to the large number
of tests that are performed, there are anticipated errors
in identification of DEGs, and it is important to com-
pute the error rate. This information aids in the initial
evaluation of the discovery and also reduces the cost of
validation experiments.

To date, many different multiple test methods that
detect overall Type I error rates have been used to
interpret microarray experiments [1-3]. The original
multiple test methods were created for comparisons that
were carried out many times simultaneously. For example,
to test a drug’s effects on several groups of subjects [4],
one wants to report the probability of at least one null
hypothesis (the family-wise error rate, FWER) in the
side effects of this drug. FWER (a*) is derived from
the total number (m) of p-values at the significance
level (a), e.g. a* = 1 - (1 - a)m [5]. All tests are sub-
jectively dependent, i.e. all p-values are related as a
whole or as a single subject, for example the side
effects. All test p-values must be used in this multiple
test method. In microarray experiments, p-values are
generated for tens of thousands of genes. Each p-value
has no meaning with regard to other p-values, and all
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p-values are not related as a whole or to a single sub-
ject even though subgroups of genes exhibit biological
dependency to some extent. Therefore the rationale of
an FWER derived from the total gene number would
need further evaluation in microarray experiments. For
example, it may not matter if one is certain (probabil-
ity of 1.0) that a gene list contains one or two false
positives, i.e. FWER is 1.0. The common criticism of
FWER is that it is too stringent and that it lacks
power because FWER increases exponentially with the
number of tested hypotheses [1].
A commonly used multiple test alternative to FWER,

False Discovery Rate (FDR) is defined [6] as the expecta-
tion (E) of false positive genes (V) among selected
genes (R), i.e. FDR = E(V/R). While FDR is conceptually
appealing, there is no way to identify the number of
actual false positives V. Multiple test procedures thus
estimate the proportion (p0) of null hypothesis genes and
multiply it by the total gene number and a false cutoff
(a) [7]: V = p0.m. a. There are several variations of FDR
methods [8], but the main difference is in the method of
estimating this p0. Thus, all of these FDR methods are
still constrained by the total gene number on the array,
similar to the use of an FWER. The permutation
approach for FDR counts the times that occur at a lower
p-value than the actual p-value [9]. An ideal FDR method
should present the false discovery rate within a given
gene list. It is apparent, however, that permutation
deduction does not directly reflect the false rate within
the genes selected. Also, it possesses low power for
microarray experiments that have a small number of
sample replicates. The Bayesian model-based algorithm
for FDR relies on a prior probability calculation [10],
however, in real cases, this prior determination is biased.
Previously reported multiple test methods are con-

strained by the total gene number used. Problems arise
when an experiment uncovers only a few DEGs among
a large number of total genes. These few but real posi-
tive genes result in a very high FDR and therefore could
be eliminated from the resultant DEG list. Because of
this problem, reduction of the total gene number by
gene filtering was reported to increase the power of the
multiple testing [11]. This approach is questionable
because one could eventually reach a lower FDR with
continued filtering. The total gene list should not be fil-
tered except for reasons of poor quality or violation of
the multiplicity concept.
Researchers are often confused by the availability of so

many different multiple test procedures. Thus they typi-
cally try several procedures at the same time and only
report the most satisfying one, or they try to filter genes
until they reach a satisfying result. It is apparent that
with these approaches, the results from different research
reports may not be comparable. Here we contrast parallel

multiplicity to the traditional simultaneousness concept,
and propose a new multiple test called the Error Discov-
ery Rate (EDR) for microarray experiments. This method
overcomes the common problem of previous multiple
test procedures where the Type I error rate detection has
low power when the total gene number used is large
and provides an alternative or standard Type I error
rate method.

Results
Null hypothesis distribution and false discovery rate (FDR)
In a microarray experiment, one simultaneously con-
ducts tens of thousands of individual gene hypothesis
tests (Hi),

H i mi i: ( ,..., ) = =0 1

where m is the total number of genes targeted on an
array and μi is the mean log ratio of expression levels
for the ith gene. These tests produce p-values (p1, ..., pm)
for all genes m. At a certain significance level a, one
can define all genes into two groups: one is called
“rejected null hypotheses” (R, Figure 1) with p-values
equal to or less than a and containing the significantly
changed genes or positive genes we actually observed;
and the other group is called “accepted hypotheses”
(N, Figure 1) with p-values higher than a and encom-
passes the non-significant genes or negative genes we
actually observed.
If the p-value densities are plotted (Figure 1A), typi-

cally the negative gene p-values (N) are under a flat
curve indicating that the null tests follow a uniform
distribution. The positive gene p-values (R) close to a
p-value of zero is higher than the flat region of negative
gene p-values (N).

Figure 1 Parallel multiplicity model versus simultaneous
multiplicity model. A and B indicate the p-value distribution with
x-axis of p-values and y-axis of counts of test statistics. C and D are
the simultaneous multiplicity tests and parallel multiplicity tests,
respectively. H0 and H1 represent the null hypotheses and
alternative hypotheses, respectively.
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In these hypothesis tests, we are interested in the Type
I error rate in the resultant positive genes R. However,
only m, R, and N can be seen among all other para-
meters (Figure 1C) in these tests. The ideal way to find
the errors (V) within R is by using experimental valida-
tion such as quantitative RT-PCR to determine the false
positives. However, such an experimental approach is
impractical for hundreds or thousands of R genes.
Indeed, some studies randomly choose a few DEGs for
qRT-PCR and report the ratio of number of confirmed
DEGs to number of examined DEGs as FDR. Statisti-
cally, it can be assumed that the null distribution pro-
vides the desired control under the true or alternative
distribution [1]. Therefore, the known parameter N or
m can be statistically used for V approximation.
In the simultaneous multiplicity model, the proportion

of unchanged genes (p0) among all genes (m) is esti-
mated in order to deduce the total null genes (m0,
Figure 1C). Thus, a natural estimate of FDR (t) when all
null hypotheses are rejected with pi ≤ t is

FDR t
m t

R t
( )

( )
= 0 (1)

The key is that simultaneous multiple tests use the
total unchanged genes (m0) for the error estimate. To
date, much effort has been undertaken for the m0 deter-
mination. Storey 2004 [12] applied a tuning parameter,
l Î [0,1), for the m0 estimate (m0 (l)). Other methods,
including nonparametric and parametric methods, have
also been proposed to estimate m0, including the beta-
uniform model [13], the spacing LOESS histogram [14],
the Lowest Slope estimator [15], the smoother [16], the
bootstrap least squares estimate [7], the successive elimina-
tion procedure [17], the moment generating function [8],
and the Poisson regression approach [18], among others.
All of these FDR methods estimate null hypotheses (m0)
by applying various parameters on p-values of the total
number of genes m.

Parallel multiplicity and error V estimate
A new idea for multiplicity is proposed here that tens of
thousands of genes can be tested in parallel in the
microarray experiment. This “parallel” approach is dif-
ferent from the many “simultaneous” approaches that
occur in the literature [1-3] and that introduce multiple
tests into microarray experiments. Parallel multiplicity is
composed of two complicities of the microarray: the
normalization and the controls. Data normalization
places all genes to be objectively or observationally
related. The unchanged genes as negative controls influ-
ence the reliability of error detection. For example,
assuming that the p-value reflects the error probability
of a gene that is claimed as a positive gene, if a gene has

0.01 of error (a p-value of 0.01), the context of this error
would be different (adjusting p-value or error discovery
rate) when there are many negatives as controls in par-
allel versus when there are no controls in parallel. We
prove how these negatives that parallel the positives can
be used in error estimation.
LEMMA 1
The error estimation (N′. t) by using the number of null
tests (N′) that have p-value 1-t and above is close to the
real error (V) at the same significance level of t.
Proof Let j be the error rate in a selected gene list R,
and the real error V = R. j. Let V(m0) be the error esti-
mated at pi ≤ t using m0, then V(m0) = m0.t. Let V(N′) be
the error estimated at pi ≤ t using parallel negatives that
have p-value 1‒ t and above, then V(N′) = N′.t.
Assume that m0 >>R (this is also the assumption for

microarray data normalization). Under this normalization
assumption, we assume that N′ ~ R and j ~ t. Then

V V m t Rm( ) . .0 0 0− = − >>

V V N t RN( ) . .′ − = ′ − ≈ 0

For those null tests (x) that have any p-value interval
bins less than 1-t, the number of x may be the same as
N′ since the null p-values are of uniform distribution
[19]. For example, the number of p-values between
1 and 1-t is the same as the number of p-values between
1-t and 1-2t. However, the context of these null tests is
different. The null tests having higher p-values have
higher probability of being true nulls, and the largest
p-values are most likely to come from the true null, uni-
formly distributed p-values [7]. For example, a gene
with p-value of 0.9 will have a 90% chance to be a true
null test. The parallel idea uses the strongest contrast-
ingly related (positives versus negatives) gene sets to
control the Type I errors even though other portion of
null tests might also be used.

Error discovery rate (EDR)
In this parallel multiplicity idea, the parallel negatives
(N′) at a certain significance level (t) are used to deter-
mine the error V. Therefore the error discovery rate
(EDR) in a selected gene list (R) is defined as

EDR t
N t
R t

( )
.

( )
=

′
(2)

It can be seen that the contrast of EDR to FDR is that
FDR uses total unchanged gene m0 but EDR uses the
parallel negative genes N′ to approximate error rate.
Since the expression of most genes in microarray
experiments is unchanged (the data normalization
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assumption), the m0 is close to m. In cases where the m
is large and R is small, the FDR in equation (1) would
pose a problem, i.e. the small number of real DEGs
could be eliminated because it results in a high FDR.
That is the reason for the use of the gene filtering
approach to decrease the total gene number m in order
to increase the detection power. However, in the EDR
method, the positives (R) and negatives (N′) are sampled
at each significance level (t) (Figure 1B and 1D) from all
genes (m) and the distribution of the p-values. It can be
seen in equation (2) that EDR would not pose a pro-
blem even when there is a large m and a small R, hence
no gene filtering is needed for EDR.
The EDR in equation (2) is not an estimate of the

probability of a DEG to be discovered in error. It is gen-
erally lower than the latter because it is computed using
all the genes that have lower p-values than gene i (pi). It
is apparent that a gene whose p-value is near the thresh-
old t does not have the same probability to be differen-
tially expressed as a gene whose p-value is close to zero.
The EDR gives too optimistic a view of the probability
for the gene to be an error. Thus, an EDR attached to
each gene i that has p-value (pi) was defined by remov-
ing the denominator R(t)

EDR N pi i′ = ′. (3)

This is similar to the local FDR proposed by Aubert
et al. [20] that is derived from the q-value estimation

FDR i m p pi i( , ) ( )( ) = − −0 1 (4)

The difference between equation (3) and (4) is that
local EDR replaces m0(l) and (pi – pi-1) of local FDR by
using N′ and pi, respectively. As noted above, N′ is dif-
ferent from the m0 (l). Compared to (pi – pi–1), pi
retains more of the original test statistics of gene i.
Further, a reality error parameter s is applied to the

EDR model. Let  i xi fi
= −

1
1( ) where xi is the ratio of the

maximum group mean of gene i with the median value
of genes of all groups. fi is the fold change between
groups of gene expression i. For example, each group of
genes gives an expression mean value, and a maximum
mean value is given from these group means. xi produces
a reliability factor of the gene expression values. The fold
change is log transformed for both up-regulated and
down-regulated fold changes. When fi is equal to 1.0,
there is no change in this gene expression between
groups. Clearly, a small xi with small fi would lift the
error. Applying these reliability factors to adjust the error
rate is especially important in cases where only a few
sample replicates are used because of the unstable var-
iance that arises when sample size is small.

The final error discovery rate of gene i, i = (1, ..., m),
is derived from the number of negative genes (N′) that
parallel to gene i at a p-value of pi:

EDR N pi i i= ′  (5)

The EDR method can be implemented for two-group
statistic tests (Additional File 1) or multiple-group
ANOVA tests with gene expression matrix file, in which
the fi is the fold change between the group with highest
expression and the group with lowest expression of gene
expression i. The EDR method can also be implemented
with only p-values available as in equation (3).

Case studies
In order to explore the problems or behaviors of multi-
ple testing methods in real experiments, we chose three
real case data sets that typically represent three situa-
tions: one contains a small number of DEGs, one has a
moderate number of DEGs, and one presents a large
number of DEGs.
Hyperinsulinemic data
This data set was used to compare the method powers
in the real case that the proportion (S0) of differentially
expressed genes is extremely low. This hyperinsulinemic
data set was reported in a study to examine the effects
of insulin on gene expression in healthy humans [21].
The original studies only reported three DEGs (GOS2,
TXNIP, and BCL6). The EDR method found five DEGs
among the 46 genes that passed the raw p-value cutoff at
the significance level of a = 0.05; while other FWER, FDR,
SAM, and Bayes methods could not find any positive
genes at the same significance level (Table 1) including

Table 1 Differentially expressed gene numbers reported
by different multiple tests

Data sets

Test Hyperinsulinemic miRNA knockout Colorectal cancers

raw p 46 2350 10973

PCER 104 4351 18425

PFER 9 442 2025

Bonferroni 0 144 605

Holm 0 144 609

Hochberg 0 144 609

SidakSD 0 144 614

BH 0 407 5552

BY 0 227 2221

qvalue 0 407 6108

SAM 0 0 5330

Bayes 0 0 5705

EDR 5 593 4810

The raw cel files of these three data sets [21,23,25] were downloaded from
the NCBI GEO database (GSE7146, GSE7333, GSE4107) and were preprocessed
by the GC-RMA method. Two groups in each data set were tested by two-
tailed t test assuming equal variance. All multiple tests and raw p-values were
applied at the same significance level of a = 0.05.

Xu and Carter BMC Bioinformatics 2010, 11:465
http://www.biomedcentral.com/1471-2105/11/465

Page 4 of 12



the previously reported GOS2 gene that has a very low
raw p-value (0.00018) and a high fold change (5.3).
The five DEGs detected by EDR (Table 2) include
GOS2, but not TXNIP and BCL6 that were in the ori-
ginal report [21]. This may result from a different data
preprocess as these two genes, TXNIP and BCL6, have
raw p-values of 0.26 and 0.10 from the two-tailed
t-test, respectively. The evidence that the DDX5 gene
is differentially expressed in diabetic mice [22] suggests
that DDX5 detected by EDR in this study may be a
true DEG.
miRNA knockout data
This data set [23] was used to compare the methods in
the real case that S0 is in the moderate range (several
hundred DEGs). Specifically, this miRNA knockout data
set was reported from an examination of the effects of
miRNA on gene expression in mouse heart tissue using
the miRNA knockout model [23]. This miRNA defi-
ciency would induce quite a number of gene expression
differences [24] even though this study only focused on
70 protein-coding genes differentially expressed in miR-
1-2-null hearts. In this data set, the EDR method caught
more positive genes than any other multiple tests except
PCER. The PCER method identified more genes, but its
gene number is even higher than the number found by
the raw p-value cutoff (Figure 2B, Table 1).
Colorectal cancer data
The data set examined [25] was used to compare the
methods in a real case with a large S0 (several thousand
DEGs). This data set of colorectal cancers was reported
from a systematic search for genes differentially expressed
in early-onset colorectal cancers using the GeneChip
U133-Plus 2.0 that contains 54675 probe sets on Array
[25]. In the original study, 9628 probe sets were found to
be differentially expressed between patients and healthy
controls according to two-tailed t-test analyses with p <
0.05. When the data set contains a large proportion of
DEGs, EDR still detected more DEGs than FWER and BY
but becomes slightly more stringent than other FDR meth-
ods such as SAM and Bayes (Figure 2C, Table 1). This
appears sensible in real microarray experiments where,

when there are so many positives, one strives for more
stringent selection.
In these three real case data tests, it was found that

the FWER and FDR methods were unable to detect
DEGs at a significance level of 0.05 when only a small
number of DEGs exist because of the high error rates

Table 2 EDR calculation

id Gene raw-p xi fi N’ EDR

M72885_rna1_s_at GOS2 0.00018432 309.453094 5.318301 2 0.00000028

X15729_s_at DDX5 0.00044674 2.773653 1.332583 4 0.00193717

M34516_r_at IGL@ 0.00321646 10.316779 1.807361 27 0.01042631

D11428_at PMP22 0.00342428 20.312435 1.910159 30 0.00555663

HG3514-HT3708_at Tropomyosin 0.00437053 41.545886 1.188196 33 0.01844629

L20971_at PDE4B 0.00494670 3.348770 1.998387 42 0.06214142

U33448_s_at LTB4R 0.00625588 0.582200 1.066264 53 1

EDR detection of the Hyperinsulinemic data set. The EDR of gene i is the expectation of raw-p of this gene (pi) multiplied by the number of negative gene
controls (N’) at p-value equal to or greater than 1- pi, divided by the ratio of the maximum group mean of this gene with the median value of all genes (xi) and
by the fold changes (fi) minus 1.

Figure 2 Performances of all multiple tests on three different
real data sets. (a) low-S0 (proportion of changed genes)
hyperinsulinemic data. (b) moderate-S0 miRNA knockout data. (c)
high-S0 colorectal cancer data.

Xu and Carter BMC Bioinformatics 2010, 11:465
http://www.biomedcentral.com/1471-2105/11/465

Page 5 of 12



that resulted. At the same significance level, the EDR
method not only detected DEGs when only a few DEGs
existed, but also caught more DEGs than FDR and
FWER methods when there existed a moderate number
of DEGs. Interestingly, EDR becomes more stringent
when there are a large number of DEGs. However, since
the DEGs were not validated in these experiments, we
cannot determine whether the increase in the number
of DEGs is due to an increase in power or an increase
number of false DEGs. Hence, the specificity and sensi-
tivity of these methods were further evaluated.

Specificity and sensitivity
In order to evaluate specificity and sensitivity, one needs
to know the “true” DEGs and “false” DEGs. As such, a
published microarray expression data set [26] comple-
mented with cDNA sequence digital expression confir-
mation was used to test the specificity and sensitivity of
EDR and other multiple test procedures. The same RNA
samples from Mexican axolotl animals were examined
by Ambystoma GeneChip and 454 cDNA sequencing.
DEGs between 0 and 5 days post amputation of dener-
vated (DL) forelimb tissues were detected by microarray
analysis at different significance levels. The resultant DEGs
were compared to the true DEGs (true positives, TP) that
were found to be differentially expressed via cDNA
sequence digital expression analysis, the false DEGs
(false positives, FP) that were not found differentially
expressed via direct cDNA sequencing, and the true
negatives (TN) that were not differentially expressed in
both platform detections.
The true positive rate (TPR) and false positive rate

(FPR) of EDR and other methods at the significance of
0.05 are shown in Table 3. It can be seen that the TPR
and the FPR levels are a trade-off. For example, EDR had
better TPR (0.5) than Bonferroni (0.35) and BY (0.46),

but higher FPR (0.2) than Bonferroni (0.11) and BY
(0.19). However, when TPR and FPR were plotted on the
Receiver Operator Characteristic (ROC) curve, the EDR
curve was plotted above all other methods, and
approached the left-top corner where the highest TPR
and the lowest FPR exist (Figure 3). This indicates that
EDR had an overall better accuracy in performance over
other methods. The area under the curve (AUC) of EDR
was the highest (0.676).
It should be noted that in this microarray data set, the

total number of gene probe sets on the array was small
(4844), and it has a moderate number of DEGs (several
hundred). This is an optimal case for simultaneous multi-
plicity model methods. Even in this case, EDR exhibited
slightly improved performance over other methods.
Therefore it may be speculated that the superior perfor-
mance of EDR would likely be most evident in cases with
large numbers of genes on the array and fewer DEGs.

Simulation study
To test the above speculation that EDR would have a
better performance over other methods when a small
number DEGs exist among a large number of genes on
the array, existing Mouse GeneChip data [23] was simu-
lated with a different proportion (S0) of changed genes
(Additional File 2) and the powers of all multiple test
methods were compared at different situations varying
in DEG number. The power is defined as the expected
proportion of true DEGs that are declared as DEGs [27].
The simulated DEGs were assumed as the true DEGs

Table 3 TPR and FPR at significance of 0.05

Methods

EDR Bonf BH BY qvalue rawp

DEGs 1070 606 1420 974 1734 1833

TP 90 63 101 83 106 109

FP 980 543 1319 891 1628 1724

TN 3774 4238 3424 3870 3110 3011

FN 91 118 80 98 75 72

TPR 0.4972 0.3481 0.5580 0.4586 0.5856 0.6022

FPR 0.2061 0.1136 0.2781 0.1871 0.3436 0.3641

The expression data set was downloaded from http://www.ambystoma.org
and was preprocessed by the RMA method [38]. Differentially expressed
genes (DEGs) were detected at the significance level of 0.05 by the EDR
method and the other methods from the multtest package [39]. The resultant
DEGs were compared with the true DEGs (TP) measured by digital expression.
False positives (FP) are those DEGs that are not found to be differential in
digital expression analysis. True negatives (TN) are those genes that are not
differential in both platforms.

Figure 3 Receiver operator characteristic (ROC) curve. The true
positive rate (TPR) and false positive rate (FPR) in differentially
expressed genes (DEGs) detected by EDR [equation (5)], EDR-n
[equation (3)], EDR-i [equation (2)], or other methods were plotted
as ROC curves. The microarray data set [26] tested was confirmed
by sequence digital expression.
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for power estimation [2,8,11,12,27-29]. As expected, only
when a higher proportion of genes are differentially
expressed (S0 is high) can all FDR tests increase power
(Figure 4). All FWER methods have low powers and
their powers do not increase as S0 increases. Even
though the powers of SAM and Bayes increase when S0
increases, they still hold the lowest powers. However, at
the same significance level of a = 0.05, EDR detected all
simulated positive genes when S0 is 0.1%. When S0 is
less than or equal to 0.5%, EDR had more power than
the commonly used FDR methods BY and BH. When S0
became larger, EDR caught slightly fewer DEGs but still
retained consistently high power. This is particularly
useful when there are so many ‘DEGs’ that a more strin-
gent selection is needed.
The power of EDR is derived from the error estimate

from N′. As shown in Figure 4, without the reality fac-
tor, the EDR_n (pi.N′) of equation (3) had more power
than the commonly used method HY and BY when the
DEG number is small. After applying this reality factor,
the EDR (pi.N′.si) power of equation (5) was further
improved.
It can also be seen that at the significance level of 0.05,

the raw p-value, PCER, as well as the EDR-i of the equa-

tion (2) ( ′N t
R t( ) ) detected all simulated DEGs. Their powers

reached the maximum of 1.0 or more at different S0
points. Obviously, examining only power cannot deter-
mine the performance of these methods because these
methods may have included many false DEGs as well.

Since these simulation data sets contain a large num-
ber of non-DEGs (true negatives, TN), the ROC curve
would be skewed to the very low false positive rate

( FPR = +
FP

FP TN
) side. We calculated the Precision-

Recall (PR) curve instead. While the PR and the ROC
are equivalent, the PR curve is more informative when
dealing with highly skewed data sets [30]. When there is
a small R (S0: 0.001) and big m (45101), the EDR family
exhibited better performance than Bonferroni and BY,
but had a similar AUC size to BH and rawp methods
(Additional File 3A). Because the error rates of all multi-
ple test methods are derived from raw p-value and the
lower raw p-value is equivalent to an FDR or EDR, it is
not surprising that the rawp has a large AUC among all
three data sets (Additional File 3A, B, C). However, a
closer examination of the rawp curve in Additional File
3A showed that several cutoffs of rawp give very low
precision, indicating false DEGs were contained in the
detected DEGs. The significance level of 0.05 is com-
monly chosen for statistics and for power evaluation
[11,15,29,31-33]. At this significance level, EDR had
a better precision (simulated true DEGs among all
detected DEGs) than BH and other methods (Additional
File 3A, lower panel). Even though the EDR-i and rawp
caught more simulated true DEGs, i.e. a higher power as
showed in Figure 4, their precisions were relatively low.
When there were several hundred DEGs (Additional
File 3B), EDR exhibited better performance than Bonfer-
roni and BY, but lower than BH (Additional File 3B,
upper and middle panels). When the simulated true
DEGs go up further (Additional File 3C), EDR became
more stringent than other methods except Bonferroni.

Discussion
There are many research papers and reviews on multiple
testing for microarray experiments [1-3]. Most of the lit-
erature discusses how to apply various multiple tests in
microarray experiments, but the theory of multiplicity
for the microarray has not been depicted. General state-
ments are found where “as a typical microarray experi-
ment measures expression levels for thousands of genes
simultaneously, large multiplicity problems are gener-
ated” [1]. The parallel multiplicity concept proposed
here stands in contrast to the traditional “simultaneous”
multiplicity. Parallel multiple tests use only the negative
genes that parallel the positive genes to control the
error rate while simultaneous multiple tests use the total
unchanged gene number for error estimation even
though both the negative gene number and the total
unchanged gene number depend on the total gene
number and the distribution of the p-values. The
EDR method based on parallel multiple tests exhibits

Figure 4 Power comparison. Power comparison of all multiple
tests on simulation data sets with different proportions of
differentially expressed genes. All FWER methods have the same
powers on the same line.
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improved performance over simultaneous multiple test
methods in specificity and sensitivity. Since parallel mul-
tiple tests use only the negative genes that parallel the
positive genes, not the total unchanged genes, the EDR
method overcomes the common problem found in pre-
vious simultaneous multiple test procedures where the
Type I error rate detection power is low when the total
gene number used is large and the DEG number is
small. It is a robust method for a variety of statistical
p-value distributions [34]. EDR retains the power for
various data sets without requiring gene filtering as well.
Specificity and sensitivity are crucial criteria for

method comparison, and the true and false positives
need to be known for these tests. However, there is no
gold standard to determine true or false positives. There
are three levels for the definition of “true”: true hybridi-
zation signal changes, true mRNA transcript changes,
and true functional changes. True hybridization signals
can infer mRNA transcript levels (gene expression
levels), but may not necessarily represent the true
mRNA transcripts, and the true mRNA transcript
changes may not cause the gene functional changes
within an organism. Here we focus only on the expres-
sion level, i.e. the mRNA transcript level. To date, many
microarray multiple test studies use simulation data or
case data to evaluate the power (sensitivity) and specifi-
city [2,11,35]. Those microarray data sets with very few
qRT-PCR validations are not useful for evaluating the
specificities of multiple tests. In this study, a Mexican
axolotl animal microarray data set with cDNA sequence
digital expression validation [26] was found to be useful.
This data set possesses a relatively large number of
“true” and “false” positives determined at mRNA tran-
script levels. Even though 454 sequencing also has a cer-
tain level of false positives, the comparison using this
same data set for EDR and comparison of other meth-
ods is compatible. In testing this data set, the EDR
method exhibited slightly improved performance over
other methods in specificity and sensitivity. This
improved performance is not as remarkable as in other
cases, because this data set, with a low number of genes
on array and a moderate number of DEGs, is an optimal
case for simultaneous multiple test methods. The con-
sistent superior performance of the use of EDR was
further supported by testing the simulation data and
three real case data sets that vary in the proportion of
unchanged genes.
Many reports use real microarray case data sets for

multiple tests evaluations. For example, the acute lym-
phoblastic leukemia (ALL) data set was intensively used
for such a purpose [2,8,20,35] even though there was no
validation for the real DEGs in this data set. Other real
case microarray data sets were also used for multiple
test performance evaluation, including a breast cancer

data set [16,20], a colon cancer expression data set [35],
a wheat data set [11], a diabetes data set [11], and a
smoking data set [11]. Not all of these data sets were
validated for real DEGs. Three real case data sets were
chosen for this study because they represent three typi-
cal cases: low, moderate, and high levels of DEGs. It is
difficult to evaluate the individual method by unvali-
dated data, but these data sets are still helpful in com-
paring the behaviors or performance of different
methods under the same circumstance.
The EDR model is different from the per-family error

rate (PFER) and the per-comparison error rate (PCER)
that simply adds individual p-values together or averages
p-values [2]. It is distinct from FWER and FDR in that
EDR utilizes cross-gene information in the parallel con-
cept but is not constrained by the total gene number. It
varies from permutation-based FDR in that EDR directly
reflects the errors of the given genes and EDR operates
for small sample sizes. Also, EDR is appealing because it
attaches the error to each gene, and the genes do not
need to be ranked by raw p-values as is the case for all
other multiple tests. Other multiple test comparisons
sequentially compute the error rate based on the ranked
raw p-values; thus the error rates are the same as the
lower p-values. This is not true in microarray multipli-
city because at times lower p-values possess higher error
potential than some higher p-values. EDR recognizes
this reality (Table 2). There are indeed reports for how
to rank and select genes [33], but they do not address
the error rate issue.
A false positive or the rejection of a true null hypoth-

esis is a gene that is called as differentially expressed
when it is not. The falsehood or error can be a systema-
tic error or random error. The systematic error can be
corrected by background subtraction or dye normaliza-
tion, while the random error cannot be captured but
can be modeled by statistical analysis. The p-value of
each gene is a measure of how much evidence we have
against the null hypothesis. It is rational that all multiple
tests use this raw p-value or marginal p-value as a base
error rate of that gene [1-3]. Even though the p-value
has inherently accounted for the fold change, an extre-
mely small standard deviation (sd) could drive a small
p-value with a small fold change. Almost all microarray
studies apply a fold change cutoff for the final gene list
to be reported. The reason that we only keep the genes
whose fold changes are higher than a defined value, for
example, a 2-fold change, is that it is still not certain
that those low fold-changes in hybridization signals are
real positives at the level of the mRNA transcript. After
these uncertain genes are removed, the error rate in the
final gene list would undoubtedly decrease. Also, some
genes have very low intensity signals. For example,
among the gene expression values ranging from 1.0 to
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10,000, a 10-fold increase deduced from 10.0 divided by
1.0 is reasonable from a statistical point of view. How-
ever, biologists often remove this gene even though it
has a very small p-value because this low expression
level is close to background expression levels and there-
fore may be not reliable. Thus, an ideal multiple test
procedure would incorporate into the raw p-values the
unreliability factors that result from low intensity and
low fold-change in the error calculation in order to
reflect the error or false reality. In the EDR method, xi
uses the maximum group mean and the median expres-
sion value to control the gene expression values, and
uses fi to control the fold changes.
Different multiple test procedures were recommended

for different experiments based on the sample size, the
magnitude expectations, and the p-value distribution [34].
However, there may exist a large variation in judging
these multiple parameters. Therefore the same type of
experiments may produce different results depending
on the method of preference among different research-
ers. There is not a comparable standard multiple test
method that can be applied to a variety of data sets. It
is interesting to note that the EDR method had a simi-
lar performance pattern in all three different case data
sets (Figure 2). This pattern was not affected by the
proportion (S0) of DEGs of the data. Also, this perfor-
mance pattern presents a deep slope in all three data
types. This deep slope forms a boundary useful for sig-
nificance cutoff value selection. Other methods could
not form this boundary in all data types. The perfor-
mance patterns of other methods change vigorously
depending on the S0 (Figure 2). For example, the BH
performance curve did not show up in the low-S0 data
set. It has lower power than PFCR in the median-S0
data set but was capable of much higher power than
PFCR in the high-S0data set. This suggests that the
EDR method exhibits consistent performance in var-
ious data sets. This consistency is further supported by
the use of simulation data. The EDR method works for
different data sets and would therefore provide a stan-
dard method for type I error rate calculations in
microarray experiments. For example, we can say that
with an EDR cutoff of 0.05 we found 100 differentially
expressed genes between disease and normal samples.
However, if we use other FDR methods, this may not
be the case because some studies may find more genes
using the same FDR cutoff in the same data set but by
filtering genes or filtering in different ways, or they
may use different FDR methods for data sets that vary
in the proportion of unchanged genes.
It is difficult to test if the EDR method works for

dependent tests in microarray experiments. The multi-
ple-endpoint in clinical trials [36] is an example for FDR
to control dependence in multiple tests. In this example,

we know all tests are dependent. This knowledge is not
deduced from p-values but instead by the experiment
itself. In a microarray experiment, all p-values do not
relate to one single subject, i.e. they are independent.
Only the genes in subgroups may be dependent because
they usually work in a collaborative fashion to fulfill cer-
tain cell functions or pathways. The FDR methods claim
to be able to control the error rate of the dependent
p-values, and simulated dependent data was used to test
this claim [2,12,35]. Clumpy dependence was simulated
in the sense that blocks of genes have dependent expres-
sion and therefore dependent p-values in p-value bins.
However, this simulated dependence is quite different
from the real microarray experiment. In a microarray
experiment, the “correlated” p-values may not necessa-
rily reveal true biological dependence, and true biologi-
cal dependence may not exhibit dependence on p-value
levels. For example, minor differential expression of
some genes may play a remarkable regulatory function
in a particular pathway, and the p-values of these genes
may not be correlated to those of other genes in this
same pathway. Further studies are needed to examine
genes in the same pathways and then to adjust the error
rate based on the same pathway groups.

Conclusion
Microarrays are extensively used today to examine
changes in gene expression. However, biologists have dif-
ficulty in both the understanding and use of multiple
tests in microarray studies. A new system of parallel mul-
tiple tests is proposed here. Parallel multiple tests use the
negative genes that parallel the positive genes to control
the Type I error discovery rate (EDR) in the microarray
experiment. The EDR method exhibits consistently
improved specificity and sensitivity (power) over other
methods in testing diverse data sets that vary in the num-
ber of null hypotheses. This method provides an alterna-
tive to standard Type I error rate methods. Parallel
multiplicity is a new proposition and worth further
enhancement in statistics and algorithm development.

Materials and methods
Hyperinsulinemic data and preprocessing
This data set was reported in a study to examine the
effects of insulin on gene expression in human health [21].
Six nondiabetic volunteers were given a 3-h hyperinsu-
linemic (infusion rate 40 mU/m2/min) euglycemic
clamp test. A variable infusion of glucose (180 g/l) was
used to maintain euglycemia during insulin infusion.
The gene expression profiles of skeletal muscle biopsies
from these six subjects pre- versus post-clamp were
compared using the Affymetrix GeneChip Hu6800 con-
taining 7129 probe sets. Only three genes were
reported to be regulated by insulin in human muscle
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cell using a Wilcoxon signed rank test after filtering
removed 5952 probe sets.
The raw cel files were downloaded from the NCBI

GEO database (GSE7146) containing data that are
MIAME compliant as detailed on the MGED Society
website http://www.mged.org/Workgroups/MIAME/
miame.html. The GC-RMA algorithm was used for
probe level signal condensation, background subtraction,
and normalization. The GC-RMA values were log-trans-
formed for robust use in statistics tests since the log
values are more compliant with the data normal distri-
bution assumption than the raw data. But the fold and
ratio calculations used the raw expression values. The
raw expression values were truncated into 0.5% and
99.5% percentile ranges in order to avoid the extreme
large and extreme small values in the fold and ratio cal-
culations. With this data set, the EDR method was com-
pared with 11 other multiple test procedures (Figure 2)
at the same significance level of a = 0.05 (Table 1).

miRNA knockout data and preprocessing
This data set was reported to examine the effects of
miRNA on gene expression in mouse heart tissue [23].
Heart tissue samples from three wild type and three
miR-1-2 knockout mice at postnatal days 10 were com-
pared for gene expression levels using Affymetrix mouse
genome 430 2.0 array that contains 45101 probe sets.
The raw cel files were downloaded from the NCBI GEO
database (GSE7333) and were preprocessed by GC-RMA
algorithm. With this data set, the EDR method was
compared with 11 other multiple test procedures (Figure 2)
at the same significance level of a = 0.05 (Table 1).

Colorectal cancers data and preprocessing
This data set was reported to systematically search for
genes differentially expressed in early-onset colorectal
cancers using the GeneChip U133-Plus 2.0 Array [25].
Twelve tumor specimens and ten adjacent grossly
normal-appearing tissues from at least 8 cm away were
collected for RNA extraction. The raw cel files were
downloaded from the NCBI GEO database (GSE4107)
and were preprocessed by GC-RMA algorithm. With
this data set, the EDR method was compared with the
other 11 multiple test procedures (Figure 2) at the same
significance level of a = 0.05 (Table 1).

Transcriptional validated data set
The data set used was reported in a study of transcrip-
tion during nerve-dependent limb regeneration [26].
The same RNA samples were detected by Ambystoma
GeneChip and 454 cDNA sequencing. There are total
4844 probe sets (TGs) on this GeneChip array.
The raw cel files were downloaded from the

public Ambystoma Microarray Database [37]. Detailed

information of these data files and the DEGs confirma-
tion by 454 cDNA sequencing were described in the origi-
nal study [26]. The RMA algorithm [38] was used for
probe level signal condensation, background subtraction,
and normalization. The RMA values were log transformed
for robust use in statistics tests since the log values are
more compliant with the data normal distribution
assumption than the raw data. But the fold and ratio cal-
culations used the raw expression values. Raw expression
values were truncated into 0.5% and 99.5% percentile
ranges in order to avoid the extreme large and extreme
small values in the fold and ratio calculations. The two-
tailed t test was used to calculate the raw p-values.
Of the DEGs detected among five group comparisons

by microarray analysis, 271 DEGs were confirmed in
mRNA levels by using 454 cDNA sequencing. In this
evaluation, only two groups of raw data files, zero and
five days post amputation of denervated (DL) forelimb
tissues, were used. Among the total 271 true DEGs, 181
genes were true DEGs between DL0 and DL5 and pos-
sessed 1.5-fold or greater changes in normalized digital
expression levels. At each significance level, the true
positive DEGs (TP) were the portion of these 181 genes
discovered by microarray analysis. The false positive
DEGs (FP) were those total DEGs detected by microar-
ray analysis (TDEGs) subtracted by TP. The false nega-
tive DEGs (FN) were calculated by subtracting TP from
181. The true negative DEGs (TN) were the TGs sub-
tracted by TDEGs. Since 454 cDNA sequencing presum-
ably covered all cDNAs or genes including all probe sets
on the GeneChip, the portion of genes that were not
detected by both platforms were TN.

Simulation data
In order to calculate the statistical power of method, we
simulated microarray data with different proportions
(S0) of true positive gene numbers. The power was cal-
culated as the proportion of true positives that were
detected at the same significance level of a = 0.05.
The simulation parameters for gene group means (mi)

and gene group variances (sdi) were replicated on the
real miRNA knockout data set [23] and preprocessed by
GC-RMA [38]. The simulated data matrix was created
by 2 groups of 10 sample columns (n1 = 5, n2 = 5) and
45101 rows of genes (m = 45101) (Additional File 2).
Each gene expression value is generated within the

normal distribution of mean mi and standard deviation
sdi. mi is the gene group mean that is uniformly distrib-
uted within the minimum and maximum values of the
whole miRNA knockout data set. sdi is the standard
deviation of a gene group that is uniformly distributed
within the minimum sd and maximum sd of all gene
group sds of the whole real data set. The non-DEGs
were guaranteed to have the normal distribution of the
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sdi and equal mi. also. In addition, the two group means
are close to equal because if they fall into the normal
distribution with an equal mean, they still may have
large fold changes. This ensures they are non-DEGs in a
statistical sense. The different S0 (0.001, 0.003, 0.005,
0.010, 0.020, 0.050, 0.100, 0.200) data sets were simu-
lated by adding different proportions of DEGs. The nor-
mal distribution of gene expressions of DEGs in each
group samples was simulated using mean and sds vec-
tors. The mean vectors have folds uniformly distributed
between 1.5- to 3-fold changes and the sds vector has
uniformly distribution of one-fifth of the means (Addi-
tional File 2). For each simulation data set, two-group
t-tests assuming equal variance were performed, and
EDR and other multiple test methods were applied.

Receiver operating characteristic (ROC) and precision-
recall (PR) curves
For the transcriptional validated data set, the ROC curve
of EDR method was compared with other multiple test
procedures (Figure 3). The AUCs of ROC curves based
on TPR and FPR were used to compare the overall per-
formances of EDR and other methods. The curve
approaching the left-top corner represents the highest
TPR and lowest FPR.
For the false positive rate (FPR) skewed simulation

data sets, PR curve was used instead for method perfor-
mance comparison.

TPR, Recall =
+
TP

TP FN

FPR =
+
FP

FP TN

Precision =
+

TP
TP FP

Multiple tests
The multiple tests for Type I error rates were categor-
ized into several groups [2]: PCER, PFER, FWER, and
FDR. The following tests are defined according to Figure
1D and used in this study.
PCER [2]
The per-comparison error rate is defined as the
expected value of the number of Type I errors divided
by the number of hypotheses, that is,

PCER = = + +
E V m

a a

m
m( )/ 1 

PFER [2]
The per-family error rate is defined as the expected total
number of Type I errors, that is, PFER = E(V) = a1 + ⋅⋅⋅
+ am.

FWER
The family-wise error rate is defined as the probability of
at least one Type I error (ai), that is, FWER = Pr(V ≥ 1).
The Bioconductor multtest package [39] was used for
following PWER procedures: Bonferroni, Holm, Hoch-
berg, and SidakSD.

Bonferroni [2], p
mi

i= 

Holm [40], p i
m ii =

− +


1

Hochberg [41], p i
m ii =

− +


1

SidakSD [42], pi
m i= − −− +1 11 

FDR
Bioconductor multtest, qvalue, and sam packages [39]

were used for the following FDR detection ( pi ): BH, BY,

qvalue, SAM, and Empirical Bayes.

BH [6], p p
m
ii i=

BY [36], p p
m i

ii i= ∑1/

qvalue [7], p p
m

ii i=  0
^

, where  0
^ is the proportion

estimation of unchanged genes.

SAM [9], p
n

Bi

p p
b

B

b i=
>∑ , where B is the number of

permutations.
Empirical Bayes [10],

P H p( / )
( )( )0

0

0 01 1
≤ = + − − 

   , where P is the

FDR, a is the significance level, π0 is proportion of null
hypothesis, and (1-b) is the test power.

Additional material

Additional file 1: R source code for EDR method. The EDR method
was implemented for two group comparison experiments either with
p-values provided or without p-values.

Additional file 2: Simulation and parameters. Existing Mouse
GeneChip data [23] was simulated with a different proportion (S0) of
differentially expressed genes.

Additional file 3: Precision-Recall (PR) curves. Precision-Recall (PR)
curves of multiple test methods on simulation data sets with different
proportions of DEGs (A, S0: 0.001; B, S0: 0.02; C, S0: 0.2). Upper panel: PR
curves; middle panel: the area under the curve (AUC); lower panel:
simulated true DEGs (blue bars) contained within all detected DEGs of
each method were at or below the significance level of 0.05.
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