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Saliency‑based 3D convolutional neural 
network for categorising common focal liver 
lesions on multisequence MRI
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Abstract 

Background:  The imaging features of focal liver lesions (FLLs) are diverse and complex. Diagnosing FLLs with imag‑
ing alone remains challenging. We developed and validated an interpretable deep learning model for the classifica‑
tion of seven categories of FLLs on multisequence MRI and compared the differential diagnosis between the pro‑
posed model and radiologists.

Methods:  In all, 557 lesions examined by multisequence MRI were utilised in this retrospective study and divided 
into training–validation (n = 444) and test (n = 113) datasets. The area under the receiver operating characteristic 
curve (AUC) was calculated to evaluate the performance of the model. The accuracy and confusion matrix of the 
model and individual radiologists were compared. Saliency maps were generated to highlight the activation region 
based on the model perspective.

Results:  The AUC of the two- and seven-way classifications of the model were 0.969 (95% CI 0.944–0.994) and from 
0.919 (95% CI 0.857–0.980) to 0.999 (95% CI 0.996–1.000), respectively. The model accuracy (79.6%) of the seven-
way classification was higher than that of the radiology residents (66.4%, p = 0.035) and general radiologists (73.5%, 
p = 0.346) but lower than that of the academic radiologists (85.4%, p = 0.291). Confusion matrices showed the sources 
of diagnostic errors for the model and individual radiologists for each disease. Saliency maps detected the activation 
regions associated with each predicted class.

Conclusion:  This interpretable deep learning model showed high diagnostic performance in the differentiation of 
FLLs on multisequence MRI. The analysis principle contributing to the predictions can be explained via saliency maps.
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Key points

•	 AI has the potential to relieve physicians by automat-
ing the process.

•	 This model could accurately classify common liver 
masses on multisequence MRI.

•	 Different MRI scanners and liver background did not 
affect the model performance.

•	 Saliency maps could explain model decision-making 
and let radiologists verify the diagnosis.

Introduction
With the development of imaging technology, most focal 
liver lesions (FLLs) can be detected accurately by MRI 
[1]. Nevertheless, diagnosing FLLs with imaging alone 
remains a challenge. The imaging features of FLLs are 
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diverse and complex, and different lesion features over-
lap. Atypical characteristics in some common lesions 
make the diagnosis challenging, including atypical mor-
phologic features, atypical location or lesions that may 
mimic other primary liver tumours [2]. Maximising the 
imaging diagnosis accuracy of FLLs is paramount in 
avoiding unnecessary biopsies [3] and optimal patient 
management. Meanwhile, the evaluation and analysis 
of medical images are generally subjective and may pos-
sibly be affected by the experience of radiologists with 
various levels of specialisation [4]. Artificial intelligence 
(AI) could aid doctors in diagnosing FLLs and potentially 
be useful in both helping inexperienced physicians and 
bridging the gap between novice and expert radiologists 
[5].

As a strategy for AI, convolutional neural network 
(CNN)-based deep learning systems have been widely 
considered in radiology [6, 7]. Different from radiolo-
gists who diagnose diseases through radiological features 
and conventional machine learning algorithms that rely 
on handcrafted features, CNNs can automatically learn 
complex features from medical images [8]. Therefore, by 
learning from a sufficiently large amount of training data, 
CNNs may accurately categorise FLLs without relying on 
the experience of radiologists.

There have been several AI studies on FLL classifica-
tion, but they have mainly focused on two-dimensional 
(2D) CNN models [9, 10] or have been based on com-
puted tomography (CT) images [11]. There is a lack of 
research on three-dimensional (3D) CNNs based on 
MRI data. Compared with 2D CNNs, 3D CNNs based 
on magnetic resonance imaging (MRI) data can resample 
tumour slices more effectively, improve the sample size, 
obtain rich 3D tumour information and capture tissue 
characteristics more accurately [12, 13]. In addition, pre-
vious studies still lack interpretability for the “black box”. 
At present, the output of a 3D CNN heat map is still tech-
nically difficult to interpret, which makes it impossible to 
verify whether the model follows some aspects of human 
expert knowledge. The aim of our study was to poten-
tially relieve physicians and staff of the need to carry out 
primary diagnosis by automating the process and thus 
lighten the burden on radiologists. We developed an 
interpretable  3D CNN based on multiple sequences for 
the classification of seven categories of common FLLs 
and validated its performance compared to radiologists 
with various levels of specialisation.

Material and methods
This retrospective study was approved by the institutional 
Ethical Review Committee (Approval Number: 2019-
P2-230-01) and the requirement for written informed 
consent was waived. In this study, a sample size was not 

prespecified. Nonemployee or nonconsultant authors 
analysed and controlled the data.

Patients and diseases
There were 445 study patients, each with one anonymised 
liver MRI (study) acquired between January 2017 and 
December 2019. Studies were obtained from our insti-
tution’s picture archiving and communication system 
(PACS) according to the procedures detailed in Addi-
tional file 1: Fig. S1.

The inclusion criteria were as follows: (1) participants 
underwent unenhanced and enhanced liver MRI inspec-
tion; (2) participants had one of the following common 
FLLs, including liver cyst, cavernous haemangioma 
(HEM), hepatic abscess (HEP), focal nodular hyperpla-
sia (FNH), hepatocellular carcinoma (HCC), intrahe-
patic cholangiocarcinoma (ICC) and hepatic metastasis 
(MET); and (3) up to one imaging study per patient was 
included, and up to six lesions were used in each study. 
We chose only one type of lesion from each case for the 
following evaluations. The exclusion criteria were as fol-
lows: (1) patients with MRI studies of insufficient image 
quality. (2) Participants who had received treatment 
related to the lesion before MRI inspection; and (3) dif-
fuse lesions for which the boundary could not be delin-
eated or malignancies involving the portal vein, hepatic 
vein or adjacent organs. Most malignant tumours were 
confirmed by histopathology, while other malignancies 
and benign tumours were diagnosed by follow-up reports 
that were supported by two radiologists (with 10 and 
20 years of experience, respectively) for 3–12 months.

MRI acquisition protocol
Abdominal MRI was performed on the patient in a supine 
position using 1.5-T and 3-T MRI scanners, including 
Siemens (Prisma, TrioTim), GE Healthcare (GE 750w, 
Signa) and Philips (Ingenia) systems. T2-weighted imag-
ing (T2WI), diffusion-weighted imaging (DWI) (b value: 
800  s/mm2) and apparent diffusion coefficient (ADC) 
mapping from standard institutional liver MRI protocols 
were performed with acquisition times of 2–2.5 min. All 
the unenhanced sequences and enhanced phases were 
acquired according to the institutional liver MRI proto-
col. Imaging parameters varied across different scanners 
and time frames. The parameters used to acquire the 
images are summarised in Table  1. Contrast-enhanced 
T1WI sequences were used with acquisition times of 
12–18  s. All patients underwent MRI using gadobenate 
dimeglumine, which was intravenously injected at a 
dosage of 0.1  mmol/kg (maximum dose, 20  mL) and a 
rate of 2 mL/s followed by a normal saline flush (50 mL 
at 2  mL/s). Except for precontrast T1WI, T2WI, DWI 
and ADC mapping, postcontrast images were analysed, 



Page 3 of 12Wang et al. Insights into Imaging          (2021) 12:173 	

including the late arterial phase (LAP, 15–20 s postinjec-
tion), portal venous phase (PVP, 60–70  s postinjection) 
and delayed phase (DP, 3–5 min postinjection).

Model construction and evaluation based on CNN 
algorithm
There were two groups of classification tasks. The first 
group of tasks was to classify all the tumours into two 
categories: benign and malignant. The second group of 
tasks divided the lesions into seven categories as follows: 
0, cyst; 1, FNH; 2, haemangioma; 3, abscess; 4, HCC; 5, 
ICC; and 6, metastasis. Here, 0, 1, 2 and 3 indicate benign 
lesions, while 4, 5 and 6 indicate malignancies. A mul-
titask framework has been demonstrated to improve 
learning efficiency, potential prediction accuracy and 
overfitting problems for task-specific models.

Data pre‑processing
MR images were downloaded from the PACS and stored 
as Digital Imaging and Communications in Medicine 
(DICOM) format. The images were then converted to 
NIFTI format to hide patient information. The liver 
tumours were manually segmented by two subspecialty-
trained radiologists with an average of 9-year experi-
ence in abdominal diagnosis. The outline of tumour on 
all sequences was drawn in our self-developed module in 
the 3D-Slicer software (version 4.8.1, Harvard University, 
Boston, MA, USA). It could provide more valuable infor-
mation of the tumour region. When there was a discrep-
ancy between the two radiologists on whether the region 
was a lesion or on the lesion type, a joint review was per-
formed until a consensus was reached for a final decision.

Image processing
Seven-sequence (T2WI, DWI, ADC, T1WI, LAP, PVP, 
DP) images and the matched annotated images were 
resampled at the same voxel spacing of [1, 1, 1] with 
the nearest neighbour interpolation algorithm. We nor-
malised the intensity of MRI images to the range of [0, 
1]. For lesions with different diameters, the cropping 
strategy was different. Lesions smaller than 16 mm were 
directly cropped to 32 * 32 * 32  mm, lesions larger than 
16 mm but smaller than 32 mm were cropped to 64 * 64 * 
64 mm, and the remaining lesions were cropped by dilat-
ing the area of the lesion. (The dilation size was randomly 
changed during the training phase.) Then, the cropped 
patch images with the target lesion and the matched 
annotated images were resised to 64 * 64 * 64 (mm) using 
bilinear interpolation and the nearest neighbour interpo-
lation algorithms. The cropped annotated images were 
processed using the Gaussian blur method. Online data 
augmentation was applied, which included rotation, flip-
ping, shifting, scaling, lighting alteration and Gaussian 
noise addition.

Model training
Our deep learning model was trained on a GeForce GTX 
1080Ti (NVIDIA) graphic processing unit using Python 
3.7 and PyTorch 1.4.0. The architecture of the model is 
illustrated in Fig. 1. We applied a 3D extension of the 2D 
ResNet-18 as the backbone [14]. For each sequence, the 
MRI image and the matched Gaussian annotated image 
were fed into a 3D ResNet-18 network, and then a fea-
ture representation was obtained. All seven feature rep-
resentations were concatenated as one fused feature. The 
feature representations of T2WI, DWI and ADC images 
were concatenated as one fused feature, which, together 
with the fused feature of all seven sequences, was used 
for binary classification (fused feature 2). The feature 
representations of LAP, PVP and DP images were con-
catenated as another fused feature, which, together with 
the fused feature of all seven sequences, was used for the 
seven-way classification (fused feature 7). To obtain the 
classification results of the two tasks, both fused feature 
2 and fused feature 7 were input into fully connected 
(FC) layers. The cross-validation method split the dataset 
of the development cohort into training and validation 
datasets, and fivefold cross-validation was used.

Model evaluation
The performance of the model was evaluated on an 
unseen test dataset containing 113 lesions. For each of 
the five experiments, the model showing the best per-
formance on the validation dataset was selected. The five 
selected models were used to infer the two-way (benign 

Table 1  Image acquisition

TR respiratory triggered, TE echo time

MRI scanners Sequences

3.0 T MRI

TR, T2WI DWI b = 0.800 LAVA/ 
VIBE/ 
eTHRIVE

TR (ms) 2–3respratory 
cycles

3000 Minimum

TE (ms) 85 Minimum Minimum

Flip angle (°) 150 90 15

Matrix 288 × 224 128 × 128 288 × 172–
320 × 216

FOV (mm) 380–420 380–420 380–420

Echo train length 16 128 –

Thickness, mm 6–8 6–8 3–4
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and malignant) and seven-way classification of the test 
data. The average predicted result of the five experiments 
on the test data served as the final result. The general 
demographics of the patients, lesion type, lesion size and 
MRI scanner were also analysed. We evaluated the influ-
ence of liver background (cirrhosis and fatty liver) on the 
model classification performance. Finally, the model out-
puts saliency maps to explain the analysis principle.

Comparison to radiologist performance
Test data were anonymised and independently presented 
to three categories of radiologists, including two radiol-
ogy residents (with 1 and 2 years of experience), two gen-
eral radiologists (with 8 and 12 years of experience) and 
two academic radiologists (with 17 years and 22 years of 
experience). All doctors routinely read liver MRI images. 
ITK-SNAP (version 3.6.0, www.​itksn​ap.​org) was used to 
read images that contained lesions and their surrounding 
liver parenchyma. Radiologists were given the same MRI 
sequences available to the AI system.

Statistical analysis
The characteristics of the development and test data-
sets are described as follows: continuous variables are 
expressed as the mean ± SD or as the median with 
interquartile range (IQR) according to the normality of 
the data; categorical variables are expressed as frequen-
cies (percentage, %). Student’s t test or Kruskal–Wallis 
test was used for continuous variables, and Chi-square 
test or Fisher exact test was used for categorical 
variables.

The area under the receiver operating characteris-
tic (ROC) curve (AUC), accuracy, sensitivity, specific-
ity, positive predictive value (PPV), negative predictive 
value (NPV), positive diagnostic likelihood ratio (PLR) 
and negative diagnostic likelihood ratio (NLR) were 
also calculated. Additionally, 95% confidence inter-
vals (CIs) were calculated with the modified Wilson 
method. Different liver backgrounds were compared 
using Pearson’s chi-squared test and Fisher’s exact 
test. The accuracy with 95% CI was used to compare 
the difference in diagnostic performance between the 
model and the radiologists. Interreader agreement 
was assessed using Cohen’s kappa statistic. Confusion 
matrices were plotted to evaluate the strengths and 

Fig. 1  Architecture of the proposed deep learning model

http://www.itksnap.org
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weaknesses of the model and the radiologists. p < 0.05 
was regarded as statistically significant.

Results
Patient demographics
A total of 445 participants were divided into develop-
ment (n = 356) and test (n = 89) datasets. There was no 
significant difference in age (p = 0.795) or sex (p = 0.647) 
between the development and test datasets, nor was 
there a significant difference in tumour type, size or MRI 
scanner (p > 0.05) (Table 2).

Deep learning model performance
The model showed high performance in the test dataset 
with 113 lesions, with an average AUC of 0.969 in the 
two-way classification and 0.919 (0.857–0.980) to 0.999 
(0.996–1.000) in the seven-way classification (Fig.  2). 
The accuracy, sensitivity, specificity, PPV, NPV, PLR and 
NLR for each lesion category, determined using the test 
data, are described in Table  3. The model was found to 
perform well in diagnosing cysts and HCCs, with median 
accuracies of 0.991 (0.951, 1.000) and 0.991 (0.952, 1.000), 
but poorly in diagnosing metastases and abscesses, with 
median accuracies of 0.805 (0.723, 0.868) and 0.885 
(0.813, 0.932). The median model sensitivity for the seven 
categories ranged from 0.909 (0.623–0.995) to 1.000 
(0.806–1.000), the specificity ranged from 0.781 (0.689–
0.852) to 0.990 (0.944–0.999), and the PPV ranged from 
0.432 (0.287–0.591) to 0.941 (0.730–0.997).

There were no effects of liver background on model 
performance. In the two-way classification of the model, 
the accuracy rates in patients with and without liver cir-
rhosis in the test cohort were 100.0% and 87.0%, respec-
tively (p = 0.358). The accuracy rates in patients with and 
without fatty liver were 95.7% and 86.7%, respectively 
(p = 0.401). In the seven-way classification of the model, 
the accuracy rates in patients with and without liver cir-
rhosis in the test cohort were 100.0% and 77.0%, respec-
tively (p = 0.116). The accuracy rates in patients with and 
without fatty liver were 65.2% and 83.3%, respectively 
(p = 0.102).

Deep learning model performance compared 
to radiologist performance
We compared the performance of the model with that of 
three categories of radiologists. The performance of the 
model (90 lesions correct of 113 lesions; mean correct 
percentage across participants, 79.6%) was better than 
that of the radiology residents (76–78 lesions correct of 
113 lesions [67–69%; mean correct percentage across 
participants, 68%]) (p = 0.035) and general radiologists 
(80–88 lesions correct of 113 lesions [71–78%; mean cor-
rect percentage across participants, 74%]) (p = 0.346). 

The accuracy of the model was lower than that of the 
academic radiologists (96–98 lesions correct of 113 
lesions [85–87%; mean percent correct across partici-
pants, 86%]) (p = 0.291) (Fig. 3). There was a statistically 
significant difference in diagnostic performance between 
the model and radiology residents but not between the 
model and general or academic radiologists. The agree-
ment was then measured by comparing radiologists 
within the same specialisation level (Table 4). Two radi-
ologists in the same category showed good consistency 
(kappa > 0.75, p < 0.01).

Evaluating radiologist and model errors
We evaluated the differential diagnosis distribution of the 
model and radiologists by means of confusion matrices. 
Confusion matrices between the model and academic 
radiologists resembled each other, but in some cases, the 
model and radiologists made different types of errors. 
Fewer errors occurred with increasing radiologist spe-
cialisation. Radiologists with various levels of specialisa-
tion may mistake one certain type of lesion for another. 
All radiologists made errors in some cases of HCC, but 
the model did not make the same error (Fig.  4). The 
average number of model errors was 23. The model per-
formed well in diagnosing HCC without any mistakes. 
The model performed poorly in diagnosing FNH among 
benign lesions and metastasis among malignant lesions. 
Of 17 metastasis cases, 10 were misidentified, 4 of which 
were identified as abscesses.

Saliency map
We selected example saliency maps from seven catego-
ries of the test set. Red highlights the activation region 
of the radiologic imaging feature more associated with 
the predicted class (Fig. 5). For cysts, the model focused 
on T2 hyperintensity and T1 hypointensity without con-
trast enhancement. For haemangioma, the model fixes its 
attention on discontinuous peripheral nodular enhance-
ment, which progresses in a centripetal direction. For 
FNH, the model focused on intense arterial hyperen-
hancement, with near isointensity on the PV and slow 
gradual enhancement of the central scar. For abscesses, 
the model focused on restricted diffusion and the typi-
cal pattern of peripheral enhancement. For HCC, the 
model directed its attention to strong arterial enhance-
ment, washout on PVP and DP and capsular enhance-
ment on DP. For ICC, the model directed its attention to 
rim arterial phase hyperenhancement and delayed cen-
tral enhancement. For MET, the model concentrated on 
restricted diffusion and rim hyperenhancement.

Figure  6 shows the weight of each sequence/phase in 
differential diagnosis. Red colour in saliency maps high-
lights more important sequence/phase. The importance 
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Table 2  Data and patient characteristics

IQR interquartile range

Characteristic Total Development dataset Test dataset p value

No. of patients 445 356 89

 Age (year) 58 58 57 0.795

 Median (IQR) (48.00, 64.00) (47.00, 64.00) (51.00, 63.00)

Sex 0.647

Male 272 (100%) 221 (84.4%) 50 (15.6%)

 Age (year) 58 58 59 0.238

 Median (IQR) (49.25, 64.00) (47.75, 64.00) (54.00, 65.75)

Female 183 (100%) 144 (78.7%) 39 (21.3%)

 Age (year) 56 57 56 0.329

 Median (IQR) (46.00, 63.00) (47.00, 63.00) (37.50, 62.50)

Lesion number (%) 557 444 (79.7%) 113 (20.3%)

 Lesion diameter 26.8 27.3 24 0.418

 Median (IQR) (16.80, 41.50) (16.75, 41.70) (17.10, 36.38)

Lesion type 0.907

Cyst

Lesion number (%) 86 (100%) 70 (80.7%) 16 (19.3%)

 Lesion diameter 12.8 12.75 12.8 0.898

 Median (IQR) (8.65, 22.50) (8.30, 23.43) (9.80, 15.50)

Haemangioma

Lesion number (%) 101 (100%) 79 (78.2%) 22 (21.8%)

 Lesion diameter 19.7 19.5 20.1 0.815

 Median (IQR) (15.30, 32.60) (15.55, 32.65) (15.05, 25.02)

FNH

Lesion number (%) 57 (100%) 46 (80.7%) 11 (19.3%)

 Lesion diameter 34.13 ± 12.89 35.35 ± 13.24 28.79 ± 10.28 0.148

 Mean ± SE

Abscess

Lesion number (%) 88 (100%) 67 (76.1%) 21 (23.9%)

 Lesion diameter 62.98 ± 31.26 65.20 ± 32.23 56.31 ± 29.10 0.479

 Mean ± SE

HCC

Lesion number (%) 78 (100%) 63 (80.7%) 15 (19.3%)

 Lesion diameter 28.9 29.35 26.8 0.537

 Median (IQR) (23.20, 45.90) (23.45, 46.65) (22.00, 38.20)

ICC

Lesion number (%) 70 (100%) 59(84.3%) 11 (15.7%)

 Lesion diameter 52.45 51.15 63.55 0.323

 Median (IQR) (30.72, 69.45) (29.43, 66.65) (47.12, 94.50)

Metastasis

Lesion number (%) 77 (100%) 60 (77.9%) 17 (22.1%)

 Lesion diameter 28.55 28.8 28.1 1

 Median (IQR) (20.18, 38.32) (19.55, 38.75) (27.80, 28.80)

Manufacturer and model 0.499

GE Signa 126 (100%) 99 (78.6%) 27 (21.4%)

GE Discovery MR750w 62 (100%) 46 (69.7%) 16 (30.3%)

Philips Ingenia 58 (100%) 50 (86.2%) 8 (13.8%)

Siemens prisma 50 (100%) 42 (84.0%) 8 (16%)

Siemens TrioTim 149 (100%) 119 (79.9%) 30 (20.1%)
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of each sequence/phase in the analysis of seven catego-
ries of FLLs is variable.

Discussion
We developed an interpretable 3D CNN-based classifica-
tion model for seven categories of common FLLs, using 
seven sequences and outputted saliency maps to inter-
pret the principle of the model decision-making. The 
model showed good performance, with an AUC of 0.969 
in two-way classification and from 0.919 (0.857–0.980) to 
0.999 (0.996–1.000) in seven-way classification.

The accuracy of our model was higher than that of 
the radiologist residents but slightly lower than that of 
the academic radiologists. The evaluation of medical 
images by radiologists is subjective and possibly influ-
enced by personal experience. To improve the accuracy 
and consistency of radiologists and reduce the variabil-
ity of interpretation, the Liver Imaging Reporting and 
Data System (LI-RADS) is constantly updated [15–20]. 
Even so, the diagnostic consistency among radiolo-
gists is still variable [21–24]. Kierans et  al. [24] dem-
onstrated that by using LI-RADS 2017, the interreader 
agreement for major features was moderate (k = 0.661), 

Fig. 2  ROC curves of the (a) two-way and (b) seven-way deep learning model classification

Table 3  Deep learning model diagnostic performance in the two-way and seven-way classification on the test dataset

ACC​ accuracy, PLR positive likelihood ratio, NLR negative likelihood ratio, NPV negative predictive value, PPV positive predictive value

Two-way 
classification

Seven-way classification

Cyst FNH Haemangioma Abscess HCC ICC Metastasis

ACC (95% CI) 0.903 (0.834, 
0.945)

0.991 (0.951, 
1.000)

0.965 (0.913, 
0.986)

0.956 (0.901, 
0.981)

0.885 (0.813, 
0.932)

0.991 (0.952, 
1.000)

0.938 (0.878, 
0.970)

0.805 (0.723, 
0.868)

Sensitivity 
(95% CI)

0.930 (0.814, 
0.976)

1.000 (0.806, 
1.000)

0.909 (0.623, 
0.995)

0.955 (0.782, 
0.998)

1.000 (0.845, 
1.000)

1.000 (0.796, 
1.000)

0.909 (0.623, 
0.995)

0.941 (0.730, 
0.997)

Specificity 
(95% CI)

0.886 (0.790, 
0.941)

0.990 (0.944, 
0.999)

0.971 (0.917, 
0.990)

0.956 (0.892, 
0.983)

0.859 (0.773, 
0.916)

0.990 (0.944, 
0.999)

0.941 (0.878, 
0.973)

0.781 (0.689, 
0.852)

PPV (95% CI) 0.833 (0.704, 
0.913)

0.941 (0.730, 
0.997)

0.769 (0.497, 
0.918)

0.840 (0.653, 
0.936)

0.618 (0.450, 
0.761)

0.938 (0.717, 
0.997)

0.625 (0.386, 
0.815)

0.432 (0.287, 
0.591)

NPV (95% CI) 0.954 (0.873, 
0.984)

1.000 (0.962, 
1.000)

0.990 (0.946, 
0.999)

0.989 (0.938, 
0.999)

1.000 (0.954, 
1.000)

1.000 (0.962, 
1.000)

0.990 (0.944, 
0.999)

0.987 (0.929, 
0.999)

PLR (95% CI) 8.140 (4.218, 
15.706)

97.000 (13.802, 
681.695)

30.909 (9.981, 
95.722)

21.716 (8.294, 
56.860)

7.077 (4.076, 
11.712)

98.000 (13.943, 
688.794)

15.455 (60,955, 
340,342)

4.303 (2.895, 
6.395)

NLR 95% CI) 0.079 (0.026, 
0.235)

0.000 (0.000, –) 0.094 (0.014, 
0.607)

0.048 (0.007, 
0.323)

0.000 (0.000, –) 0.000 (0.000, –) 0.097 (0.015, 
0.626)

0.075 (0.011, 
0.506)
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and ancillary features were poor to fair (k = 0.257–
0.436) [24]. Our model might maintain diagnostic con-
sistency, help inexperienced physicians, improve the 
diagnostic accuracy of general radiologists and radiol-
ogy residents, reduce the workload of academic radi-
ologists and bridge the diagnostic gap between novice 
and expert radiologists and among different hospitals.

Our model showed good performance in diagnos-
ing HCC, while radiologists with various levels of 
specialisation made a certain number of errors. Radi-
ologists misclassified HCC lesions with unclear wash-
out as FNH or ICC lesions and HCC lesions with faint 
enhancement as metastases. The model could correctly 
identify HCC lesions by learning from the images. Sali-
ency maps showed arterial enhancement on LAP, wash 
out on PVP and DP, and an enhancing capsule on DP, 
which was consistent with the major imaging features 
of LI-RADS. This result indicates that AI could aid 

radiologists and reduce the occurrence of misdiagnosis 
in clinical work. Meanwhile, saliency maps could help 
radiologists verify the predictions of the model and 
help clinicians understand the model performance.

The model showed poor performance in abscesses and 
metastases. A saliency map of abscesses showed that 
the model fixed its attention to the pattern of peripheral 
enhancement. However, there were many overlapping 
imaging features between abscesses and malignancies 
(Additional file 1: Fig. S2). In addition, with the progres-
sion of abscesses, there will be a variety of imaging fea-
tures [25]. Primary malignancies with different biological 
behaviours and pathological changes along with tumour 
growth will affect the imaging features of metastases. 
Because the metastases in our study had different origins, 
the features were different [26]. The enhancement pat-
tern of metastases is affected by nodule size, tumour vas-
cularity and pathological behaviour changes with tumour 
growth. Small metastases may show hyperenhancement, 
while larger tumours may show intranodular necrosis 
or vascular thrombosis [27]. Hence, the model showed 
poor performance in small abscesses and metastases. 
In addition, a few typical lesions were misclassified by 
the model, which indicates that the performance of the 
model still has room for improvement.

Confusion matrices showed that the sources of diag-
nostic errors for the model and the academic radiologists 
for each disease were similar. To maintain consistency 
with the model, the radiologists diagnosed the lesions 
by reading the images, including the lesions and the sur-
rounding part of the liver parenchyma, without reference 
to the related medical history or laboratory test results, 
which might affect the diagnostic accuracy. Radiolo-
gists could improve the accuracy by referring to clinical 
information. Therefore, we speculate that if clinical infor-
mation and laboratory test results were included in the 
training process of the model, the diagnosis accuracy and 
the reliability of interpretation could also be effectively 
improved.

Our model is based on 3D-CNN. 2D-CNN is based 
on the assumption that the lesion grows and shrinks in 
a symmetrical and spherical manner, which is not accu-
rate [28]. 3D CNN can accurately reflect the actual size of 
the tumour [29], evaluate the asymmetry of the tumour 
morphology [30] and learn the tissue characteristics of 
the lesion on MRI. In addition, our model was trained 
with seven-sequence images that were obtained from 
5 types of MRI scanners and included more than 500 
lesions. Fatty liver and cirrhosis did not affect the model 
performance. The model was reliable, robust and pre-
dictive. Although the total number of lesions was lower 
than that in a previous study [9], the model still showed 
similar performance. In addition, our network involved 

Fig. 3  Performance of the model compared to that of radiologists 
with various levels of specialisation. Performance is measured 
as accuracy. Each point represents a single radiologist, and the 
horizontal line represents the mean across each radiologist category. 
The horizontal dashed line is the performance of the model. Error 
bars represent 95% binomial probability CIs. *There was a significant 
difference in performance between the model and two types of 
residents (p < 0.05)

Table 4  Consistency evaluation between radiologists in the 
same category

Kappa Z score p value

Radiology residents 0.915 22.49 < 0.01

General radiologists 0.776 18.867 < 0.01

Academic radiologists 0.802 20.471 < 0.01
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Fig. 4  Confusion matrices showing the distribution of the diagnostic predictions of seven categories of common FLLs for the (a) model, (b) 
radiology residents, (c) general radiologists and (d) academic radiologists. True disease labels are shown along the x-axis, and the predictions are 
shown along the y-axis. Predictions the same as the true disease labels resulted in yellow squares along the diagonal from top left to bottom right. 
Each category of radiologists made errors in divergent diagnoses, but fewer errors occurred with increasing radiologist specialisation

Fig. 5  Saliency map for example images from 7 category classifications of the test set. Red highlights the activation region of the radiologic 
imaging feature more associated with the predicted class. (a) Cyst, (b) HEM, (c) FNH, (d) HEP, (e) HCC, (f) ICC and (g) MET gain good display, and 
these maps reveal some typical radiologic imaging features of different FLLs
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an attention mechanism, in which the boundary of the 
tumour was given more attention and then the network 
learned more representative features to achieve bet-
ter diagnostic performance. A multitask framework was 
applied in our study to improve the learning efficiency, 
potential prediction accuracy and overfitting problems.

The previous study did not include the image infor-
mation of unenhanced sequences such as T2WI, DWI 
and ADC. A comprehensive liver MRI protocol needs 
to evaluate the parenchyma, vasculature and biliary sys-
tem, which is accomplished by way of a combination of 
unenhanced sequences and enhanced phases [31]. T2WI 
with fat suppression represents information about fluid 
content and fibrotic tissue and increases lesion conspi-
cuity [32]. DWI and ADC can detect and characterise 
focal liver lesions and evaluate posttreatment changes in 
the tumour microenvironment [33]. T1WIs are acquired, 
which provide information regarding the T1 charac-
teristics of lesions and serve as a baseline to evaluate 
enhanced phases [34]. The lack of unenhanced imaging 
could not fully evaluate the characteristics of FLL.

Although the classification models in the previous 
study had good performance, they were difficult to visu-
alise and interpret. However, it is critical to explain model 

decision-making and let radiologists and clinicians verify 
the diagnosis [35]. Hence, we straightforwardly displayed 
interesting slices of 3D feature maps on the image con-
taining the maximum area of the lesion and generated 
a radiologic imaging feature-based saliency map and 
sequence/phase weight-based saliency map. The radio-
logic imaging feature-based saliency map highlights the 
activation region of the radiologic imaging feature more 
associated with the predicted class. The sequence/phase 
weight-based saliency map highlights which image fea-
ture is more advantageous in classification by evaluating 
the importance of each sequence/phase. We showed that 
applying visualisation methods is important to under-
stand the decisions of the model and is a step that is cru-
cial to increase clinical impact and trust in deep learning 
models.

Our study has several limitations. First, our study focused 
on seven common categories of FLLs, while the types of 
FLLs in clinical practice are more extensive. Deep learn-
ing requires a large number of samples for model training. 
Due to the small number of some type of FLLs, it is difficult 
to train the model. Therefore, we only included 7 types of 
common FLLs for a preliminary model to reduce the daily 
work burden of radiologists. In the future, more patients 

Fig. 6  Saliency map for example images from 7 category classifications of the test set. Red highlights the activation region of the weight of each 
sequence/phase in differential diagnosis. (a) Cyst, (b) HEM, (c) FNH, (d) HEP, (e) HCC, (f) ICC and (g) MET show good display, and these maps reveal 
that the importance of different sequences/phases in the analysis of each category of FLLs is different
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with different types of FLLs (such as cirrhosis nodules and 
other rare liver tumours) need to be included to render 
the model applicable for different disease spectra in clini-
cal practice. We will add validation datasets obtained from 
external centres to make the model more generalisable and 
reliable. Second, metastases from different primary origins 
in our study had different imaging features. Therefore, the 
model could not learn the lesion characteristics well, and its 
performance was poor. In the future, we need to increase 
the number of metastases in training or categorise them by 
their sources. Third, our study was a single-centre study, 
and we only used one type of intravenous contrast agent, 
which may limit the applicability of the model. In the future, 
we need to collect images from different hospitals using dif-
ferent contrast agents to make the model widely applicable. 
Fourth, saliency maps only evaluated the importance of a 
single sequence/phase in diagnosis but did not evaluate 
sequence/phase combinations. In the process of diagnosis, 
we need to consider the characteristics of lesions reflected 
by different sequences and phases on MRI. Therefore, we 
will continue to analyse the importance of sequence/phase 
combinations in the future.

Conclusion
This interpretable deep learning model showed high 
diagnostic performance in the differentiation of liver 
masses on multisequence MRI and used a saliency map 
to explain the analysis principle contributing to predic-
tions, which made it more reliable. Due to the increasing 
demand for medical imaging in clinics and the different 
levels of radiologists in different regions, we expect that 
deep learning models could reduce the daily workload 
and may be in demand in radiology departments [36].
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