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Abstract

Variably expressive copy-number variants (CNVs) are characterized by extensive pheno-

typic heterogeneity of neuropsychiatric phenotypes. Approaches to identify single causative

genes for these phenotypes within each CNV have not been successful. Here, we posit

using multiple lines of evidence, including pathogenicity metrics, functional assays of model

organisms, and gene expression data, that multiple genes within each CNV region are likely

responsible for the observed phenotypes. We propose that candidate genes within each

region likely interact with each other through shared pathways to modulate the individual

gene phenotypes, emphasizing the genetic complexity of CNV-associated neuropsychiatric

features.

A case for a multigenic model of CNV pathogenicity

Since the advent of large-scale sequencing studies, the number of genes associated with

neurodevelopmental disorders such as autism, intellectual disability, and schizophrenia has

increased dramatically. For example, nearly 200 genes have been identified with recurrent de

novo mutations in both individuals with autism and intellectual disability [1–8]. In fact, com-

plex human disease phenotypes can be influenced by variation in both a small number of core

genes with large effect size and a large number of modifier genes with small effect size,

accounting for the large number of candidate neurodevelopmental genes [9,10]. The applica-

tion of a multigenic model for disease pathogenicity has not been fully expanded to cover

copy-number variants (CNVs), or large duplications and deletions in the genome. The prevail-

ing notion of single causative genes for CNV disorders is due to the paradigm of gene discover-

ies for CNVs associated with genetic syndromes in individuals with specific constellations of

clinical features, such as Smith-Magenis syndrome (SMS). Although some variability in phe-

notypic expression has been documented, these disorders usually occur de novo and are char-

acterized by high penetrance for the observed phenotypes [11,12] (Fig 1, S1 Table, S2 Table).

In these cases, individuals manifesting the characteristic features of the syndrome but with
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either atypical breakpoints or mutations in individual genes within the CNV region were used

to identify causative genes for the major phenotypes [13–15]. These causative genes, such as

RAI1 for SMS, were then confirmed by recapitulating conserved phenotypes of the deletion

using functional evaluations in animal models [16,17].

In contrast, another category of CNVs has been identified in individuals with neurodeve-

lopmental disorders, including duplications and deletions at proximal 16p11.2, 3q29, distal

16p11.2, and 1q21.1 [19–22]. Although these CNVs are enriched in affected individuals com-

pared to population controls, they are primarily characterized by variable expressivity of clini-

cal features [12,23–27] (Fig 1B, S2 Table). For example, the 16p11.2 deletion has been

implicated in 1% of individuals with idiopathic autism [19,28], but only 25% of individuals

with the deletion exhibit an autism phenotype [29–32], whereas others may manifest intellec-

tual disability, obesity, or epilepsy at varying degrees of penetrance [29,33,34]. In fact, certain

CNVs, such as the 16p12.1 deletion and the 15q11.2 deletion, have a high frequency of carriers

who only manifest mild neuropsychiatric features, in contrast to more severely affected indi-

viduals who also carry other rare variants in the genetic background [12,23,24,27,35,36]. As

such, many variably expressive CNVs have a higher frequency of inherited compared to de

novo occurrence [12] (Fig 1A, S1 Table).

Based on the success of gene discovery in CNVs with syndromic features, such as SMS, sev-

eral studies have attempted to identify the causative genes in variably expressive CNVs [37–

53]. Several individual genes within variably expressive CNV regions have been associated

with specific congenital or structural features of these disorders, including TBX6 for scoliosis

in 16p11.2 deletion [54], TBX1 for cardiac phenotypes in 22q11.2 deletion [39,55], GJA8 for

Fig 1. Phenotypic profiles of syndromic and variably expressive CNVs. (A) Table listing variably expressive (top) and syndromic (bottom) CNV

regions is shown. The colored boxes indicate the frequency of de novo versus inherited CNV cases for del and dup previously identified in a cohort of

2,312 children with developmental disorders [12]. The 12 variably expressive CNV regions highlighted in bold were selected for the analysis described

in the article. (B) Table listing average frequencies of neurodevelopmental phenotypes for select variably expressive and syndromic CNVs, curated

from GeneReviews reports on individual CNVs [18], is shown. White boxes represent no available data from GeneReviews but do not necessarily

indicate a lack of association between the CNV and the phenotype (for example, 1q21.1 deletion and schizophrenia). Data for this figure are available

in S1 Table and S2 Table. CNV, copy-number variant; del, deletion; dup, duplication.

https://doi.org/10.1371/journal.pgen.1007879.g001
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cataracts and GJA5 for heart defects in 1q21.1 deletion [56,57], and MYH11 for aortic aneu-

rysms in 16p13.11 duplication [58,59]. However, approaches to identify single causative genes

for the more prominent neuropsychiatric features of these CNVs have not been successful

[60]. Here, we show several lines of evidence from gene pathogenicity metrics, animal model

studies, and gene expression data that support the involvement of multiple genes towards the

neuropsychiatric features of variably expressive CNVs.

First, genome-wide metrics of pathogenicity, including those that measure haploinsuffi-

ciency (haploinsufficiency score [HI]; essentiality score; genome-wide haploinsufficiency

score [GHIS], and EpiScore) [61–64] and resistance to variation (residual variance to intoler-

ance score [RVIS], probability of loss-of-function intolerance [pLI], and maximum con-

strained coding region [CCR] scores) [65–67], provide evidence for several candidate genes

within CNV regions for developmental disorders (Fig 2A, S3 Table). For example, 45 out of

152 genes (30%) within 12 variably expressive CNV regions are intolerant to variation with

RVIS metrics in the top 20th genome-wide percentile, similar to that of known neurodevelop-

mental genes such as CHD8, NRXN1, and SCN2A, as well as genes responsible for major fea-

tures of syndromic CNVs, such as RAI1 and NSD1 (S3 Table). These top-ranked genes include

TAOK2, MVP, ALDOA, and DOC2A on chromosome 16p11.2, BCL9 and GJA5 on chromo-

some 1q21.1, and ATXN2L, ATP2A1, and SH2B1 on distal 16p11.2 (Fig 2A). Similarly, 32/165

genes (19%) are considered intolerant to loss-of-function mutations based on pLI scores

(>0.9), and 36/160 genes (23%) have HI scores in the highest 20th percentile of the entire

genome (S3 Table). Furthermore, the top 10% of all genes identified by a gene interaction-

based machine-learning classifier to be associated with autism included 8 genes within 16p11.2

and 4 genes within 22q11.2 [68].

Second, several recent studies using animal and cellular models have demonstrated the

critical involvement of several genes within CNVs towards neurological, cellular, and develop-

mental functions [38,47,48,52,53,74] (Fig 2B, S4 Table). For example, Blaker-Lee and col-

leagues screened 22 homologs of 16p11.2 genes in zebrafish morpholino knockdown models

and identified 20 homologs that contributed to morphological defects and abnormal behavior

[38]. Iyer and colleagues also screened homologs of 16p11.2 genes in Drosophila melaogaster
using RNA interference (RNAi) knockdown and found that 10 out of 14 homologs contrib-

uted to global developmental defects as well as specific neuronal and cellular defects in the

developing fly eye [47]. Further, mouse models for 15 genes within the 16p11.2 region have

been generated to test for defects in development and neuronal behavior [46,49–51,75–87].

For example, Taok2-/- mice have increased brain size, behavioral defects, and impaired synapse

development [51]; Kcdt13+/- mice show defects in hippocampal synaptic transmission and

decreased dendritic complexity [46]; Mapk3+/- mice show behavior anomalies, abnormal syn-

apse function, and reduced cell proliferation during development [75,76]; and Mvp+/- mice

show decreased plasticity and synaptic defects in ocular neurons [49] (Fig 2B). These models

of individual genes do not fully recapitulate the phenotypes observed in models of the entire

CNV [69–73]. For example, the decreased body weight, abnormal brain morphology, and

coordination defects observed in 16p11.2 deletion mouse models have not been observed in

any individual gene knockdown models [69–72] (Fig 2B). Similarly, Otud7a+/- mouse models

have low body weight, reduced vocalization, abnormal dendritic spine morphology, and sei-

zures, but the 15q13.3 deletion mice also show learning and memory defects in addition to the

above features [44,45,88]. Furthermore, mouse models for Chrna7+/-, another candidate gene

on chromosome 15q13.3, only show subtle behavioral phenotypes [89]. These data suggest

that haploinsufficiency of CHRNA7 or OTUD7A alone is not sufficient to account for the path-

ogenicity of the entire CNV. Overall, a catalog of functional data from mouse [90], zebrafish

[91], and fruit fly studies [92] indicates that 80% (131/163) of homologs for genes within CNV
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Fig 2. Pathogenicity metrics and model organism phenotypes for CNV genes. (A) Percentile-rank scores compared to the whole genome for

intolerance to variation (RVIS, pLI, and maximum CCR) and haploinsufficiency (HI, Essentiality, GHIS, and EpiScore) metrics for genes within select

variably expressive CNV regions are shown [61–67]. Lower percentile scores indicate a gene is more likely to be haploinsufficient or intolerant to

variation. Gray boxes indicate that metrics were not available for a particular gene. (B) Developmental phenotypes in animal models for homologs of

individual genes within the 16p11.2 region, as cataloged from animal model databases (MGI, ZFIN, and FlyBase), are shown. Black boxes indicate

presence of phenotype, white boxes indicate absence of phenotype, and gray boxes indicate that no homolog is present for a particular gene in that model
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regions present lethality, behavioral, developmental, or neuronal phenotypes when disrupted

(S4 Table). These data suggest that disruption of multiple genes within each CNV region can

affect important developmental or neuronal functions that could contribute to the phenotypes

of the entire CNV.

Third, patterns of gene expression in humans and model organisms have identified multi-

ple genes within each CNV region that are co-expressed in the developing brain along with

known neurodevelopmental genes. For example, Maynard and colleagues examined expres-

sion patterns of 22q11.2 gene homologs in the developing mouse brain and found that 27 out

of 32 genes were expressed in the embryonic forebrain, with six genes expressed in neuronal

tissues related to schizophrenia [40]. In fact, a genome-wide weighted gene correlation net-

work analysis (WGCNA) [93] from different brain tissues during development [94] shows sev-

eral large modules of genes with similar expression patterns (Fig 3, S5 Table). For example, the

five largest modules are each enriched (p< 0.05 with Benjamini-Hochberg correction) for bio-

logical functions related to neurodevelopment, including protein modification and transport

in module 1 (M1), nervous system development in M2, and cell communication and signal

transduction in M5. Each of these modules contains multiple genes from the same CNV

region, including 3q29 genes PAK2, NCBP2, and BDH1 in M1, 1q21.1 genes BCL9, CHD1L,

organism. The phenotypes observed in 16p11.2 deletion and duplication mice are distinct from those observed in the individual gene models [69–73].

Data for this figure, including gene metrics and animal phenotypes for other CNV genes not shown in this figure, are available in S3 Table and S4 Table.

CCR, constrained coding region; CNV, copy-number variant; GHIS, genome-wide haploinsufficiency score; HI, haploinsufficiency score; MGI, Mouse

Genome Informatics; pLI, probability of loss-of-function intolerance; RVIS, residual variance to intolerance score; ZFIN, Zebrafish Information Network.

https://doi.org/10.1371/journal.pgen.1007879.g002

Fig 3. CNV gene co-expression in the developing brain. Modules of co-expressed genes derived from WGCNA analysis of BrainSpan Atlas RNA-Seq

data (Gencode v. 10) [94] across 524 tissues and time points the developing brain are shown. Networks of interactions among genes within three select top

WGCNA modules (M1, M2, and M5) were obtained from the BioGrid interaction database [95] and visualized using Cytoscape [96]. Genes within

variably expressive CNV regions are highlighted as colored nodes in each network. Bar graphs show enrichment (p< 0.05 with Benjamini-Hochsberg

correction, represented by red dotted line) of genes within each module for GO Biological Process terms, calculated using PantherDB [97]. Data for this

figure are available in S5 Table. CNV, copy-number variant; GO, Gene Ontology; WGCNA, weighted gene correlation network analysis.

https://doi.org/10.1371/journal.pgen.1007879.g003
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and FMO5 in M2, and 16p11.2 genes MVP and QPRT in M5. Therefore, it is clear that multiple

genes in the same CNV region are co-expressed with each other in the developing brain and

could share similar functions or regulatory patterns.

Dissecting the genetic complexity of CNV pathogenicity

Several scenarios could explain how the haploinsufficiency of multiple genes can predict the

variable phenotypes associated with the entire CNV (Fig 4A). The simplest such model is an

additive model, in which disruption of individual genes within a CNV may only impart a mild

phenotype on their own but additively contribute to more severe features [37] (Fig 4A). How-

ever, an additive model may not always explain the phenotypic features manifested by CNVs

containing multiple candidate genes that could lead to severe defects or lethality on their own.

For example, heterozygous Tbx1+/- (within the 22q11.2 region) and Mapk1+/- (within the distal

22q11.2 region) mice both lead to perinatal or neonatal lethality [98–100]. In humans, 14%

(24/172) of CNV genes are under evolutionary constraint in control populations (pLI score>

0.9 or maximum CCR score greater than the 99th percentile) and have no reported disease-

associated variants [101–103], suggesting that these genes could be under strong purifying

selection [67]. Furthermore, 18% (22/125) of CNV genes show evolutionary constraint for

Fig 4. Models for genetic interactions within CNV regions. (A) Several models of interactions among CNV genes are shown. These models include

(i) a single-gene model in which one gene is sufficient to account for the phenotype; additive models in which the phenotype is due to the additive

effects of multiple CNV genes that (ii) may or (iii) may not account for phenotypes on their own; and (iv) a complex interaction model in which

additive, enhancer, and suppressor interactions between genes in the CNV region modulate the phenotype, including when additive effects of the

CNV genes would lead to lethality on their own (gray circles). The size of the circles in the plot indicates the relative contribution of each gene to the

overall neurodevelopmental phenotype. Thick circles indicate genes that contribute to the observed phenotypes on their own, and connector lines

indicate the nature of interaction between pairs of genes. Connected modifier genes (M) can further modulate these interactions to ultimately define

the phenotypic trajectory in individuals carrying the CNV. (B) For a hypothetical CNV region with three genes, there are seven combinations of gene

knockdowns (A, B, C, AB, AC, BC, and ABC) that can be tested for the presence or absence of a specific phenotype. These knockdown experiments

can yield 128 potential outcomes for each phenotype tested, with each individual set of outcomes corresponding to 1 of 64 combinations of pairwise

gene interactions (additive, enhancer, suppressor, or no interaction). One possible outcome, highlighted in orange, shows presence of a particular

phenotype for knockdowns of single genes A and B and two-hit knockdowns AB and BC. The single-gene knockdowns indicate that only genes A and

B contribute to the phenotype and that the phenotype of pairwise knockdown AB is due to the additive effects of the two genes. Although the

phenotype is observed for BC knockdown, the phenotype is not observed for AC and ABC knockdowns, suggesting that gene C suppresses the

phenotype of gene A. CNV, copy-number variant.

https://doi.org/10.1371/journal.pgen.1007879.g004
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loss-of-function mutations (pLI > 0.9) but not for copy-number changes within a control pop-

ulation [104]. We therefore hypothesize that the pathogenicity of variably expressive CNVs

can also be explained by complex interactions among the constituent genes within shared bio-

logical pathways. These interactions can enhance or suppress the phenotypes caused by dis-

ruption of individual genes. Under this model, the haploinsufficiency of certain genes can be

modulated by haploinsufficiency of other interacting genes in the same region that may or

may not lead to phenotypes on their own (Fig 4A). Furthermore, variants in the genetic back-

ground that map within these shared pathways can simultaneously modulate the effects of

multiple genes, ultimately defining the phenotypic trajectory in CNV carriers (Fig 4A). For

example, Pizzo and colleagues found that the burden of rare deleterious mutations within

genes in the genetic background correlated with variability of IQ scores and head circumfer-

ence among 16p11.2 deletion carriers [36]. The potential for complex interactions within a

CNV region depends on the functional convergence of the constituent genes. For instance,

both KCTD13 and TAOK2 within 16p11.2 participate in the Ras homolog A (RhoA) signaling

pathway [46,51] and therefore are more likely to interact with each other than genes located in

different biological pathways. In fact, it has been shown that genes within pathogenic CNVs

are more similar in function compared to genes within benign CNVs, suggesting that variably

expressive CNVs are likely to contain interactions between functionally relevant genes [105].

Further, Noh and colleagues found an overrepresentation of interactions among genes within

autism-associated CNVs, and these interactions were enriched for synaptic transmission and

regulatory signaling pathways [106]. Because of this, therapeutic targets for pathways shared

among CNV genes could be explored as potential treatments for CNV disorders.

The possibility of additive, suppressor, and enhancer interactions between pairs of genes

underlies the potential for highly complex models of CNV pathogenicity. For instance, within

a CNV region spanning three genes, seven combinations of gene knockdown experiments

(haploinsufficiency of A, B, C, AB, BC, AC, and ABC) can be tested for the presence or absence

of a specific phenotype (Fig 4B). This set of knockdown experiments can yield 128 possible

experimental outcomes that can be used to further deduce 64 possible sets of pairwise interac-

tions for AB, BC, and AC (no interaction, additive, suppression, or enhancement for each

interaction) (Fig 4B). These possible combinations of interactions exponentially increase for

larger CNVs with more genes, and the complexity further increases if quantitative phenotypes

are used to determine the magnitude of interactions between genes or when interactions with

variants in the genetic background are taken into account. However, testing even a small num-

ber of these interactions would still uncover the nature of the relationships among genes

within a CNV region and potentially a common pathway shared by those genes. For example,

Grice and colleagues used D. melanogaster RNAi models to identify 6 synergistic interactions

out of 41 tested pairwise interactions between genes within de novo CNVs from autism

patients, including partial 3q29 and 22q11.2 deletions [107]. Iyer and colleagues also used fly

models to identify 24 additive, enhancer, and suppressor interactions out of 52 tested pairwise

interactions among homologs of 16p11.2 genes [47], providing further evidence for complex

interactions within CNV regions. Furthermore, these interaction models for CNV pathogenic-

ity can be tested in cellular models of the entire CNV. For example, a more severe phenotype

observed by restoring dosage of a candidate gene would suggest that disruption of this gene

potentially suppresses the effects of other genes within the CNV.

Complex genetic interactions in the context of genome sequencing

In recent years, exome and whole-genome sequencing analysis has proven invaluable in identi-

fying candidate genes for neurodevelopmental disorders [108]. However, sequencing studies
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would not be able to capture the genetic complexity of a multigenic CNV region. For example,

genes that cause severe phenotypes or lethality on their own and are modulated by haploinsuf-

ficiency of other interacting genes within a CNV are less likely to have an enrichment of muta-

tions in sequencing studies. Furthermore, because of the strong phenotypic heterogeneity of

these CNVs, it is not possible to determine whether the phenotypes of any individual candidate

gene fully recapitulate the variable phenotypes of the entire CNV region. Candidate genes

within CNVs identified through genome sequencing studies, such as TAOK2 on chromosome

16p11.2 [51] or CHRNA7 on chromosome 15q13.3 [109], do not preclude the possibility of

other candidate genes in the same region. Because of this, a thorough systems-based approach

for each gene within a CNV and its interactions is necessary to identify candidate genes

responsible for the neuropsychiatric features of each region [110].

In summary, genomic and functional data have implicated multiple genes in variably

expressive CNV regions toward neuropsychiatric phenotypes, suggesting that single causative

genes are not responsible for the heterogeneous features of these CNVs. Here, we propose a

complex interaction-based model for these CNVs, in which candidate genes within each

region interact with each other to influence the variable clinical outcome. The CNV phenotype

is therefore distinct from the phenotype manifested by any individual gene, or in some cases,

the additive effects of all genes in the region. This multigenic model of CNVs agrees with a

broader complex genetic view of neurodevelopmental disorders, in which hundreds of genes

with varying effect sizes and complex interactions influence developmental features [10]. Fur-

ther studies on the role of individual genes in CNV regions towards neurodevelopment, espe-

cially those that identify key interactions between genes, will be useful in uncovering the

cellular pathways and mechanisms responsible for the observed neuropsychiatric features.
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