
ARTICLE

Received 19 Dec 2014 | Accepted 11 Jun 2015 | Published 20 Jul 2015

Identification of phases, symmetries and defects
through local crystallography
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Advances in electron and probe microscopies allow 10 pm or higher precision in measure-

ments of atomic positions. This level of fidelity is sufficient to correlate the length (and hence

energy) of bonds, as well as bond angles to functional properties of materials. Traditionally,

this relied on mapping locally measured parameters to macroscopic variables, for example,

average unit cell. This description effectively ignores the information contained in the

microscopic degrees of freedom available in a high-resolution image. Here we introduce an

approach for local analysis of material structure based on statistical analysis of individual

atomic neighbourhoods. Clustering and multivariate algorithms such as principal component

analysis explore the connectivity of lattice and bond structure, as well as identify minute

structural distortions, thus allowing for chemical description and identification of phases. This

analysis lays the framework for building image genomes and structure–property libraries,

based on conjoining structural and spectral realms through local atomic behaviour.
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T
he introduction of scattering techniques in the beginning
of twentieth century by the Braggs has paved the way for
probing the structure of matter on the atomic scales1.

Early milestones include structure identification of simple
crystalline substances as well as DNA, with recent advances
encompassing small-angle scattering, radial distribution function
analysis, inelastic scattering methods and surface diffraction
and ptychography2. Despite the broad variety of scattering
techniques, the basic principle—analysis of the structure
factor—or equivalently a pair correlation function averaged
over the probing volume remained invariant since the early
days of the Braggs team. Furthermore, operating in the reciprocal
space, natural to the scattering-based techniques, forged the way
many generations of condensed matter scientists think. In fact,
working in k-space to explore elementary excitations and normal
modes can be considered a classical approach to physics.
Typically, these surface or lattice descriptions are based on the
periodicity of the system in real space and are intrinsically linked
to the underlying symmetry. Unsurprisingly, cases where such
description fails, including quasicrystals, nanoscale phase
separation in strongly correlated oxides3,4, morphotropic
materials and relaxors5–7; remain a topic of much scientific
excitement. For all these cases, the knowledge of the structure
factor alone is insufficient to reconstruct the lattice of the
material.

The progress in high-resolution, real space imaging techniques
such as (scanning) transmission electron microscopy (STEM)8–10

and scanning tunnelling microscopy (STM)11,12 have allowed
direct imaging of atomic columns (STEM) and surface atomic
structures (STM). From the beginning of twenty-first century, the
resolution (more specifically, information limit) of these methods
has steadily risen to a level where minute displacement of atoms,
from idealized high symmetry positions, can be visualized and
quantified with high veracity. The examples in the field of
aberration corrected (S)TEM include direct imaging of
ferroelectric polarization13–16, octahedral tilts17,18 and chemical
expansion strains19. Another example is high-resolution STM,
allowing direct visualization of octahedral tilts20, surface strains21,
complex structural reconstructions22 and Jahn–Teller distortion
fields23. In this manner, not only atomic structure but also
subatomic order parameter fields can be visualized.

Typically, such image-based analyses are based on implicit,
a priori, assumptions of the macroscopic symmetry of the system.
These approaches fail when multiple crystallographic phases and/
or extended defects are present. Finding atoms without a reference
to a global lattice is a general particle search problem, a well
explored area with multiple available algorithms. That said,
adaptation of these algorithms to an atom search is non-trivial,
especially when multiple atom types are present. Other approaches
circumvent atom finding by analysis of image segments that
contain features of interest to extract relevant information24,25.
However, contrast-based image analysis methods are prone to
error propagation, especially in the case of lower-quality images,
significant computational time cost for large images and multiple
image arrays, and rather extensive user involvement and expertise.
Notably, steps have been taken to ameliorate these complications
through the use of correcting algorithms including para-
meters such as orientation of the detector and environmental
distortions26. These image processing techniques are quite
powerful and ensure maximal data veracity before the analysis is
initiated. Conjoined with such a powerful and extensive suite of
image processing software, contrast-based methods have achieved
impressive results that extend into the realm of three-dimensional
reconstruction and internal structure mapping27.

Nevertheless, once all atoms are found, a bigger challenge
arises: without the global lattice as an intuitive vehicle for

interpretation of the local structural data, we need to find
completely new ways to categorize, analyse and interpret. Here we
aim to explore whether a universal physical description of the
system, including local and global symmetries, phases, and
topological defects, can be built up only from the local
information, obviating the overall lattice structure28. We
propose an approach based on the multivariate statistical
analysis of the coordination spheres of individual atoms, made
up by an array of values that represent a variety of metrics
between an atom and its nearest or next nearest neighbours, to
reveal preferential structures and symmetries. We test this
approach on a mixed-phase system with a variety of nearest
neighbour environments and show how a framework for
interpretation of this new type of structural data can be
developed.

Results
Algorithm workflow. We define the chemical neighbourhood of
the atom via the number and identity of the nearest neighbours.
The types of atoms with statistically different chemical neigh-
bourhoods and their spatial distribution define chemical com-
position, that is, phases. If the chemical neighbourhoods are
related by point symmetry operations, such as rotation or mirror
symmetry, this defines physical ferroic variants. Note that clas-
sical definitions of phase and ferroic variants further rely on the
presence of translation symmetries, and below we demonstrate
the development of a local picture and discuss possible pathways
for global description.

The schematic of our near-atomic neighbourhood-based
approach is illustrated in Fig. 1. Before the image enters the
analysis workflow, it is lightly preprocessed to remove jitter noise
and normalize contrast. As a first step of analysis, we identify all
atoms in the image. Classically, this is achieved by overlaying a
coarse ideal atomic lattice based on periodicity or Fast Fourier
Transform (FFT) filtering and then relaxing the ideal lattice until
an appropriate level of fit is found. In the case shown in Fig. 2a,
this global approach is not applicable due to the lack of long-
range periodicity across the image, and hence a local approach is
used. The local approach works by first approximating a typical
atomic shape (Fig. 1a). This is performed either manually or
automatically by identifying a set, or a representative member in
the image. Following the target identification, we perform a
correlation of the target across the entire image over each pixel,
by sliding the target window over the image. This produces a
correlation map where locations of the target are strongly
highlighted and areas that do not match the target are suppressed.
The correlated surface is then thresholded to remove any small
artefacts, resulting in a binary image where all areas are zero,
except those that correlate strongly with the target (Fig. 1b). The
binary image is processed further using a size histogram, to
remove any point artefacts; we also found this procedure well
suited for images with varying intensity backgrounds, as size of
the object will vary with the background. The centroids of the
final, disconnected objects in the image are identified through
standard image processing functions available in Matlab Image
Processing Toolbox (Fig. 1c). With the centroids identified,
position refinement and the multivariate analysis steps can be
launched (Fig. 1d–f).

As a model system, we have chosen mixed oxide Mo–V–M–O
(M¼Nb, Ta, Te and/or Sb), which is currently a promising
catalyst for many industrially important reactions, such as
propane (amm)oxidation29. In this system, the following phases
are noted for their catalytic performance: the orthorhombic M1
phase with a space group Pba2 and a pseudo-hexagonal M2 phase
with a space group Pmm2. The M1 phase, containing Mo6O21-
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type pentagonal units and doublet heptagonal channels, is the
main active phase for paraffin activation, while the M2 phase,
containing only hexagonal channels, has a possible synergistic
effect when used together with the M1 by improving the reaction

selectivity30. We recently discovered that these two phases can
actually form coherent interfaces and intergrowths, suggesting
new directions for catalyst improvement31. STEM images were
taken with relatively fast scanning speed (that is, 1ms per pixel).
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Figure 2 | Two-phase Mo–V–Te–Ta oxide. (a) M1 and M2 mixed-phase STEM image. (b) k-means clustering results for six neighbours, sorted by distance

metric. (c) k-means clustering results for six neighbours, sorted by angle metric. (d) FFT of image in a. (e) Fifty member neighbourhood of the image in a.

(f) Six member neighbourhood of the image in a. (g) Dendrogram for the six neighbour, sorted by distance metric, with the y axis signifying the cluster

separation in the hierarchical tree.
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Figure 1 | Operational workflow of atom finding and subsequent analysis. (a) A representative atom (target) extracted from an image or supplied by the

user. (b) Threshold the atom after correlation analysis. (c) Finding the centre of the atom in a binary image after a threshold in b. (d) A central atom

(labelled no. 1) and six neighbours with distance and angle metric assignments shown. (e) Artistic representation of converting image data into vector data.

At this step atomic centres from and their neighbourhoods are compiled into a single array on which multivariate analysis is performed. (f) Visualization of

the multivariate analysis results.
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The displayed image were the summation of multiple (that is, 30)
fast sequentially scanned images aligned via cross-correlation. In
this way, the image artefacts26 due to scan noise, possible beam
damage and drift can be minimized while the signal-to-noise ratio
is maintained. A representative image showing the coexistence of
M1 and M2 phases is shown in Fig. 2a. Note that the image
contains multiple clearly visible regions with different crystalline
ordering separated by a boundary (emphasized by yellow arrows)
that contains lattice elements from both regions (highlighted by a
yellow rectangle).

Using defined atomic shape as a template at the first step of the
processing flow offers a distinct advantage in being able to
differentiate sublattices as well as tilts or other contrast-based
features. The correlation step is sensitive to small details of the
supplied shape as well as its size, maximizing selectivity of finding
the member of interest. Finally, flooding and histogram binning
allow any remaining small features, such as edge artefacts and
intensity imbalances, to be removed. Once atom positions are
identified, the centres are refined with sub-pixel precision. Since
the approximate centres are already known from the centroid
identification, they are used as a seed fit for a two-dimensional
(2D) Gaussian function that determines the best fit in the radial
area of an atom. The maximum of the smooth function is
extracted, resulting in an accurate measurement of the centre
point of an atom with a higher precision than native resolution.

Implemented statistical framework. This analysis yields absolute
positions of each atom in an image, as well as local descriptors
such as column intensity and peak width determined at the
refinement stage. For the task of nearest neighbour environment
identification, we are only using atomic positions. For each atom,
i, in the image, we construct a near-coordination sphere as an
array Ni¼ ([x1, y1]..., [xj, yj]), where (xj, yj) is the position coor-
dinate of the jth nearest neighbour. The number of nearest
neighbours, or the search radius, can be defined separately and
are chosen depending on the analysis. In the simplest case,
neighbours are chosen based on dominant symmetry, for exam-
ple, 6 for hexagonal lattice or 4/8 for cubic lattice. When the
number of defined neighbours exceeds the available nearest
neighbours, the next nearest neighbours are included. In the case
when the search radius is used, the returned number of neigh-
bours varies for each atom, due to vacancies (in the case of STM
images), image edges or different coordination numbers.

At the first step, we explore statistical properties of neighbour
distributions. Shown in Fig. 2e,f are statistical distributions for
defined neighbourhoods of 50 and 6 neighbours, respectively. For
a large number of neighbours, the derived distribution effectively
represents the 2D pair correlation function illustrating the global
periodicity in the image. For a smaller number of components,
the average structure of the nearer chemical neighbourhood
is revealed. In both cases, the maxima in the distribution
correspond to preferential inter atomic distances in a hexagonal
lattice. However, in the Fig. 2f, additional intermediate points are
observed that do not fall into the hexagonal maxima. This is due
to the local environments in the image that do not follow the
same symmetry. Note that while six nearest neighbours were used
for the analysis, this approach can be extended for more remote
neighbours and incorporate multiple sublattices. In addition, the
central atom to neighbour relationship can be further explored by
classification of the members in the coordination sphere by
arranging them by length to the centre or angle of the bonds and
so on. That is, using the Ni vector as a descriptor for a particular
behaviour of interest, as illustrated in Fig. 2b,c.

Once the set of Ni vectors is assembled, the data object can be
analysed as a multispectral data set via multivariate statistical

methods. To identify the chemical structure of material, we
perform clustering analysis of local neighbourhoods, effectively
establishing the types of chemical environments. Here we utilize a
k-means clustering algorithm to divide i points (or their
corresponding Ni vectors) into K clusters so that the within
cluster sum of squares is minimized (Equation 1).

arg min
S

XK

i¼1

X

xj2Si

xj� mi

�� ��2
; ð1Þ

here mi is the mean of all points in Si. We use the square Euclidean
distance with each centroid being the component wise median of
the points in a given cluster. The clustering is performed as a
function of number of clusters, K, and the quality of separation,
which can be represented as a dendrogram (explained in detail
below), allowing a range of optimal number of clusters to be
determined. Thus, determined clusters define the groups of atoms
with specific chemical neighbourhoods that can be further
positioned in real space and corresponding configurations can
be explored through direct visualization, classical correlation
function and Fourier transform methods.

Shown in Fig. 2g is a dendrogram for the image shown in
Fig. 2a based on a classification of the distance to the central atom
in a six neighbour case. A dendrogram plot illustrates hierarchical
cluster arrangement in a top-down approach, where all observa-
tions are grouped into a single cluster initially and are recursively
separated down the hierarchy. This is achieved by establishing a
distance metric between observations and linkage criteria used to
find the dissimilarity of clusters as a function of pairwise
distances. It then follows that vertical axis in the dendrogram plot
represents the distance between the two data points being
connected (by whatever metric of choice), and the largest drops
indicate major changes in data organization. On the basis of
dendrogram for Fig. 2g, the strongest cluster separation occurs for
two, three and four clusters with more than four clusters being
the limit of significant optimization gain. We have found that a
large percentage of total clusters identify strong outliers, that is,
points found at the edges of the image, which while rigorously
correct does not add to the understanding of the material being
imaged. Therefore, we chose to omit the atoms that lie on the
image boundary as centre atoms; however, their positions are still
utilized as neighbours for the atoms further inward in the image.
The results of four cluster separation based on the distance metric
are shown in Fig. 2b, and for four clusters with an angle metric in
Fig. 2c. Rotation is accounted for by always placing the first
neighbour atom in the same location relative to the centre and
filling the rest in a clockwise manner. Figure 3a–d shows where
the atoms from each of the clusters are located on the initial
image, with an accompanying FFT (Fig. 3(I–IV)) of the cluster
points illustrating the symmetry of their relative distribution, as
well as a 2D histogram of the nearest neighbour environment for
atoms within the cluster.

Note that the analysis clearly distinguishes different areas of
the image based on the similarity of chemical neighbourhoods of
their constituent atoms. The coordination environments in
Fig. 3a,c,d exist only within the central grain. The component
in Fig. 3d forms a clearly visible region at the boundary between
the grain and the outer matrix, characterized by least long-range
order as is evident from the FFT in Fig. 3 IV; the Fig. 3b defines
the matrix. Broadly, components in Fig. 3a–c have clear long-
range periodicity in space, corresponding to specific sites within
the unit cells of the respective phases. Note that in this case, the
spatial periodicity of the individual clusters does not follow from,
or contribute to classification, since the latter relies purely on the
properties of nearest neighbourhood and does not contain any
information regarding the long-range order in the system; rather,
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we are using FFT as a post processing approach allowing us to
differentiate between periodic and non-periodic classes in the
initial image.

The relative distribution of the clusters can also be viewed in
the form of the colour map as shown in Fig. 2b,c. Examination of
the original image (Fig. 2a) and the image with overlaid cluster
information (Fig. 2b,c) side by side makes apparent several
characteristic patterns. First, the regions of single-phase M2
matrix, several subgrains within the central M1 grain and clearly
visible amorphous boundaries separating these regions are
distinguished. Second, a region emerges that is omprised of
closely located atoms with similar local environments not found
in either M1 or M2 phase, which can be tentatively associated
with the emergence of a distinct third-phase region. While the
first conclusion is also apparent from the visual examination of
the initial image, the second one is not, demonstrating the
advantages of the statistical analysis of the local neighbourhoods
for analysing internal phase composition and structure of
partially ordered phases in real space.

We further extend the multivariate approach to explore minute
deviations of the internal structure in a single-phase region.
Shown in Fig. 4 is a STEM image of a crystalline region of the M2
phase. The corresponding Fourier transform and nearest
neighbour distributions for 50 neighbours and 6 neighbours are
shown in Fig. 4d–f, respectively. Note the high degree of
crystallinity in the material as reflected in the FFT. Interestingly,
the neighbourhood histogram shows the internal structure with
peaks having x, linear, and dot-like shapes as seen in more detail
in Fig. 4e,f. This histogram is a clear indication that M2 phase can
be viewed as a simpler hexagonal structure with several small
distortions that vary in a periodic fashion from one primitive cell
to another, forming a superstructure. Therefore, the dot-like spots
delineate the unit cell for the superstructure (a multiple of the
primitive cell), and the distorted spots carry information about

the symmetry of the distortions on specific sites within this larger
unit cell. The corresponding length and angle k-means clustered
images are shown in Fig. 4b,c with the individual clusters shown
in the Supplementary Fig. 1. Notice the clear delineation of the
sites of different symmetry within the phase, as well as a clearly
visible antiphase boundary, which is not at all apparent in the
original image and hardly evident from the raw data in Fig. 4a.

The presence of the fine structure of the neighbour distribution
shown in Fig. 4f suggests the presence of minuscule distortions
from ideal symmetry of the primitive cell giving rise to the M2
crystalline structure. To visualize these physical behaviours,
we analyse these distortions using the principal component
analysis (PCA) of the neighbourhood vector to separate
statistically significant deformation of the nearest neighbourhood.
PCA32–36 is used to convert N observations into a super-
position of orthogonal, linearly uncorrelated eigenvectors wj

shown in equation (2).

Ni ¼ aijwj; ð2Þ
where aij are expansion coefficients (PCA loadings). The
eigenvectors wj and the corresponding eigenvalues lk are found
from the singular value decomposition of the covariance matrix,
C¼NNT, where N is the matrix of all experimental data points
Nij. That is, the rows of N correspond to individual atoms, and
columns correspond to x and y components of radius vectors to
nearest neighbours. The eigenvectors wj are orthogonal and are
arranged such that corresponding eigenvalues are placed in
descending order, l14l24.... by variance.

Shown in Fig. 5a–f are eigenvectors (represented as deviations
from the average 6 neighbour shape, located in the upper left
corner) and their corresponding loading maps. The scree plot is
shown in Supplementary Fig. 2. The first eigenvector is the
average, and the loading map shows the residual intensity of all
six components. To visualize the higher eigenmodes, we plot
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Figure 3 | Individual k-means clusters for image in Fig. 2, distance metric. (a) Cluster 1 spatial distribution with (I) FFT of the distribution and a 2D

histogram of neighbours of atoms in the cluster. (b) Cluster 2 spatial distribution with (II) FFTof the distribution and a 2D histogram of neighbours of atoms

in the cluster. (c) Cluster 3 spatial distribution with (III) FFT of the distribution and a 2D histogram of neighbours of atoms in the cluster. (d) Cluster 4
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them as deformation of the average, represented as vectors of
deformation from the ideal lattice positions of the neighbours.
We further note that these statistical normal modes do not have
well defined physical meaning. Practically, they reveal spatial
frequencies present in the image from which symmetry can be
inferred, allowing the interpreter to ascribe a likely physical
interpretation to some earlier PCA components. For example, the
second eigenmode corresponds to the uniform shift of the
coordinate sphere along one of the principal directions of the
primitive hexagonal cell. In this case, the displacement of the

entire nearest neighbour sphere is clearly equivalent to the
displacement of the central atom in the opposite direction, a polar
distortion. In a more general case, the vector sum of the shifts of
the nearest neighbour atoms will determine whether the collective
distortion being considered is polar or non-polar in nature (non-
zero vector sum versus zero vector sum, respectively). The
loading map reflects the previously reported antipolar structure
characteristic of the M2 phase; interestingly, the antiphase
boundary is not apparent on the loading map, suggesting that
the antipolar structure is not altered by the presence of the
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Figure 4 | Single M2 phase Mo–V–Te oxide. (a) M2 phase STEM image. (b) k-means clustering results for six neighbours, sorted by distance metric.
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boundary. The third eigenvector corresponds to a symmetric
deformation of the neighbourhood similar to a shear mode. The
corresponding map is almost uniform, but close examination
shows that the contrast of the map exhibits the shift associated
with the antiphase boundary, even though no contrast alteration
is associated with the boundary itself. The fourth, fifth and sixth
components are more difficult to interpret, as the distortions
appear to be very complex. The fifth component is somewhat
reminiscent of the rotational transformation of the third.
Interestingly, the loading maps associated with the third and
forth components show very clear contrast at the antiphase
boundary, suggesting that these distortions might be character-
istic of the frustrated environment of that defect. In contrast, the
loading map for the fifth component, similarly to the second,
shows no contrast shift at the antiphase boundary. Information of
this type could be tremendously useful when determining polar
character of different extended defects.

Discussion
We have implemented a locality-based analysis of complex
materials from high veracity atomically resolved images to
explore chemistry and physics at the nanoscale, grounded in
the analysis of atomic neighbourhoods. Unlike the classical,
symmetry-based descriptions, our approach utilizes local bond
characteristics including the structure of the coordination sphere
and bonding type. For materials with a significantly varying
chemical neighbourhood, this analysis allows identification of the
uniform phase regions, as well as clear delineation of unknown
phases and structural defects. The Fourier analysis of individual
cluster components allows associated symmetries to be revealed.

In the single-phase region, clustering analysis allows decom-
position of the system into the elementary sublattices. In this case,
additional opportunities are opened by the PCA of local
neighbourhoods, defining the statistical normal modes of the
system. Again, this statistical description illustrates the predomi-
nant statistically significant distortions and ranks them in terms
of relevant prevalence.

In general, we believe that this approach paves the way for full
information recovery in high-resolution imaging such as electron
and scanning probe microscopies, as well as allows for
classification and automatic identification of materials. Subse-
quent effort will be aimed at development of the identification of
the repeated statistically defined units based on graph partitioning
of underlying lattice, creating a basis for development of image
genomes and further development of structure–property corre-
lative libraries based on STEM–EELS and STM–STS data.

Methods
Sample. The Mo–V–M oxides were prepared by hydrothermal synthesis or slurry
evaporation as previously reported37,38. Ammonium paramolybdate, telluric acid,
antimony trioxide, vanadium (IV) sulfate, niobium (V) oxalate hexahydrate and
tantalum (V) ethoxide were used as precursors. All operations, preparation and
stirring of the solution, were performed at 353 K except Sb system at 373 K. The
slurry was introduced into the Teflon inner tube of a stainless steel autoclave. In the
case of slurry evaporation, this slurry was dried overnight in the oven at 383 K. The
autoclave was sealed and heated at 448 K for 48 h. After hydrothermal synthesis,
the dark blue powder obtained was washed, filtered with distilled water (200 ml)
and dried at 353 K for overnight. Then, the dried powder catalyst was calcined
under ultrahigh purified nitrogen flow (50 ml min� 1) at 873 K for 2 h before use.
In the case of catalyst containing Sb, the obtained solid was preheated in furnace
with air at 573 K for 4 h before calcined under ultrahigh purified nitrogen flow at
873 K for 2 h. The nominal compositions (molar ratio) of the catalysts involved in
the work are as follows: Mo–V–Te–Ta oxide shown in Fig. 2,
Mo:V:Te:Ta¼ 1:0.3:0.17:0.12; Mo–V–Te oxide shown in Fig. 4,
Mo:V:Te¼ 1:0.75:0.75.

Electron microscopy imaging. To make specimen for electron microscopy, the
catalyst sample was embedded in a resin, and sectioned by microtome as B50-nm
slices39. These specimens were introduced into a holey-carbon-coated Cu grid. The

HAADF-STEM imaging was performed on UltraSTEM 200 (operated at 200 kV) in
Oak Ridge National Laboratory. The inner angle of the High-Angle Annular Dark-
Field (HAADF) detector is around 63 mrad. To minimize the beam damage and
specimen drift, the images used for analysis were the sum images of 20–30 fast
scanned frames (1 ms per pixel and B20 pA probe current) stacked with cross-
correlation algorithm. Gatan Digitalmicrograph was used for image acquisition,
and all the images are 32 bit in depth. No further image processing was performed
before PCA, Independent Component Analysis (ICA) and k-mean clustering
analysis. The pixel size for the original image in Fig. 2 is 0.27 Å and in Fig. 4 is
0.13 Å.
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