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Abstract

Motivation: An important task in the analysis of single-cell RNA-Seq data is the estimation of differentiation potency,
as this can help identify stem-or-multipotent cells in non-temporal studies or in tissues where differentiation hierar-
chies are not well established. A key challenge in the estimation of single-cell potency is the need for a fast and ac-
curate algorithm, scalable to large scRNA-Seq studies profiling millions of cells.

Results: Here, we present a single-cell potency measure, called Correlation of Connectome and Transcriptome
(CCAT), which can return accurate single-cell potency estimates of a million cells in minutes, a 100-fold improve-
ment over current state-of-the-art methods. We benchmark CCAT against 8 other single-cell potency models and
across 28 scRNA-Seq studies, encompassing over 2 million cells, demonstrating comparable accuracy than the cur-
rent state-of-the-art, at a significantly reduced computational cost, and with increased robustness to dropouts.

Availability and implementation: CCAT is part of the SCENT R-package, freely available from https://github.com/
aet21/SCENT.

Contact: andrew@picb.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

One of the key aims of single-cell RNA-Seq studies is to elucidate
the differentiation hierarchies of complex tissues (Rozenblatt-Rosen
et al., 2017). This requires the unbiased estimation of differentiation
potency of single-cells, to enable identification of stem-or-
multipotent progenitor cells, and ranking of single cells along differ-
entiation potency gradients (Teschendorff and Enver, 2017). These
tasks are particularly challenging in non-temporal scRNA-Seq stud-
ies, or in tissues where differentiation hierarchies are not well estab-
lished (Chen et al., 2019). Although tools such as pseudotime
(Trapnell et al., 2014) can be adapted to non-temporal scRNA-Seq
data, it requires a priori identification of root-states, often through
use of prior biological knowledge (e.g. surface marker expression),
which can be highly ambiguous and biased. Because of this, recent
methods (Banerji et al., 2013; Guo et al., 2017; Teschendorff and
Enver, 2017) have aimed to estimate differentiation potency of
single-cells from the ‘bottom-up’, that is, by using only information
from a cell’s network state, without the need for prior biological

knowledge. In principle, such bottom-up approaches provide
improved and less biased estimates of differentiation potency. A re-
cent comparative study (Gulati et al., 2020) of such single-cell po-
tency measures identified CytoTRACE (Gulati et al., 2020) and
SCENT (Teschendorff and Enver, 2017) as two of the best perform-
ing methods. However, a numerical challenge remains in that the es-
timation of single-cell potency with methods like CytoTRACE and
SCENT can be computationally intensive, requiring runtimes of
many hours, days or even weeks, depending on cell number and
available computational resources.

Here, we present an ultra-fast method, called CCAT, for estimat-
ing differentiation potency of single cells from scRNA-Seq data,
which is scalable to upcoming scRNA-Seq studies profiling millions
of cells. Under certain assumptions, CCAT can be viewed as provid-
ing a fast proxy to our previously proposed Single-Cell Entropy
(SCENT) (also known as entropy-rate SR) measure (Teschendorff
and Enver, 2017), but we stress that CCAT represents a different
method which is not mathematically equivalent to SCENT. We
evaluate and benchmark CCAT against 8 other single-cell potency
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measures across 28 scRNA-Seq studies encompassing over 2.1 mil-
lion cells, demonstrating that CCAT achieves comparable perform-
ance to state-of-the-art methods like CytoTRACE or SCENT, with
an approximate 10–1000-fold improvement in computational effi-
ciency. We demonstrate CCAT’s accuracy and scalability on a
scRNA-Seq study profiling two million cells, its robustness to noise,
and show how it can be integrated with existing linage trajectory in-
ference algorithms to provide unambiguous assignment of root-
states or identification of stem-like states.

2 Materials and methods

2.1 Estimating differentiation potency with CCAT
The CCAT measure is directly motivated by our previously pro-
posed entropy-rate (SR) (Banerji et al., 2013; Teschendorff and
Enver, 2017). Given an appropriately normalized scRNA-Seq profile
x ¼ ðx1; . . . ;xGÞ where G is the number of genes overlapping with a
protein-protein-interaction (PPI)-network, so that the G�G adja-
cency matrix A is connected, we first define a stochastic diffusion
matrix P on this graph, by the entries

pij ¼
AijxjP
k Aikxk

: (1)

In the above, Aii ¼ 0 and Aij ¼ 0 if i and j are not neighbors in
the network, with Aij ¼ 1 if and only if i and j are neighbors. From
the stochastic matrix, the entropy-rate (SR) is defined by

SR ¼ �
X

i;j

pipij log pij; (2)

where p is the invariant measure of the Markov Chain process on
the graph, satisfying pP ¼ p and the detailed balance equation
pipij ¼ pjpji. It can be shown that the invariant measure is given by
pi ¼ xiðAxÞi=xTAx. The above equation for SR can also be
expressed as SR ¼

P
i piSi where the Si are the local node (gene)

entropies. As explained by us previously (Teschendorff and Enver,
2017), if we take a global mean field approximation, we can replace
ðAxÞi up to a constant scaling with ki, the degree/connectivity of
node/gene i in the network. Thus, SR can be approximated as the 3-
way correlation

SR �
X

i

xikiSi: (3)

In practice, the dynamic range of the local entropies Si is small,
which means that SR can be further approximated proportionally
by the dot product of the transcriptome x and connectome k.
Indeed, we here propose the following differentiation potency meas-
ure, called CCAT (Correlation of Connectome and Transcriptome),
defined by the Pearson Correlation Coefficient (PCC)

CCAT ¼ PCCðx;kÞ (4)

which has the advantage of being normalized between -1 and 1. In
addition, being estimated from a Pearson Correlation, it provides an
ultra-fast method to estimate differentiation potency of single-cells,
as there is no need to compute the invariant measure or local
entropies.We stress that to derive CCAT we made a number of
assumptions, and that it is therefore not mathematically equivalent
to SR. Indeed, one can conceive of networks where the two meas-
ures are anti-correlated (Teschendorff and Enver, 2017). However,
for PPI networks, CCAT provides a positively correlated proxy to
SR.

2.2 Biological justification underlying CCAT
In previous studies, we have observed that high-potency cells tend to
overexpress network hubs (Shi et al., 2018; Teschendorff and Enver,
2017). The overexpression of network hubs thus draws-in signaling
flux, allowing signaling to be distributed more efficiently over the
whole network. This explains why the entropy-rate (SR), which in
effect measures the efficiency of a diffusion process to explore the

whole network, correlates with cell potency. Thus, approximating
SR with CCAT is sensible because CCAT directly measures the cor-
relation between expression and node degree and therefore will be
positive if the majority of network hubs are overexpressed in the
more potent cells.

2.3 Normalization of scRNA-Seq datasets
We always use scRNA-Seq data normalized on a log-scale, in order
to stabilize the variance of highly expressed genes. Because the sto-
chastic matrix involves a ratio of gene-expression values, one needs
to avoid zero values in the data matrix, so it is necessary to use a
pseudocount of 1.1, so that the log(countsþ1.1) transformation
takes on a minimum value above zero. Details of the scRNA-Seq
datasets and the normalization procedure used in each one are avail-
able in Supplementary Information.

2.4 Construction of PPI network and integration with

expression
In this work, we have considered a total of three different PPI net-
works. Two of these networks are derived from the Pathway
Commons (PC) resource (Cerami et al., 2011; Rodchenkov et al.,
2020), and represent two different releases (PC1 and PC2v11). The
other network is derived from the STRING database v11
(Szklarczyk et al., 2019). Briefly, from PC, we downloaded the
human PPI network derived from all sources, subsequently selecting
interactions annotated to the following interaction types: ‘interacts-
with’, ‘reacts-with’, ‘in-complex-with’, ‘used-to-produce’ and from
the following databases: HPRD, BioGRID, BIND, PID, IntAct,
PANTHER, KEGG, Reactome, CORUM, DIP and NetPath
(Rodchenkov et al., 2020). We further integrated the resulting net-
work with protein cellular localization data from the HPRD (Prasad
et al., 2009), annotating each protein to its dominant cellular do-
main: extracellular, cellular membrane and intra-cellular.
Specifically, we removed interactions involving proteins annotated
as extracellular with proteins annotated as intracellular. Finally, for
the resulting network we extracted the maximally connected compo-
nent. Integration with gene expression then proceeds by overlaying
expression values over the nodes in the maximally connected subnet-
work obtained after integrating the PPI with the genes present in the
mRNA expression profile. In the case of the STRING database v11,
we applied the same procedure described above to remove interac-
tions between proteins annotated to separate intra and intercellular
domains. In total, the 3 resulting PPI networks contained 8.434
nodes and 303 600 edges (PC1), 12 649 nodes and 464 091 edges
(PCv12) and 12 921 nodes and 3 594 088 edges (STRING), repre-
senting 0.8%, 0.6% and 4% of the maximum possible number of
edges. We note that the filtering with protein cellular localization
data reduces the dimensionality of the PPI networks from around
18 000–20 000 genes to the approximately 8000 or 12 000 genes
noted above.

2.5 Other single-cell potency estimation methods
Benchmarking of CCAT was done against eight other methods: SR/
SCENT (Teschendorff and Enver, 2017), CytoTRACE (Gulati et al.,
2020), SLICE (Guo et al., 2017), StemID (Grun et al., 2016),
scEnergy (Jin et al., 2018), cmEntropy (Kannan et al., 2020) and
two measures related to CytoTRACE: the number of detected genes
(gene-count) and the gene-count signature (GCS) (Gulati et al.,
2020). Briefly, SLICE computes a Shannon entropy over a gene-
ontology (GO) cluster activation profile, where the activation level
of a GO-cluster is derived from the average expression of genes
mapping to that GO-cluster. StemID is obtained as the Shannon en-
tropy of a cell’s transcriptome, i.e. how uniformly distributed the
read counts are among all genes. scEnergy is similar to SR, but in-
stead of a PPI network, it infers a correlation network from the
scRNA-Seq data itself. The GCS measure is calculated as the geo-
metric average expression of the top-200 genes that correlate most
strongly with the number of detected genes per cell, where correla-
tions are computed for each dataset separately. The CytoTRACE
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measure introduces an additional smoothing step to denoise the
GCS estimate. cmEntropy is similar to StemID in that it computes
the Shannon entropy of read counts over genes, but focusing on the
top-1000 most highly expressed genes.

2.6 Evaluation strategy and metric
scRNA-Seq datasets were chosen where an objective comparison be-
tween cells of high differentiation potency with cells of lower po-
tency is possible. For instance, in developmental or differentiation
timecourses, we typically compare cells of high potency at the start
of the timecourse to lower potency cells at the end of the timecourse,
based on the reasonable assumption that if start and end timepoints
are well separated, that a potency estimation method yielding a
higher discrimination accuracy between these cell groups is indica-
tive of a better method. Specifically, we use the Area-Under-Curve
(AUC) to evaluate discrimination accuracy, as derived from the stat-
istic of a Wilcoxon rank sum test. Details of the specific cell groups
being compared and the number of cells in each group for each data-
set, can be found in Supplementary Information.

2.7 Selection of root-state and root-cell from CCAT
Having estimated the CCAT values for all cells, we select the top
5% of cells with highest CCAT values. To robustly identify the root-
state, we consider cells in the root state as defining the largest cluster
among these 5% of cells, when clustered along all the diffusion map
components. We estimate diffusion map components using the des-
tiny R-package (Angerer et al., 2016; Haghverdi et al., 2016) and
inferred clusters of cells using the walktrap algorithm (Pons and
Latapy, 2005) as implemented in the igraph R package (version
1.2.5). This algorithm partitions the diffusion map graph into dense-
ly connected modules exploiting the fact that short random walks
tend to stay within a module. We set the length of the random walks
to be approximately 25% of all cells. For instance, in the application
to the liver developmental study (n¼447 cells) (Yang et al., 2017),
there were 22 high CCAT cells, and so we ran walktrap with a
random-walk length of 5. Finally, the root-state is identified as the
largest inferred cluster with the root-cell defined as the median cell
within this cluster. This root-cell is then used to infer lineage-
trajectories using destiny. Details can be found in Supplementary
Note.

A

B

C D

Fig. 1. Evaluation and benchmarking of CCAT. (A) Distribution of CCAT single-cell potency measure as a function of cell-type or developmental/differentiation timepoint for

four independent scRNA-Seq studies. Groups labeled in red and orange denote the cell-types that ought to differ in terms of differentiation potency, with groups labeled in

gray denoting intermediate stages. P-value is from a one-tailed Wilcoxon rank sum test comparing the higher potency group (red) to the lower potency one (orange). Number

of cells in each group is given below violin plots. (B) The discriminative accuracy (AUC) derived from the Wilcoxon rank sum test, displayed for 9 different single-cell potency

methods across 28 independent scRNA-Seq studies. (C) Distribution of the AUC values in (B) for each of the nine single-cell potency estimation methods. Each boxplot con-

tains 28 datapoints represent the 28 studies. Methods have been ranked according to the mean AUC over the 28 studies, indicated by the small black boxes. P-values derive

from a paired one-tailed Wilcoxon rank sum test comparing the AUC of CCAT to each of the other methods, i.e. with the alternative hypothesis that the AUC for CCAT is

higher. We only mark significant P-values as shown. P-values for the other alternative, i.e. that the AUC of each other method is higher than that of CCAT were all non-signifi-

cant (P>0.05). (D) Run times (y-axis) against the number of cells in a scRNA-Seq study for four different methods, as indicated. Run times were obtained on an Intel Xeon

E3-1575M v5/3 GHz and using only 1-core. If run in parallel, say 100 cores, run times can be approximated by dividing values in panel by 100. Data points with black borders

were estimated from a linear regression fit
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3 Results

3.1 CCAT exhibits high discriminative accuracy
In order to evaluate CCAT, we collated 28 scRNA-Seq datasets,
each one profiling cells from distinct differentiation potency states,
thus allowing for an objective assessment (Supplementary Table S1).
In each dataset, we compared the CCAT values of high to low po-
tency cells, computing the discriminative accuracy (AUC) of CCAT.
Of note, in timecourse studies, we only compared cells at the start
and endpoints, as these groups of cells ought to differ substantially
in terms of differentiation potency, thus allowing AUC to be used as
an objective evaluation metric. In total, the 28 comparative studies
profiled over 2 million cells, used a wide range of different scRNA-
Seq technologies, and encompassed two species (human and mouse).
Across all studies, CCAT achieved reasonably high AUC values,
with cells in intermediate potency groups also displaying intermedi-
ate CCAT values (Fig. 1A and B).

We benchmarked CCAT against eight other single-cell potency
methods (Section 2), including SR/SCENT (Teschendorff and Enver,
2017) and CytoTRACE (Gulati et al., 2020), two of the best per-
forming methods in a recent comparative study (Gulati et al., 2020).
Overall, CCAT achieved comparable performance to SR and
CytoTRACE (Fig. 1B and C). In fact, although CytoTRACE was the
best performer in terms of the median AUC over all 28 studies,

CCAT ranked top in terms of the average AUC, a metric which bet-
ter assesses the robustness of the method (Fig. 1C). Indeed, we
observed that in some studies CytoTRACE broke down, performing
less well than some of the other potency measures it is derived from
(e.g. number of detected genes or gene-count, Fig. 1B and C). CCAT
exhibited statistically significantly higher median AUC compared to
all other methods, except CytoTRACE and GCS (gene-count signa-
ture) (Fig. 1C), clearly demonstrating that CCAT achieves a discrim-
inative accuracy comparable to that of current state-of-the-art
methods. Although in some studies CCAT estimates were highly
correlated with GCS, in others, correlations were only moderate,
suggesting that these potency measures are not redundant
(Supplementary Fig. S1).

3.2 CCAT is 100-fold faster than competing methods
Fast estimation of differentiation potency is highly desirable for two
reasons. First, estimation of single-cell potency is particularly neces-
sary in scRNA-Seq studies that aim to identify stem-or-multipotent
like cells, specially those that underpin homeostasis in adult tissues.
Because these stem-or-multipotent progenitor cells are relatively in-
frequent, their identification requires profiling of large numbers of
cells, placing a great computational burden on the computation.
Second, normalization of scRNA-Seq data is tricky and computa-
tions often need to be redone with different normalization schemes,

A

C

B

Fig. 2. Using CCAT to infer root-state and lineage trajectories in liver development. (A) Two-dimensional diffusion map plot displaying the root-cell as identified with CCAT,

and the lineage trajectories into hepatocytes and cholangiocytes, with cells colored according to diffusion pseudotime (DPT). (B) As (A), but now with cells colored according

to CPS and SOX9 expression, which are markers for hepatocytes and cholangiocytes, respectively. (C) Three dimensional diffusion map plot, displaying the positioning of the

cells along the top 3 DCs, with cells colored by the estimated CCAT values (left panel) and diffusion pseudotime (right panel)
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which means that lengthy computations are undesirable. Since
CCAT estimates differentiation potency through a simple Pearson
correlation between a cell’s transcriptome and a PPI’s connectome,

it is computationally fast. To demonstrate this, we used CCAT to es-
timate differentiation potency in over two million cells from a
mouse organogenesis study (Cao et al., 2019), a computational task

that we could accomplish in a few minutes using only 1 Intel Xeon
core (Fig. 1D). With 100 cores, runtimes would be a few seconds. In

contrast, we estimated that with one core this task would take on
the order of hours had we used CytoTRACE or GCS, and a month if
using SR (Fig. 1D). Overall, CCAT exhibits an approximate 100-

fold improvement in computational efficiency as compared to
CytoTRACE and GCS.

3.3 CCAT identifies a multipotent root-state in scRNA-

Seq data
As with SR and CytoTRACE, CCAT can be used to unambiguously

identify stem-or multipotent root-states, which are necessary for
inferring lineage-trajectories. To illustrate this, we estimated po-
tency with CCAT in hundreds of single-cells from a developmental

timecourse of hepatoblasts into hepatocytes and cholangiocytes
(Yang et al., 2017) and developed a simple algorithm to robustly
identify a root-state (and root-cell) among cells attaining high
CCAT values (Section 2 and Supplementary Fig. S2). Having identi-
fied the root-cell, we next infered lineage trajectories and pseudo-
time using Diffusion Maps (Angerer et al., 2016; Haghverdi et al.,
2016), which revealed a natural bifurcation into hepatocyte and
cholangiocyte lineages (Fig. 2A and B). Displaying the diffusion map
along the first 3 diffusion components (DCs) further revealed how
the third DC associates strongly with potency and CCAT (Fig. 2C).

3.4 Robustness of CCAT to PPI network
It is important to establish the robustness of the CCAT measure to
the choice of PPI network. To this end we compared the CCAT val-
ues derived from three different PPI networks, encompassing two
different versions of the Pathway Commons PPI network (v1 and
v12) (Cerami et al., 2011; Rodchenkov et al., 2020) and the latest
version of the STRING PPI database (Szklarczyk et al., 2019).
Importantly, even though the degree distributions (connectomes) of
these networks exhibit moderate correlations (Fig. 3A), CCAT val-
ues were highly correlated (Fig. 3B), resulting in excellent

Fig. 3. Robustness of CCAT to choice of PPI network. (A) Scatterplots of the degree of each protein between each pair of PPI networks (PC1¼Pathway Commons V1,

PCv12¼Pathway Commons v12, STRING¼STRING database v11). The Pearson Correlation Coefficient (PCC) and associated P-value are shown in red. (B) Scatterplots of

the CCAT estimates derived from each of the three PPI networks and in each of four independent scRNA-Seq studies (Chu1, Yang, Yao1a and HCL-Pancreas). The Pearson

Correlation Coefficient (PCC) and associated P-value are shown in red. (C) Barplots displaying the accuracy (AUC) of CCAT to discriminate high and low potency cells as a

function of PPI network used and scRNA-Seq dataset
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discrimination accuracy of high and low potency cells, independent-
ly of PPI network and dataset (Fig. 3C). To demonstrate that the
increased correlation of CCAT values compared to those of the con-
nectome is statistically significant, we randomized the degree distri-
bution of each PPI network pair, using the same permutation over
the common nodes of each network. This permutation scheme guar-
antees that the correlation of the connectomes is invariant, but
destroys any putative association between connectome and tran-
scriptome. This analysis showed that the high correlation of CCAT
values is highly significant and not expected by random chance
(1000 Monte-Carlo runs P<0.001, Fig. 4). Thus, the robust associ-
ation of CCAT with differentiation potency is due to the subtle posi-
tive correlation between transcriptome and connectome, which, as
shown, is itself robust to the choice of PPI network.

3.5 Robustness of CCAT to dropouts
Dropouts are common in scRNA-Seq datasets (Stegle et al., 2015),
and several of the datasets analyzed here [e.g. the DropSeq Human
Cell Landscape (HCL) datasets] exhibited relatively high (i.e. over
95%) dropout rates (Supplementary Fig. S3). Despite this, measures
like CCAT and CytoTRACE exhibited reasonably high discrimin-
ation accuracies in these datasets (Fig. 1B). To better assess the effect
of an increased dropout rate, we selected 13 studies where CCAT,
CytoTRACE and GCS performed well and where the dropout rate
in the original data was less than 90%, in order to then be able to
evaluate the change in these potency estimates as the dropout rate is
increased (Section 2). Across all 13 studies, when the dropout rate in
each was increased by 5%, the CCAT measure was the most robust,
exhibiting Pearson correlations of over 0.8 across all studies
(Supplementary Fig. S4). CCAT was significantly more robust than
CytoTRACE and GCS (paired Wilcox test P¼0.0006 and
P¼0.02). Similar results were observed when the dropout rate was
increased by 10% (Supplementary Fig. S4). Importantly, discrimin-
ation accuracies were robust and remained high for all three meth-
ods, although GCS did exhibit some significant variability in two
studies (Supplementary Fig. S5).

3.6 Stability of CCAT to imputation of dropouts
It is also important to establish robustness of the CCAT measure to
imputation of technical dropouts. To this end, we applied the
MAGIC imputation algorithm (van Dijk et al., 2018) to four ran-
domly chosen scRNA-Seq datasets, recomputing CCAT and

subsequently comparing to the CCAT values without prior imput-
ation. Overall, we observed reasonably strong correlations before
and after imputation (Supplementary Fig. S6), with CCAT AUC val-
ues also exhibiting strong robustness (Supplementary Fig. S7).

4 Discussion

As assessed over 28 RNA-Seq studies, encompassing over 2 million
cells, CCAT provides reasonably accurate and robust differentiation
potency estimates at single-cell resolution. We did not observe that
state-of-the-art methods like CytoTRACE or SR/SCENT outper-
formed CCAT in terms of accuracy and robustness. Importantly,
CCAT offers significant improvements in computational efficiency,
yielding a 100-fold speed-up over CytoTRACE or GCS.

We have also demonstrated the robustness of the CCAT measure
to the choice of PPI network, to dropouts and to imputation of drop-
outs. The robustness to the PPI network is particularly noteworthy.
Indeed, whilst the correlation of node-degrees between different PPI
networks was generally only modest (PCC � 0.5), correlations be-
tween CCAT values were generally much higher (PCC > 0.8), thus
rendering the ranking of cells according to the CCAT potency meas-
ure very robust to the choice of PPI network. As shown by our
Monte-Carlo randomization analysis, this robustness stems from the
fact that differentiation potency is encoded by a subtle positive cor-
relation between the degree of a gene in a PPI network and its ex-
pression level, with highly potent cells exhibiting higher expression
of network hubs. It is likely that higher expression of network hubs
reflects a more promiscuous interaction pattern of the encoded pro-
teins, facilitated by a more open chromatin structure, in line with
the observation that potency and chromatin loosening are correlated
(Gulati et al., 2020). Of note, CCAT exhibited a higher robustness
to an increase in the dropout rate compared to CytoTRACE and
GCS, which is probably driven by the fact that potency is encoded
by overexpression of network hubs, where the high expression of
such hubs renders CCAT intrinsically more robust to dropouts.

5 Conclusion

We have presented an ultra-fast, accurate and robust method for
estimating differentiation potency at single-cell resolution from
scRNA-Seq data, and which is freely available our SCENT R-pack-
age. CCAT should be particularly valuable for scRNA-Seq studies
profiling hundreds of thousands to a million cells in complex tissues,
to help identify stem-and-multipotent progenitor like cells.
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ation of CCAT values between each pair of PPI network, denoted PCC(CCAT1,
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muting the degree distribution of each network (1000 Monte-Carlo runs). Colors

label the different pairs of PPI networks: blue (PC1-PCv12), green (PC1-STRING),

magenta (PCv12-STRING). Empirical P-value is given

CCAT 1533
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