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Abstract

Background: We utilized miRNAs expression and clinical data to develop a prognostic signature for patients with
lung adenocarcinoma, with respect to their overall survival, to identify high-risk subjects based on their miRNA
genomic profile.

Methods: MiRNA expressions based on miRNA sequencing and clinical data of lung adenocarcinoma patients
(n = 479) from the Cancer Genome Atlas were randomly partitioned into non-overlapping Model (n = 320) and
Test (n = 159) sets, respectively, for model estimation and validation.

Results: Among the ten miRNAs identified using the univariate Cox analysis, six from miR-8, miR-181,
miR-326, miR-375, miR-99a, and miR-10, families showed improvement of the overall survival chance, while
two miRNAs from miR-582 and miR-584 families showed a worsening of survival chances. The final prognostic
signature was developed with five miRNAs—miR-375, miR-582-3p, miR-326, miR-181c-5p, and miR-99a-
5p—utilizing a stepwise variable selection procedure. Using the KEGG pathway analysis, we found potential
evidence supporting their significance in multiple cancer pathways, including non-small cell lung cancer. We
defined two risk groups with a score calculated using the Cox regression coefficients. The five-year survival rates for the
low-risk group was approximately 48.76% (95% CI = (36.15, 63.93)); however, it was as low as 7.50% (95% CI = (2.34, 24.
01)) for the high-risk group. Furthermore, we demonstrated the effect of the genomic profile using the miRNA
signature, quantifying survival rates for hypothetical subjects in different pathological stages of cancer.

Conclusions: The proposed prognostic signature can be used as a reliable tool for identifying high-risk subjects
regarding survival based on their miRNA genomic profile.
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Background
Lung cancer is the leading cause of cancer deaths in the
United States (US) and several other developed countries
worldwide [1, 2]. In 2017, the number of estimated
deaths caused by lung cancer in the US was about
155,870, with 222,500 estimated new cases [2]. Lung
cancer is categorized into two major types—non-small
cell lung cancer (NSCLC) and small cell lung cancer
(SCLC), which account for approximately 85 and 15% of
all lung cancers, respectively [3]. NSCLC consists of

three main histological types—adenocarcinoma, squa-
mous cell carcinoma, and large cell carcinoma [3]; lung
cancer adenocarcinoma is the most common type of
NSCLC.
Although early-stage NSCLC patients have been found

to be substantially benefited by the surgical approach,
about 30–55% of patients develop recurrence and die of
the disease despite resection [4]. During the last decade,
there has been a significant advancement in personalized
target therapeutic strategies for cancers, including lung
cancer [5, 6], showing the need of exploring genomic
subgrouping for selecting optimal treatment, instead of
following a “one size fits all” concept. Particularly, lung
cancer is now widely reorganized as a heterogeneous
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disease and patients are often subdivided into mo-
lecular subtypes with targeted chemotherapeutic strat-
egies [5, 7]. For adenocarcinoma, two types of
strategies—known as tyrosine kinase inhibitor, for tumors
carrying mutations in the tyrosine kinase domain of
epidermal growth factor receptor (EGFR), and crizotinib
for tumors with the rearrangement of anaplastic lymph-
oma kinase (ALK)—are currently available as commercial
personalized treatments [5, 7].
MicroRNAs (miRNAs) are small, non-coding RNA

molecules, about 17–25 nucleotides in length, which
critically influence on a wide range of biological pro-
cesses through controlling messenger RNA by either
degradation or repressing translation into protein [8]. In
recent years, the role of microRNA in cancers has been
widely investigated; several studies have shown the im-
portance of miRNAs as both oncogenes and tumor sup-
pressors by regulating cell proliferation, cell adhesion,
apoptosis, and angiogenesis [9]. Several studies have dis-
cussed survival characteristics with respect to miRNA
profiles, including NSCLC [9, 10], demonstrating miR-
NAs as promising diagnostic, prognostic, and predictive
biomarkers for cancer studies. Furthermore, studies have
demonstrated the long-term stability of miRNAs in
formalin-fixed, paraffin embedded tissues for different
cancer types [11]. Additionally, its stability in human
plasma shows the capability of extracting miRNA ex-
pressions from body fluids, the “liquid biopsies”,
including blood [12] and urine [13] for identifying
biomarkers using non-invasive techniques.
Prognostic biomarkers are individual-specific charac-

teristics such as genomic indicators including mRNAs,
miRNAs, or genes themselves that predict a certain clin-
ical or quality of life outcome. Particularly for cancers,
the most common outcome is survival. In the last two
decades, with rapid advances in genomic research, there
have been numerous efforts to develop prognostic signa-
tures for multiple cancers [14, 15], including lung adeno-
carcinoma [16, 17], to formulate genomic tests for target
treatment selection. To our knowledge, there exist few
reports using miRNA sequencing data from TCGA to
identify a prognostic signature for lung adenocarcinoma;
these studies report diverse findings. We believe that
further studies should be conducted in this field. There-
fore, in this work, we have developed a prognostic signa-
ture using multiple miRNAs for lung adenocarcinoma
with respect to the individuals’ overall survival, which
can potentially be used as a tool for identifying high-risk
subjects with an increased risk for mortality.

Methods
Data
The Cancer Genome Atlas (TCGA) lung adenocarcin-
oma data were obtained from OmicSoft OncoLand

(OmicSoft Corp; Cary, NC). We obtained miRNA
expressions measured in tumor tissues of lung adenocar-
cinoma patients based on the next-generation sequen-
cing technology and their clinical and non-clinical data
describing several characteristics including demograph-
ics, smoking history, disease stages, and overall survival
times. The data contained approximately 2800 miRNA
expressions measured in tissues from 479 subjects. Since
most miRNAs contained excessive zeros in their expres-
sion levels, a reduced set of 672 miRNAs were used;
these contained 25% or lesser zeros in their expressions
and were selected for the current analysis. The miRNAs
with more than 25% zero expression measurements,
approximately 99% of cases in the 75th percentile of
miRNA expressions, was less than or equal to 1.
Among 479 lung adenocarcinoma patients, 261

(54.5%) were diagnosed with Stage 1 disease, 118 (24.6%)
with Stage 2, 76 (15.9%) with Stage 3, and 24 (5%) with
Stage 4 (Table 1). Most subjects were whites (78%).
Approximately 55.5% were females. The patients’ overall
survival times were widely subjected to right censoring,
resulting in an approximately 80% censoring rate.

Model/test set
479 subjects from the original dataset were randomly
divided into two non-overlapping sets—“Model” and
“Test”—using simple random sampling, selecting 320 for
the Model set (i.e., training set) and 159 for the Test set
(i.e., validation set). This group assignment provides ap-
proximately 67 and 33% allocation rates to the Model
and Test sets, respectively.

Statistical methods
The effect of miRNAs on the overall survival of lung
cancer was primarily evaluated using univariate and

Table 1 Clinical characteristics of lung adenocarcinoma patients

Num. of patients 479

Age in years, mean (SD) 65.39 (9.93)

Females, count (%) 261 (54.48)

Ethnicity, count (%)

Asian 8 (1.67)

African American 47 (9.81)

White 378 (78.91)

Other/Unknown 46 (9.60)

Cancer Stage, count (%)

Stage-1 261 (54.49)

Stage-2 118 (24.63)

Stage-3 76 (15.87)

Stage-4 24 (5.01)

Smoking History, count (%) 331 (69.10)
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multivariable Cox proportional hazard model ap-
proaches. For the stability of the Cox regression coeffi-
cient estimates, we used log transformations of observed
miRNA expression measurements. Expressions were ini-
tially truncated at the lower threshold at 0.05 to facilitate
transformation.
Using the Model set, the effect of each 672 miRNAs

on the overall survival was evaluated based on a set of
independent univariate Cox proportional hazard models,
assigning the dependent variable to be right-censored
survival times. Observed p-values for miRNAs were next
adjusted for the False Discovery Rate (FDR) to eliminate
false significance by random chance. An upper threshold
of FDR adjusted p-value 0.05 was used to find a suitable
set of miRNAs that can be potentially included in a mul-
tivariable Cox model. A variable selection procedure de-
veloped on minimizing the Akaike Information Criterion
(AIC) by adding and dropping was utilized to find a
reduced set of miRNAs.
Hereafter, to filter-out the effects of additional risk

factors, a set of demographic and clinical risk factors
were included to estimate a final proportional hazard
model. Such adjustment allows one to extract the accur-
ate effects of each miRNA on survival hazard. The ana-
lysis of deviance was conducted, comparing the model
containing clinical and risk factors alone to the one inte-
grating miRNAs as predictors, to see the overall signifi-
cant contribution of miRNAs on the hazard modeling.
The signs of the estimated regression coefficients of se-
lected miRNAs were examined to classify those that ei-
ther improve or worsen the survival of a cancer patient.
The proportional hazard assumption of model covariates
was tested for the validity of the Cox regression model.
This study was conducted in R − 3.3.1 base software with
several supporting R packages.

Risk score
A risk score for each subject in the Model set was calcu-
lated by taking into account the linear combination of
miRNAs and additional risk factor effects based on
estimated regression parameters and observed values.
The score value Si(Xi, Zi) for the ith, i = 1,..,n, subject is
given by the following:

SiðXi;ZiÞ ¼
XJ

j¼1

β̂ j � Xi j þ
XK

k¼1

γ̂k � Zik ð1Þ

Where, β̂ j; γ̂k are coefficients estimated for Xj th

miRNA and Zk th additional risk factor, with j = 1,.., J;
k = 1,.., K, and Xi = {Xi1,…, XiJ}, Zi = {Zi1,…, ZiK}. Note,
that higher score values indicate the increased hazard
of death by cancer, at any given time. A threshold
value was specified as the 60% quantile point of the

calculated scores for classifying subjects into high-risk
and low-risk groups. Although this is an ad-hoc
threshold, similar criteria—such as percentile points
such as 75%—has been used in the literature [17].
Suppose Q60 is the 60%th percentile of the estimated
scores. The high-risk group Ri(Xi, Zi) would then be
defined as the following:

Ri Xi;Zið Þ ¼ I Si Xi;Zið Þ > Q60½ � ð2Þ

Overall survival of high-risk and low-risk groups was
inspected based on survival curves generated by the
Kaplan Meier product-limit estimates, separately for the
Model and Test sets. The log-rank test was used to de-
termine the overall difference on the survival hazards
between high- and low-risk groups.

Validation of selected miRNAs
The accuracy of the proposed risk scoring scheme ac-
counting the additive effects of miRNAs and other risk
factors was formally evaluated with the Test set. First, a
score value for each individual in the Test set was deter-
mined using formula-1. Next, the criteria given in
formula-2 was used to classifying the individual into a
risk group. The Kaplan-Meier survival functions were
estimated for high- and low-risk test patients; the statis-
tical significance between the overall hazards of the two
groups was determined by the log-rank test.

Results
MiRNA association with the survival from the cancer
Table 2 provides a list of 29 miRNAs that had FDR
adjusted p-values less than 0.2 level when the univariate
Cox models were estimated.
A set of twelve miRNAs found significantly affect the

overall survival hazard at 5% FDR were chosen for the
next stage of analysis. From this set, miRNAs from
miR-8, miR-181, miR-326, miR-375, miR-99a, and
miR-10, showed negative impacts on the hazard rates
with respect to an increase in their expressions. Two
miRNAs, mir-582 and mir-584, increased the hazard of
death. Five miRNAs—miR-375, miR-582-3p, miR-326,
miR-181c-5p, and miR-99a-5p—were finally selected
based on the variable selection concept. We examined
the effect of clinical and demographic variables available
of the patients to identify additional risk factors for haz-
ard modeling. Among several variables available, the
pathological state and age variables were found signifi-
cant. Here, we have categorized the pathological state as
Stage-1, Stage-2, and Stage 3, and above (Stage-3+).
Note that, due to the inadequate number of subjects
reported at Stage-4, the group Stage-3+ was devel-
oped by combining the subjects of Stages 3 and 4.
Demographic variables such as race/ethnicity
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(likelihood ratio p-value = 0.26) and gender (likelihood
ratio p-value = 0.58) did not show statistical signifi-
cances at 5% when the Cox regression models were
developed for the corresponding variable. Besides, we did
not find a significant effect of the patients’ smoking history
on survival (likelihood ratio p-value = 0.93). A multivariate
Cox regression model was fitted with five miRNAs while
adjusting for the effects of pathological state and age vari-
ables. Table 3 shows the estimated regression coefficients
and corresponding p-values. Based on an analysis of devi-
ance conducted to compare the model containing age and
pathological state with the combined model including the
effects of miRNAs, we found significant improvement by
miRNAs on hazard estimation, showing a p-value < 0.001

for the likelihood ratio test. Furthermore, we
performed the analysis of deviance by adding each of
the five selected miRNAs separately to the model that
contained only age and pathological states, which
produce a likelihood ratio test p-value < 0.001, in each
case. Moreover, we tested the interaction between
Cancer Stage and miRNA on the hazard; such inter-
action terms were broadly insignificant. None of the
model components were found to be violating the
proportional hazard assumption. The effect of
miR-326 (p-value = 0.15) was found not significant at
the 5% level. As indicated in Table 4, we did not find
a substantial Pearson’s correlation coefficient among
any pair of the above five miRNAs.

Table 2 A list of top 29 miRNAs found to be having p-values less than 0.2, after adjusting the originally calculated p-value of the
univariate Cox proportional hazard models, for FDR. miRNAs were ranked (i.e., top to bottom) based on their p-values. The analysis
was conducted using the Model set

Rank miRNA Cox Reg. Coefficient P-value P-value FDR Adjusted miRNA Family

1 miR-181c-5p −1.142 <.0001 0.0001 miR-181

2 miR-200b-3p −0.604 <.0001 0.0049 miR-8

3 miR-200a-3p −0.498 <.0001 0.0049 miR-8

4 miR-375 −0.358 <.0001 0.0049 miR-375

5 miR-582-3p 0.352 0.0001 0.0147 miR-582

6 miR-181c-3p −0.813 0.0001 0.0147 miR-181

7 miR-200b-5p −0.550 0.0002 0.0211 miR-8

8 miR-99a-5p −0.537 0.0003 0.0211 miR-10

9 miR-200a-5p −0.536 0.0006 0.0349 miR-8

10 miR-429 −0.448 0.0006 0.0349 miR-8

11 miR-584-5p 0.398 0.0006 0.0349 miR-584

12 miR-326 −0.466 0.0005 0.0349 miR-326

13 miR-29c-3p −0.541 0.0010 0.0525 miR-29

14 miR-101-3p −0.820 0.0016 0.0714 miR-101

15 miR-101-3p 2 −0.823 0.0016 0.0714 miR-101

16 miR-30d-5p −0.642 0.0017 0.0716 miR-30

17 miR-3065-3p −0.351 0.0021 0.0820 miR-3065

18 miR-30b-5p −0.500 0.0032 0.1191 miR-30

19 miR-548b-3p −0.239 0.0036 0.1196 miR-548

20 miR-30d-3p −0.558 0.0035 0.1196 miR-30

21 miR-181a-5p −0.628 0.0050 0.1455 mir-181

22 miR-30b-3p −0.366 0.0048 0.1455 miR-30

23 miR-181a-5p 2 −0.628 0.0050 0.1455 miR-181

24 miR-582-5p 0.276 0.0052 0.1467 miR-582

25 miR-181d-5p −0.484 0.0057 0.1540 miR-181

26 miR-491-5p −0.306 0.0064 0.1651 miR-491

27 miR-29b-2-5p −0.433 0.0079 0.1822 miR-29

28 miR-3934-3p −0.273 0.0078 0.1822 mir-3934

29 miR-532-5p −0.557 0.0079 0.1822 miR-532

FDR = False discovery rate; Cox Reg. = Cox Regression; miRNA =microRNA
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Increments in the expressions of four miRNAs:
miR-375 (HR = 0.74, 95% CI = (0.62, 0.87)), miR-326
(HR = 0.81, 95% CI = (0.60, 1.08)), miR-181c-5p (HR =
0.53, 95% CI = (0.33, 0.85)), and miR-99a-5p (HR =
0.63, 95% CI = (0.44, 0.89)), found to be improving
the survival of subjects, while miR-582-3p (HR = 1.23,
95% CI = (1.06, 1.43)) was found to be worsening the
survival outcome.
As expected, age factor increased the hazard of death

(HR = 1.02 per unit increment, 95% CI = (0.99, 1.04));
however, this was not statistically significant (p-value =
0.13) at 5%. Hazards were found to be strongly increas-
ing when moving from Stage-1 to subsequent higher
pathological stages: Stage 2 vs. Stage 1 (HR = 2.18, 95%
CI = (1.25, 3.83)), and Stage 3+ vs. Stage 1 (HR = 4.48,
95% CI = (2.48, 8.10)).
To confirm our findings, we conducted a KEGG path-

way analysis with the selected set of five miRNAs using
the DIANA-miRPath v3.0 tool (i.e., using the default
settings) [18]. The Additional file 1: Table-S1 shows the
results of the analysis. We found forty-three different
pathways significantly associated with the selected set of
miRNA biomarkers. These were significantly associated
with NSCLCs (p-value = 0.0177), targeting 17 genes. We
present this list of genes in Table 5. Clearly, these miR-
NAs were found to be strongly associated with multiple
cancer pathways, including SCLCs.

Risk scores and risk groups
The risk score for a lung-cancer patient was calculated
using formula-1. The threshold score value to specify
high- and low-risk groups was determined as Q60 = −
5.59. Figure 1 shows the estimated Kaplan Meier survival
curves for high- and low-risk groups, using the Model
and Test sets.
The p-value of the log-rank test conducted for the

Model set was < 0.001; agreeing with this, a p-value <
0.001 was observed for the Test set. This outcome vali-
dated the scoring mechanism that comes from potential
biomarker miRNAs and other risk factors. In the supple-
mentary material, we have provided survival curves for
high- and low-risk groups (see Additional file 1: Figure
S1), obtained using the entire dataset (i.e., combining
both Model and Test sets). For both groups, the esti-
mated median survival times were 2.26 years (95% CI
= (1.72, 2.96)) and 4.93 years (95% CI = (4.42, 8.68)), re-
spectively. The estimated five-year survival rates for the
low-risk group was about 48.76% (95% CI = (36.15,
63.93)), whereas, this was low at 7.50% (95% CI = (2.34,
24.01)) for the high-risk group.

Illustrating the effect of miRNA profile
Among the remaining five miRNAs in the final model,
miR-375, miR-326, miR-181c-5p, and miR-99a-5p were
found be improving survival, while miR-582-3p was

Table 3 Estimated Cox regression coefficients of a set of five
miRNAs selected from the 12 miRNAs, via the stepwise variable
selection method

Cox Regression Coefficient P-value

miRNAs miR-375 −0.3177 0.0009

miR-582-3p 0.2082 0.0181

miR-326 −0.2168 0.1506

miR-181c-5p −0.6387 0.0080

miR-99a-5p −0.4665 0.0092

Other Risk Factors Age 0.0176 0.1338

Stage 2 vs. 1 0.7808 0.0064

Stage 3+ vs. 1 1.5006 <.0001

The proportional hazard model was estimated by incorporating the effects of
subjects’ age and pathological stage variables. The analysis was conducted
using the Model set

Table 4 Pearson’s correlation coefficient estimated for
expressions (log transformed), between each pairs of five miRNAs:
miR-375, miR-582-3p, miR-326, miR-181c-5p, and miR-99a-5p

miR-582-3p miR-326 miR-181c-5p miR-99a-5p

miR-375 −0.01 0.25 0.28 0.04

miR-582-3p 0.03 0.01 −0.07

miR-326 0.29 0.17

miR-181c-5p 0.35

Table 5 Experimentally supported interactions between five
miRNAs: miR-375, miR-582-3p, miR-326, miR-181c-5p, and miR-
99a-5p, with 17 genes that are associated with non-small cell
lung cancer, using KEGG pathway analysis

Gene miRNAs

PRKCA miR-375, miR-582-3p

E2F1 miR-326

ERBB2 miR-375, miR-326

E2F2 miR-326

PIK3CB miR-181c-5p, miR-99a-5p

RAF1 miR-375, miR-326

EGFR miR-181c-5p

KRAS miR-181c-5p

CDK6 miR-99a-5p, miR-582-3p

PIK3R3 miR-181c-5p

CCND1 miR-99a-5p, miR-326

E2F3 miR-582-3p

RB1 miR-181c-5p

AKT3 miR-181c-5p, miR-326

FOXO3 miR-375

MAP2K1 miR-181c-5p

GRB2 miR-181c-5p
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reducing survival. Suppose SQ25
j and SQ75

j are the 25%th

and 75%th percentiles expressions levels for the miRNAs
j, j∈ {miR-375, miR-326, miR-181c-5p, miR-99a-5p,
miR-582-3p}, for the pathological stage s, s∈{Stage-1,
Stage-2, Stage 3+}. Suppose, the five-dimensional vector
sX contains expression of miR-375, miR-326,
miR-181c-5p, miR-99a-5p, and miR-582-3p, respectively
for a given subject at stage s. We consider two hypothet-
ical individuals of 60 years who, at stage s, has expression
sets SX Case−1 and

SX Case−2 as follows,

sXCase−1 ¼ ðsQ75
miR−375;

sQ75
miR−326;

sQ75
miR−181c−5p;

sQ75
miR−99a−5p;

sQ25
miR−582−3pÞ

and

sXCase−2 ¼ ðsQ25
miR−375;

sQ25
miR−326;

sQ25
miR−181c−5p;

sQ25
miR−99a−5p;

sQ75
miR−582−3pÞ

Here, sXCase − 1 represents an individual with a safe
genomic profile, who has higher expression values for
miRNAs that improve the survival and lower values for
the miRNA that decreases the survival. Alternately,
sXCase − 2 corresponds to a subject with an increased risk
due to their miRNA profile.
Based on the estimated Cox models’ coefficients, we

obtained hazard functions with respect to time using the

Breslow estimator for two scenarios (i.e., Case-1 and
Case-2). Survival curves were estimated for the two gen-
omic profiles. We developed 95% point-wise CIs for two
cases, based on the bootstrap method, using 500 boot-
strap samples. Figure 2 provides estimated survival func-
tions along with 95% CI. Note, the above study was
conducted using the entire data (i.e., including Model
and Test sets), for the reliable approximation of
estimates and CIs.
This analysis showed that for an individual aged 60

with a safe profile (i.e., Case-1), the five-year overall
survival probabilities are approximately 78.41% (95%
CI = (67.66, 88.22)), 60.97% (95% CI = (37.13, 78.14)),
and 21.01% (95% CI = (5.47, 39.58)), if the individual
is at Stage-1, 2, and 3+, respectively; however, corre-
sponding survival probabilities decrease to 30.47%
(95% CI = (14.00, 47.98)), 9.03% (95% CI = (0.41,
23.5)), and 0.03% (95% CI = (<.01, 0.49)), if the subject
has a risky profile.

Discussion
In recent years, with the contribution of rapid develop-
ment in sequencing technology and genomic research,
the reguatory role of miRNAs in biological systems have
been widely investigated. Especially, miRNAs’ role in
cancer has become an important topic in biomarker
studies. With recent advancements, we are moving to a
new era of personalized target therapies. Lung cancer is
the leading cause of cancer deaths in the US and many

Fig. 1 Estimated survival curves for high and low risk groups, separately using Model and Test sets. The p-value provided corresponds to the
log-rank test. The colored region represents the 95% point-wise CIs
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other countries worldwide, with NSCLC as the common
histology of lung adenocarcinoma [1, 2]. It is thus im-
portant to develop genomic tests for lung adenocarcin-
oma, to predict the survival of a patient based on their
individualized features. Additionally, such a tool may po-
tentially be useful in deciding how well a certain target
treatment would be beneficial to the patient, referring to
their genomic profile. Therefore, in this study, we have
developed a prognostic signature for lung adenocarcin-
oma cancer patients based on miRNAs, focusing on
their overall survival.
We have identified a set of potential prognostic bio-

marker miRNAs for lung adenocarcinoma, examining
their effects on the overall survival outcome, and defined
high- and low-risk patients using a scoring mechanism
accounting for the effects of a set of five miRNAs and
other risk factors, such as cancer stage and age. The se-
lection of miRNAs and the proposed scoring criterion
was validated using an independent validation dataset.
Quantifying the marginal survival characteristics, we
have observed a wide difference between both groups.
Furthermore, we have provided an illustrative example
to demonstrate the impact of the subjects’ genomic pro-
file on five-year survival probability. Among the five
miRNAs selected for the multiple Cox regression
models—miR-375, miR-582-3p, miR-326, miR-181c-5p,
and miR-99a-5p—except miR-582-3p, all others have
demonstrated a negative effect on the hazard rate func-
tion, when increasing expression levels.
Recently, Wang et al. [19] used seven miRNAs

(miR-148b, miR-365, miR-32, miR-375, miR-21, miR-125b,

miR-155) to develop a prognostic signature for NSCLC pa-
tients on their overall survival outcome. Similar to the sig-
nature presented by us, they used miR-375, which is
common. Their study used the TCGA miRNA Sequencing
data of NSCLC patients (195-lung adenocarcinoma,
145-lung squamous cell carcinoma) and miRNA micro-
array data from another source. Parallel to our study, Li et
al. [20] developed a prognostic signature including
miRNA-375 and seven other miRNAs (miR-31, miR-196b,
miR-766, miR-519a-1, miR-187, miR-331, miR-101-1). They
incorporated the smoking factor in their signature, which
we found to be insignificant on survival. Maemura et al.
[21] compared lung adenocarcinoma and the correspond-
ing normal counterpart specimen in silico and found ex-
pression differences in five miRNAs (miR-379-5p,
miR-99a-5p, and miR-497-5p, and miR-200b-3p). They val-
idated the negative association of miR-99a-5p expression
and overall survival using the TCGA data. We also have in-
corporated miR-99a-5p in our prognostic signature. Note
that, we found miR-200b-3p to be a top miRNA via univari-
ate Cox analysis; however, it was omitted at the multivari-
able model fitting stage. Li et al. [22] developed a TCGA
data based prognostic signature with four miRNAs
(miR-101-1, miR-200a, miR-4661, miR-450a-2). Although
none of these miRNAs are presented in our tool, both
miR-101-1 and miR-200a were listed in our top list by the
univariate Cox models. Another signature developed by Lin
et al. [23] based on TCGA data used four miRNAs
(miR-148a-5p, miR-31-5p, miR-548v, miR-550a-5p). Their
signature does not share any miRNA with ours. Notwith-
standing, we should highlight Lin et al.’s [23] study did not

Fig. 2 Survival functions estimated for two hypothetical individuals of age 60 with miRNA profiles represent by SXCase − 1 and
SXCase − 2, for given

pathological state s, s∈{State-1, State-2, State 3+}. Four miRNAs: miR-375, miR-326, miR-181c-5p, and miR-99a-5p, are upregulated in Case-1, but
downregulated in Case-2. miR-582-3p is downregulated in Case-1, but upregulated in Case-2. Survival functions are displayed for s = Stage-1,
s = Stage-2, and s = Stage = 3+, scenarios. The colored region represents 95% bootstrap based point-wise CIs
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account for patient age and cancer stage. Besides, their
study did not use a validation step for the confirmation of
their findings. In a different study, Sathipati and Ho [24]
presented a prognostic signature using eighteen miRNAs
(let-7f-1, miR-16-1, miR-152, miR-217, miR-18a, miR-193b,
miR-3136, let-7 g, miR-155, miR-3199-1, miR-219-2,
miR-1254, miR-1291, miR-192, miR-3653, miR-3934,
miR-342, and miR-141), based on optimized support vector
regression approach. However, their signature does not share
any common miRNAs with our tool. It is important to note
that the initial sets of miRNAs used in these method appared
to be different, making them incomparable.
The down regulation of miR-375 was found to be

associated with an increased hazard of NSCLC
patients by multiple studies [19, 20, 25]. Several stud-
ies reported the association with down regulation of
miR-375 expression with many other cancers, includ-
ing cervical [26], colorectal [27], and bladder [28]. It
has been discovered that miR-375 regulates PDK1
enzyme, involving glucose regulation of insulin gene
expression and beta-cell growth [29]; PDK-1 is a
potential target for cancer therapy which maintains
cell proliferation, survival, nutrients uptake, and stor-
age, by activating its downstream AGC family of pro-
tein kinases involved in signaling a complex network
system [30]. Furthermore, miRNA-375 inhibits tumor
growth and metastasis through repressing IGF-1R that
has been identified as a potential therapeutic target
for NSCLC patients [31, 32].
We have found that the increased expressions of

miR-582-3p are negatively associated with survival. Previ-
ous studies show that miR-582-3p expands the cancer stem
cell population in NSCLC tissues and negatively associates
with both the overall survival and recurrence-free-survival
of patients [33]. Additionally, it has been reported that
miR-582-3p is associated with colon cancer [34] and Hodg-
kin lymphoma [35]. Three genes, AXIN2, DKK3, and
SFRP1, which are known as tumor suppressors in a broad
range of human malignancies including NSCLC [36], are
targeted by miR-582-3p and suppress their protein levels
[34]. However, it has been found that the increased expres-
sion of miR-582-3p reduces the proliferation and invasion
of bladder cancer [37]. Based on these findings,
miR-582-3p appears to have a dual role as both a tumor
suppressor and promoter.
The tumor suppressor function of miR-326 has been re-

ported in various cancers, including lung adenocarcinoma
[38, 39]. miR-326 has been found to be suppressing the
MRP-1 protein, which is well known for its multi drug re-
sistance action [40]. miR-326 has also been found to be
suppressing the oncogene CCND1 expression levels [38].
Two members of the miR-181 family (i.e., miR-181c-5p

and mir-181c-3p) have showed strong effects on the haz-
ard (FDR adj. p-value < 5%) based on the univariate

analysis; however, only miR-181c-5p was selected to the
multivariable model when the variable selection was per-
formed. Down regulated expression levels of the miR-181
family has been frequently reported in lung adenocarcin-
oma tissues [41, 42]. Additionally, the aberrant expression
level of this miRNA is reported in many other cancer
types including neuroblastoma and glioblastoma [43, 44],
indicating it as a tumor suppressor. It is thus evident
that the downregulation of this family of expressions
is closely associated with the upregulation of BCL2
proteins [42], which plays a critical role in regulating
major types of cell death, contributing to cancer de-
velopment and progression [45].
Previous studies have shown the downregulation of

miR-99a-5in NSCLC cells promotes proliferation, migra-
tion, and invasion by modulating IGF-1R signaling [46].
Furthermore, it has been suggested that the downregula-
tion of miR-99a-5p promotes cancer progression in
human oral carcinoma cells, signaling via NOX4 [47].
There are several limitations within this study. Out of

approximately 2800 miRNAs, we have used a subset of
672—those that contained 25% or below 0 s in their
individual expression levels for the analysis. As we have
described in the Methods Section, sufficient non-zero
counts were not available for a large set of miRNAs for a
meaningful analysis. In fact, use of miRNAs with largely
inflated with 0 s result in technical difficulties in model
estimations (e.g., convergence issues due to the lack of
variability). The threshold score point (Q60) for specify-
ing high and low risk groups was an ad-hoc selection
and the optimal threshold selection was not a focus in
this article. The proposed tool was entirely based on the
TCGA sequencing data. Hence, not validating this signa-
ture using a different source of data can be considered
as another limitation.
Despite these limitations, we believe our findings have

the potential utility for predicting the survival chance of
a lung adenocarcinoma patient. Interestingly, previous
studies have also identified the miRNAs that we recog-
nized as influential on lung adenocarcinoma prognosis,
for multiple cancer types. Further investigations with
larger numbers of patient samples are appropriate to
validate the application of using these biomarkers and
the proposed scoring mechanism.

Conclusion
We developed a prognostic signature using the expression
levels of five miRNAs—miR-375, miR-582-3p, miR-326,
miR-181c-5p, miR-99a-5p, and miR-582-3p—and the pa-
tients’ disease stage and age, to predict the overall survival
of lung adenocarcinoma. The proposed signature can be
successfully used as a genomic tool to identify high-risk
and low-risk patients, based on the proposed risk scoring
scheme.
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Additional file

Additional file 1: Table S1. A list of KEGG pathways found as
significantly associated with five miR-NAs: miR-375, miR-582-3p, miR-326,
miR-181c-5p, and miR-99a-5p. The analysis was performed using DIANA-
miRPath v3.0 [18]. Figure S1. Estimated survival curves for high and low
risk groups based on the entire dataset (i.e., combining both Model and
Test sets). The p-value provided correspond to the log-rank test. The
colored region represents the 95% point-wise CIs. Figure S2. A histogram
produced for the distribution of p-values that were calculated for the like-
lihood ratio test, which compares the Cox regression model that con-
tained only cancer stage and age effects versus the model contained the
effects of five miRNAs (miR-375, miR-562-3p, miR-326, miR-181-5p, and
miR-99a-5p), in addition to cancer stage, and age. P-values were obtained
using 1000 randomly selected folds of size n=320 of the original data. Fig-
ure S3. Histograms produced for distributions of p-values that were cal-
culated for the likelihood ratio test, which compares the Cox regression
model that contained only cancer stage and age effects versus models
contained effects of the each five individual miRNAs (miR-375, miR-562-
3p, miR-326, miR-181-5p, and miR-99a-5p), in addition to cancer stage,
and age. P-values were obtained using 1000 randomly selected folds of
size n=320 of the original data. (PDF 62 kb)
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