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Abstract

through its ITIM receptor.

fever response of mice to LPS.

Background: Systemic inflammation and the fever response to pathogens are coordinately regulated by IL-6 and
IL-1B3. We previously showed that CEACAM1 regulates the LPS driven expression of IL-1(3 in murine neutrophils

Results: We now show that the prompt secretion of IL-6 in response to LPS is reqgulated by CEACAM1 expression
on bone marrow monocytes. Ceacam1~~ mice over-produce IL-6 in response to an i.p. LPS challenge, resulting in
prolonged surface temperature depression and overt diarrhea compared to their wild type counterparts. Intraperitoneal
injection of a ®*Cu-labeled LPS, PET imaging agent shows confined localization to the peritoneal cavity, and fluorescent
labeled LPS is taken up by myeloid splenocytes and muscle endothelial cells. While bone marrow monocytes and their
progenitors (CD11b*Ly6G™) express IL-6 in the early response (< 2 h) to LPS in vitro, these cells are not detected in the
bone marrow after in vivo LPS treatment perhaps due to their rapid and complete mobilization to the periphery. Notably,
tissue macrophages are not involved in the early IL-6 response to LPS. In contrast to human monocytes, TLR4 is not
expressed on murine bone marrow monocytes. Instead, the alternative LPS receptor RP105 is expressed and recruits MD1,
CD14, Src, VAV and B-actin in response to LPS. CEACAM1 negatively regulates RP105 signaling in monocytes by
recruitment of SHP-1, resulting in the sequestration of pVAV1 and (3-actin from RP105.

Conclusion: This novel pathway and regulation of IL-6 signaling by CEACAM1 defines a novel role for monocytes in the
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Introduction

IL-6 is a central mediator of inflammation in response to a
wide variety of stimuli including infection, stress and
trauma [1]. Its receptor, IL-6R, is widely expressed,
especially in the liver leading to the acute phase protein re-
sponse [1], in the hypothalamus together with IL-1p leading
to systemic fever [2], and in the gut leading to Th17 activa-
tion [3]. Chronic high levels of IL-6 are associated with
aging, cancer, rheumatoid arthritis, neurodegenerative
diseases, postmenopausal osteoporosis [4], and psoriasis [5]
to name a few pathogenic conditions. As a result, activation
of the IL-6 gene is under tight control, and an understand-
ing of its regulation is fundamental to preventing a wide
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range of pathologies [6]. We are especially interested in the
regulation of the fever response that requires production of
both IL-1f and IL-6, that together stimulate the production
of PGE?2 in the hypothalamus, leading to a drop in the core
temperature of a few tenths of a degree [7]. Even more
pronounced is the lowering of skin temperature that is
perceived as “chills” followed by stimulation of the skeletal
muscles or “shivering.” The critical role of IL-6 in the fever
response is exemplified in IL-6 KO mice that do not exhibit
a fever in response to classical stimuli such as bacterial
endotoxin, viruses, and the inflammatory cytokines TNFa
and IL-1f [8].

Given the wide range of stimuli that elicit the IL-6 re-
sponse from essentially anywhere in the body, knowledge
of the cells and mechanism of IL-6 secretion is essential.
However, more is known about the cells that respond to
IL-6 than those that produce it, and its regulation remains
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an area of intense investigation. We hypothesize that this
regulation must be widespread, especially at the interface
between the epithelium where infections, trauma and stress
are likely to occur, and the immune system. A candidate
gene for this regulation is CEACAM]1, a homotypic cell-cell
adhesion molecule ubiquitously expressed in the epithe-
lium, constitutively expressed in neutrophils, the most
abundant leukocytes, and inducibly expressed in activated
lymphocytes [9]. CEACAMI has tissue specific, differential
expression of mRNA splice forms, with an ITIM containing
signaling domain expressed in the immune system and a
shortened signaling domain lacking an ITIM in uninflamed
epithelial cells [10]. Notably, the expression of the ITIM
containing CEACAMI splice form is strictly regulated in
response to IFNy via IRF-1 [11]. In agreement with this role
for CEACAM]1, we have previously shown that CEACAM1
regulates granulopoiesis and the systemic response to Lis-
teria monocytogenes infection via the G-CSFR-STAT3 path-
way [12], and the IL-1f3 response to LPS in neutrophils by a
TLR4-Syk pathway [13]. In both cases, CEACAMI1 is re-
cruited to an activated receptor (G-CSFR or TLR4), that
when phosphorylated by a Src kinase on its ITIM, recruits
SHP-1, which in turn, dephosphorylates the activated
receptor. This is a general mechanism for CEACAMI that
has been implicated in the regulation of the insulin receptor
in the liver [14], the EGFR in epithelial cells [15], and the
BCR in B-cells [16, 17]. In this way, CEACAM1 can moder-
ate the effect of the immune system on stimulated epithelial
cells, and when absent, as in many cancers [18, 19], the re-
sult is chronic or exaggerated inflammation. The digestive
tract, including the small and large intestine, and the liver,
have the highest levels of CEACAM1 expression [20]. Since
it is well known that LPS in the peritoneal cavity, mimick-
ing leaky gut, leads to a rapid inflammatory and fever re-
sponse [21] due to the combined actions of IL-6 and IL-1f3,
we speculated that an exaggerated response would be seen
in CEACAMI™~ mice, providing a model system to track
down the cells responsible for IL-6 release.

The plasma levels of IL-6 in Ceacaml™~ mice in
response to ip. LPS were more than twice the amount of
wild type mice at 24—48 h, including the depression of body
surface temperatures and overt diarrhea in 50% of the Cea-
caml™" mice compared to none in the wild type controls.
PET image analysis of mice injected ip. with **Cu-labe-
led-LPS exhibited LPS localization largely confined to the
peritoneal cavity, while i.p. injection of fluorescent tagged
LPS demonstrated staining in the spleen, lymph nodes and
endothelial cells of skeletal muscle. Analysis of bone mar-
row cells revealed that a subset of bone marrow myeloid
cells were rapidly mobilized to the spleen, perhaps explain-
ing the controversy over the lack of IL-6 secreting myeloid
cells in mice treated with LPS. In vitro analysis revealed
that bone marrow monocytes and their progenitors pro-
duce IL-6 in the early response (<2h) to LPS while tissue
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macrophages do not. Unexpectedly, we found that TLR4,
the prototypic LPS receptor of murine macrophages [22—
24] and human monocytes and macrophages [25, 26] was
not expressed on murine bone marrow monocytes. Instead,
the alternate LPS receptor RP105, highly expressed on
B-cells, was responsible for IL-6 secretion on murine bone
marrow monocytes. We demonstrated that MD1, CD14,
Src, VAV1 and P-actin are involved in the downstream
signaling of RP105 and that CEACAM1 regulates RP105
signaling through recruitment of SHP-1 and sequestration
of pVAV1 and P-actin from pRP105. We conclude that
CEACAMI negatively regulates IL-6 in the early phase
response to LPS through the RP105 signaling pathway in
murine monocytes, thus defining a novel role of CEA-
CAML1 for monocytes in the fever response.

Results

Genetic ablation of CEACAM1 leads to an exaggerated
IL-6 response to LPS

We previously showed that CEACAMI1 regulates IL-1f
production in LPS treated granulocytes in a TLR4-Syk spe-
cific manner [13]. Since IL-1p and IL-6 together mediate
the fever response to LPS, we performed an in vivo chal-
lenge of wild type (WT) and Ceacaml™~ mice with LPS
injected ip. Surface body temperature was measured as a
sensitive indicator of the fever response along with serum
multiplex cytokine levels to determine which, if any, were
dysregulated in Ceacaml™~ mice treated with LPS. Pheno-
typically, both WT and Ceacaml™~ mice had depressed
surface body temperatures, with the depression in Cea-
caml™" mice significantly lower than in WT mice at both
the 8 h and 24 h time points (Fig. 1a). Approximately 50 %
(9 out of 17) of Ceacaml™~ mice developed overt diarrhea
in comparison with none in wild type mice (Fig. 1b). Com-
parison of the serum levels of cytokines between Cea-
caml™™ and WT mice, revealed similar kinetics and levels
for IL-13, TNFa and IFNy, as well as others (not shown),
while IL-6 levels were significantly elevated in Ceacaml ™~
mice over 24-h, returning to baseline by 48 h (Fig. 1c-f).
The results suggest that abrogation of CEACAM1 expres-
sion in mice dramatically increases their sensitivity to ip.
LPS by specific over-expression of IL-6.

LPS distribution after i.p. Injection and IL-6 mRNA
expression in mouse organs

IL-6 is considered the critical proinflammatory cytokine
for the febrile response, since neither /L-6 knock-out
mice, nor animals treated with IL-6 antiserum develop
fever upon peripheral immune stimulation [8, 27, 28].
Furthermore, it is understood that IL-6 acts in concert with
IL-1p as an endogenous pyrogen during LPS-induced fever
[7, 27]. Although IL-6 is reported to be synthesized and
secreted by many cell types, for example, monocytes and
macrophages [29, 30], fibroblasts [31], brain endothelial
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Fig. 1 Genetic abrogation of CEACAM1 leads to decreased body surface temperature and increased diarrhea and IL-6 production in response to
LPS (a) Body surface temperature of WT and Ceacam1 /" mice in response to LPS (i.p. injection, 10 mg/kg) (n = 10 each group). * p <0.05 in
comparison with WT treated with LPS. # p < 0.05 in comparison with WT treated with normal saline. (b) Diarrheogenic activity of Ceacam1™~
mice in response to LPS (i.p. injection, 10 ma/kg) (n = 17, each group). (c-f) Quantification of 4 serum cytokines of Wild type (WT) and Ceacam1~”~
mice (KO) in response to LPS (i.p. injection, 10 mg/kg) (n =10, each group). * p <0.05 in comparison with WT

cells [32, 33], muscle cells [34], hepatocytes [35, 36], adipo-
cytes [37], neurons [38, 39], microglial cells [40, 41] and
astrocytes [42, 43], the source of serum IL-6 after i.p. treat-
ment of LPS remains controversial [44].

As a first approach to determining the source of systemic
production of IL-6, we injected **Cu-labeled LPS i.p. into
mice and performed PET imaging (Fig. 2a). This approach
allows a quantitative measure of LPS localization over time.
The results demonstrate that, excluding bladder secretion,
*Cu-labeled-LPS is mainly localized to the peritoneal cav-
ity, including liver, kidney and thoracic lymph nodes at 1, 2,
and 4 h time points, and is largely cleared via urinary excre-
tion by 24 h. Notably, very little bone activity was observed,
indicating that secretion of IL-6 by bone marrow cells (if
any) must be indirect. Utilizing a similar chemical

procedure to produce a fluorescent version of LPS, we
generated FAM-labeled LPS that is considerably brighter
and more stable than commercially available FITC-LPS.
Thus, as a second approach to visualizing tissue targets of
LPS, FAM-LPS was injected ip. and multiple tissues
collected for analysis by immunofluorescence analysis at 1
h. The results demonstrated high uptake into the spleen,
lymph nodes, and the endothelial cells of skeletal muscle
(Fig. 2b, d). Further analysis of the spleen cells labeled indi-
cated that they were macrophages (Fig. 2c).

Since the first two approaches only indicate tissues of
LPS uptake and not IL-6 production, we also measured
IL-6 mRNA by qPCR of peritoneal tissues and other or-
gans. Most peritoneal cavity tissues/organs including mes-
entery, peritoneal membranes, pancreas, and fatty tissues
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Fig. 2 Distribution of intraperitoneal injection of “*Cu-labeled LPS or FAM-LPS. (a) PET imaging of i.p. injection of ®*Cu-labeled LPS over time. (b-
d) Immunofluorescent staining of selected tissues 1 h after i.p. injection of FAM-LPS. FAM labeled LPS (green). (c) Rat anti-mouse F4/80 followed
by Alexa 647 goat anti-Rat antibody (red). (d) Rat anti-mouse CD31 followed by Alexa 647 goat anti-Rat antibody (red)
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did not show any difference between WT and Ceacaml ™~
mice, while omentum and small intestine exhibited a de-
crease in Ceacaml™’~ mice (Additional File 1 Figure S1).
Surprisingly, skeletal muscle, lung, and kidney also exhib-
ited significant decreases in the IL-6 mRNA expression
compared to WT counterparts, while brain, bone marrow
cells and mesenteric lymph nodes had no difference. The
organs with significantly increased levels of IL-6 mRNA in
Ceacaml™~ mice in comparison with WT mice were liver
and spleen (Fig. 3a). Given the large size of the liver, the
tentative conclusion was that liver may be the main IL-6
producer in response to ip. LPS, followed by the spleen.

However, blood cells were not removed prior to this
analysis.

Liver cells and splenocytes are not the source of IL-6 in
early response to LPS

To further explore the role of liver and spleen in the se-
cretion of IL-6 in response to LPS, liver cells (from PBS
perfused liver to remove blood cells) and splenocytes
from untreated mice to determine which cells, if any,
produce IL-6 in direct response to LPS in vitro. Our
results showed that IL-6 mRNA expression of liver cells
and splenocytes after treatment with LPS for 2h were
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not different between WT and Ceacaml™~ mice (Fig.
3b). When isolated hepatocytes or Kupffer cells were
treated with LPS plus BFA (brefeldin A) for 5h, hepato-
cytes from Ceacaml™~ mice were negative for both IL-6
and TNFa (Additional File 1 Figure S2A) while Kupffer
cells were positive for TNFa only (Additional File 1 Fig-
ure S2B). Furthermore, the IL-6 secretion of liver cells in
response to LPS treatment was not significantly different
between the two mouse strains until after 6 h (Add-
itional File 1 Figure S3A).

Based on these results, we concluded that the IL-6 pro-
duction observed for the liver (Fig. 3a) was due to trapped
blood cells at the time of euthanasia. Therefore, the ana-
lysis was repeated on liver perfused after i.p. LPS treat-
ment. There were no differences in IL-6 mRNA levels
between WT and Ceacaml ™™ mice (data not shown), sug-
gesting that blood cells trapped in the liver, rather than
endogenous cells were responsible for the observed differ-
ence (Fig. 3a). Western blot analysis of phospho-gp130,
the key activation signal transducer of the IL-6 receptor,
revealed that livers of both WT and Ceacaml™~ mice had
similar levels after LPS treatment (Additional File 1 Fig-
ure. S3B). The same was true for the downstream effectors
of the gp-130, pSTAT1, pSTAT3 and SOCS3 (Additional
File 1 Figure. S3B). We conclude that although the liver is
a major organ responsive to IL-6, it is not the main source
of IL-6 in the early response to LPS.

A subgroup of bone marrow CD11b*Ly6G™ myeloid cells
secrete IL-6 and are mobilized in the early response to
LPS

Since it was likely that the source of the IL-6 producing
cells in the liver and spleen originated from the bone
marrow, we collected bone marrow cells from untreated
mice and determined their in vitro production of IL-6 in
response to LPS. This analysis revealed significantly
higher levels of IL-6 mRNA for Ceacaml™~ vs W'T bone
marrow cells in response to LPS (Fig. 3c).

Analysis of cell surface markers of bone marrow cells
together with intracellular IL-6 staining after LPS treat-
ment revealed that a subgroup of CD11b'Ly6G™ cells but
not CD11b"Ly6G" cells (granulocytes) or B220" cells (B
lymphocytes) produced IL-6 (Fig. 3e). Notably, there was
no significant difference in CD11b*Ly6G™ cell percentages
of bone marrow cells between WT and Ceacaml™™ mice
(Fig. 3d), suggesting that the number of IL-6 producing
cells in the bone marrow per se are not responsible for the
IL-6 differences observed between WT and Ceacaml ™~
mice. In accordance with the negative finding of IL-6
mRNA in bone marrow cells treated with LPS in vivo (Fig.
3a), intracellular staining of IL-6 was negative in bone
marrow cells after i.p. injection of LPS plus BFA (Fig. 3f),
but positive in one subgroup of CD11b"Ly6G™ cells in the
spleen (Fig. 3g). These results suggest that IL-6 producing
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bone marrow cells were mobilized from the bone marrow
to the spleen after i.p. LPS treatment and that the sub-
group of CD11b'Ly6G™ cells may be responsible for the
difference of IL-6 production between WT and Cea-
caml™" mice after LPS challenge.

Monocytes and the progenitors of myeloid CD11b*Ly6G~
cells are IL-6 producing cells in the early response to LPS
Since CD11b*Ly6G™ cells in the bone marrow include
different groups of myeloid cells, further analysis of cell
surface markers was performed to clarify which cell type
was responsible for IL-6 production. Recent studies have
divided bone marrow CD115 (M-CSF-R) positive cells into
monocytes (Mo), common monocyte progenitors (cMoP),
monocyte-macrophage DC progenitors (MDP) and com-
mon DC precursor (CDP) according to cell surface markers
CD117 (c-Kit) and CD135 (FLT-3) [45]. Cell surface stain-
ing showed that all of four populations are CEACAM1
positive in WT mice (Additional File 1 Figure. S4A).

After in vitro treatment of bone marrow cells with LPS,
CD115 expression was down-regulated while the staining
patterns of MDP, cMoP, Mo and CDP were indistinguish-
able (Additional File 1 Figure. S4B). Therefore, the four
populations of MDPs (Lin"CD115"CD117°CD135%), cMoP
(Lin"CD115"CD117"CD1357), Mo (Lin"CD115"CD117°C
D1357), and CDP (Lin"CD115"CD117 CD135") were
sorted (Fig. 4a) and treated with LPS plus BFA for 5h. In
WT mice, cMoP and Mo but not MDP and CDP were IL-6
positive. Surprisingly, in Ceacaml ™~ mice, cMoP, Mo, and
MDP but not CDP were all positive for IL-6 with signifi-
cantly increased percentages over WT (Fig. 4e-f). There
were no significant differences in the percentages of Lin~
cells (Fig. 4b), CD115" cells (Fig. 4c), nor the MDP, cMoP,
Mo, and CDP subsets between WT and Ceacaml™~ mice
(Fig. 4d). These analyses show that monocytes and their
progenitors are the major IL-6 producing cells in the bone
marrow in the early response to LPS, and that the absence
of CEACAM1 results in high levels of IL-6 production.

Macrophages do not produce IL-6 in the early response
to LPS

Since monocytes and macrophages differ in their ability to
process pro-IL-1p and release mature IL-1p [46, 47], it
was necessary to determine if a similar situation occurred
for IL-6 production and secretion in macrophages. Peri-
toneal cavity macrophages, isolated from WT and Cea-
caml™~ mice, were treated in vitro with LPS for 2, 4 and
24h. The results showed no difference in /-6 mRNA
levels between WT and Ceacaml™~ mice at the 2h time
point, but IL-6 mRNA levels significantly increased at the 4
h time point and decreased at the 24 h time point in Cea-
caml™™ mice (Additional File 1 Figure S5A). It should be
noted that WT peritoneal cells produced a robust TNFa re-
sponse to LPS compared to a much weaker IL6 response at
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2 h. The blunted TNFa« response from Ceacaml ™~ periton-
eal cells, while interesting, was not a studied further, given
our emphasis on the role of IL6 in fever production. When
splenocytes from Ceacaml™~ mice were treated with LPS
plus BFA for 5h, all three groups of myeloid cells (Ly6
G CD11b" cells), granulocytes (Ly6G*CD11b" cells), and
lymphocytes (Ly6G CD11b™ cells) were negative for IL-6
by intracellular staining (Additional File 1 Figure. S5B).
Similar results were obtained for WT mice (data not
shown). Furthermore, the murine macrophage cell line
RAW?264.7 treated with LPS plus BFA for 5 h was negative
for intracellular IL-6 production (Additional File 1 Figure.
S5QC). In fact, RAW?264.7 cells treated with LPS showed that

TNFu rather than IL-6 mRNA significantly increased at 2 h
in comparison with untreated controls, and that IL-6
mRNA levels only started to increase at the 4 h time point,
maintaining the increase through the 24 h time point (Add-
itional File 1 Figure S5D). The release of IL-6 into the
supernatant after LPS treatment was delayed until the 24 h
time point but not at the early 2 h time point (Additional
File 1 Figure S5E). Intracellular IL-6 staining analysis
showed that these cells began to produce IL-6 only after 11
h of LPS treatment (Additional File 1 Figure S6A). Further-
more, silencing of CEACAM1 with siRNA in RAW?264.7
cells did not affect IL-6 secretion at the 2h time point
(Additional File 1 Figure S6B). Another murine
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macrophage cell line, J774A.1, exhibited similar results as
RAW?264.7 cells, ie., there was no IL-6 production within
5h after LPS treatment and CEACAMI siRNA did not
interfere with IL-6 production (Additional File 1 Figure S7).
Moreover, Kupffer cells in the liver (analyzed above, Add-
itional File 1 Figure S2B) gave similar results as did spleen
macrophages (Additional File 1 Figure S5B). These data in-
dicate that although macrophages are derived from either
monocytes or the yolk sac, and are self-replenished [48],
they are unable to synthesize and release IL-6 in the early
phase (< 2 h) of the LPS response.

To further explore the early response to LPS treatment,
the time course of /L-6 mRNA was measured in bone mar-
row monocytes. As shown in Fig. 5a, IL-6 mRNA is signifi-
cantly increased as early as 30 min after LPS treatment and
reached a peak at 90 min in Ceacaml ™~ mice. These data
confirm that monocytes are the main source of IL-6 in the
early response to LPS and that CEACAM1 regulates this
response. Given the reports that LPS induced IL-6 itself
leads to a further increase in IL-6 production [49, 50], ll6ra
~~ mice and Stat3"*"** mice were included in our study.
The analysis of IL-6 mRNA expression of bone marrow
monocytes from ll6ra '~ mice (Fig. 5a) and Stat3ox
mice (Fig. 5b) demonstrated a different expression pattern
compared to the Ceacaml™~ mice over the time course of
LPS treatment. These results suggest CEACAM1 expres-
sion does not interfere with the IL-6 receptor signaling
pathway, but only in the production of IL-6.

TLR4 is not expressed on murine bone marrow
monocytes

Having identified bone marrow monocytes as the source of
prompt IL-6 secretion in response to LPS, we proceded to
analyze the mechanism of CEACAMI regulation. Since
our previous studies showed CEACAMI regulated TLR4
signaling in murine neutrophils, we expected a similar
mechanism in murine monocytes, especially since human
monocytes express abundant amounts of TLR4 [26]. TLR4,
the canonical LPS receptor, signals through the MyD88-
and Toll/IL-1R domain-containing adapter inducing IFN-3
(TRIF)-dependent upstream signals that lead to the
production of proinflammatory (IL-6 and IL-1P) and anti-
inflammatory mediators (IFN-f, IFN-a, CCL5), respectively
[51, 52]. However, unlike /IL-6 mRNA production in LPS
treated murine monocytes, there was no change in the
levels of IFN-f5, IFN-a, and CCL5 mRNA at the 30 min
time point in WT, Ceacaml™'"~, and Il6ra ~'~ mice. IFN-S,
IFN-a,and CCL5 mRNA levels began to increase after 60
min but did not exhibit differences between WT and Cea-
caml™'~ mice at both the 60 and 90 min time points. These
results suggests that the TRIF-dependent signaling path-
way, as one of two main signaling pathways of TLR4, was
not directly involved in the response of murine bone
marrow monocytes to LPS. Furthermore, TLR4 expression
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was negative on bone marrow monocytes from both WT
and Ceacaml™~ mice using anti-TLR4 antibody surface
staining (Fig. 5c¢) and western blot analysis (Fig. 5d) even
though TLR4 mRNA was detected at low levels by qPCR
(Fig. 5e). When RAW264.7 macrophage lineage cells were
used as a positive control, TLR4 was easily detected by both
surface staining and western blot analysis. On the other
hand, CD14 that acts as an LPS co-receptor for TLR4, was
strongly positive for bone marrow monocytes (Fig. 5c),
suggesting the presence of an alternative LPS receptor. We
also performed intracellular immunofluorescent staining to
explore the possibility that TLR4 was localized to intracel-
lular granules, but the monocytes were negative (data not
shown). In addition, TLR4 blocking antibody and the TLR4
inhibitor C34 did not interfere with LPS-induced IL-6
mRNA expression in these cells treated with LPS (Fig. 5f).
Taken together, we conclude that TLR4 is not expressed on
murine bone marrow monocytes and that TLR4 signaling
is not responsible for the observed IL-6 production of
murine monocytes.

RP105 (CD180) on bone marrow monocytes is the LPS

receptor responsible for the early IL-6 response to LPS

In consideration of alternative receptors for LPS, it is
well known that B-cells respond strongly to LPS [53].
B-cells have two distinct LPS receptor complexes, TLR4/
MD2 and RP105/MD1 [54]. The extracellular domains
of TLR4 and RP105 associate with MD2 and MD1, re-
spectively, to form heterodimers, thereby forming the
binding sites to LPS [54, 55]. Although we did not detect
TLR4 on murine monocytes, RP105 and MD1 were
highly expressed on bone marrow monocytes from both
WT and Ceacaml™~ mice (Fig. 5C). Since the signaling
pathway for RP105 has been extensively studied and in-
volves recruitment of VAV1 and B-actin [54, 56], we per-
formed a number of co-IP studies on murine bone
marrow monocytes treated with LPS. MD1 co-IPed with
RP105 in the presence or absence of LPS in bone mar-
row monocytes (Fig. 6a), while RP105 co-IPed with
pVAV1 and B-actin in the absence of LPS in WT and
Ceacaml™™ mice (Fig. 6b). After treatment with LPS,
pVAV1 and P-actin dissociated with RP105 in WT mice,
but in Ceacaml™~ mice, pVAV1 and B-actin remained
associated with RP105. IP of CEACAM1 in WT mice
co-IPed B-actin after LPS treatment (Fig. 6¢). These re-
sults suggest that CEACAMI1 can sequester pVAV1 and
B-actin from RP105 after LPS treatment thus negatively
regulating RP105 downstream signaling. In the absence
of CEACAM]1, RP105 remains associated with pVAV1
and P-actin resulting in increased downstream signaling.
Furthermore, the VAV1 inhibitor azathioprine, and a me-
tabolite of azathioprine, 6-thio-GTP, were able to block
the IL-6 mRNA over-response to LPS in Ceacaml™~ mice
(Fig. 6d). Moreover, an RP105 activating monoclonal
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1, 2, 3 mean three separated experiments; MO: monocytes; M:

antibody [57] was able to stimulate /L-6 mRNA expression
in WT mice and IL-6 mRNA over-expression in Cea-
camI™~ mice similar to LPS treatment (Fig. 6e). On the
other hand, blocking antibodies to MD1 or CD14 com-
pletely abrogated LPS-induced IL-6 mRNA expression in
both WT and Ceacaml™~ mice (Fig. 6f). Furthermore,
CD14 was co-IPed with RP105 (Fig. 6g). We conclude that
the RP105/MD1/CD14 complex on murine bone marrow
monocytes is responsible for the early phase expression of
IL-6 in LPS treated mice, and CEACAMI negatively regu-
lates RP105 signaling in response to LPS stimulation.

It was reported that Lyn phosphorylation and its
kinase activity were involved in RP105 signaling in B
cells [54]. In our study of mouse monocytes, when
RP105 was IPed, we did not detect Lyn, but instead,
we found RP105 co-IPed with Src (Fig. 6g). A select-
ive and competitive dual site Src inhibitor (Src 11)
was able to block the over-response of IL-6 mRNA
expression to LPS in Ceacaml™~ mice (Fig. 6h).
This suggests that Src, but not Lyn, is the kinase in-
volved in RP105 mediated LPS signaling in murine
monocytes.
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We have previously shown that CEACAM1 acts as an
inhibitory B-cell co-receptor through recruitment of the
inhibitory tyrosine phosphatase SHP-1 [16]. Suspecting a
similar inhibitory mechanism in LPS treated monocytes,
we IPed CEACAMI in LPS treated monocytes and per-
formed western blot analysis with anti-phosphotyrosine
and anti-phospho-SHP-1 antibodies (Fig. 6I). The results
demonstrate that CEACAML1 is phosphorylated on tyrosine
after LPS treatment (Fig. 61 upper), that phospho-SHP-1 is
co-IPed with CEACAM], and the levels of phospho-SHP1
increase after treatment with LPS (Fig. 61 lower). Further-
more, treatment of bone marrow monocytes with LPS in
the presence of SHP1 inhibitor, PTP inhibitor III, increases
phospho-VAV1 in WT but not in CeacamlI™~ mice (Add-
itional File 1 Figure S8). These results show that RP105

stimulation by LPS leads to recruitment of SHP-1 to CEA-
CAM], a result that limits tyrosine phosphorylation of both
VAV1 and RP105 by Src. Thus, murine monocytes may
share a common signaling pathway with B-cells since they
both express CEACAM1 and RP105.

Discussion

IL-6 is a soluble mediator with a pleiotropic effect on in-
flammation, immune response and hematopoiesis affect-
ing vascular disease, lipid metabolism, insulin resistance,
mitochondrial activities, the neuroendocrine system and
neuropsychological behavior [58]. In this study, we
focused on the role of CEACAMI in the regulation of
IL-6 production. Rather surprisingly, we found that bone
marrow monocytes and not peripheral macrophages
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were responsible for the early IL-6 response to i.p. LPS.
Although there was an increase of IL-6 mRNA expres-
sion in macrophages after 2h, secreted IL-6 occurred
much later and was likely due to the early production of
TNFa by these cells. Moreover, the bone marrow
monocytes responsible for IL-6 production as shown by
in vitro analysis, were not detected in the bone marrow
of mice treated in vivo with LPS, perhaps demonstrating
their rapid mobilization to the periphery. For example,
analysis of the liver of LPS treated mice revealed that the
source of IL6 was in the blood rather than in isolated
hepatocytes or Kupffer cells. In accordance with this
finding, it was earlier reported that low concentrations
of Toll-like receptor (TLR) ligands in the bloodstream
drive CCR2-dependent emigration of monocytes from
the bone marrow [59]. In other results, we found that
the CCR2 ligand, CCL-2 was elevated in both WT mice
and Ceacaml™~ mice treated with LPS, with the higher
levels in Ceacaml ™~ mice (data not shown).

The discovery of TLR family proteins was particularly
critical in showing the importance of innate immunity in
the host defense against microbial infection. TLRs are char-
acterized by extracellular leucine-rich repeat (LRR) motifs
and intracellular Toll/interleukin 1 receptor (TIR) domains
[52]. TLR4 is a well-known pathogen recognition receptor
that plays a key role in the prototypical inflammatory
stimulus to LPS [60]. LPS binding to TLR4 promotes sig-
naling events via intracellular Toll/IL-1R signaling domains,
that involve the primary recruitment of the Mal adaptor
protein and its subsequent association with My88 promot-
ing the activation of the NF-kB transcriptional complex
and induction of many pro-inflammatory cytokine genes,
such as IL-6, TNFa, and IL-1f3. TLR4 immune responses in-
volve activation of signaling adaptors TRIF and TRIF-re-
lated adaptor molecules, that also facilitate activation of
NF-xB and IRF3 (IFN regulatory factor 3), the latter of
which promotes the transcription of proinflammatory type
I IEN genes [61]. Unexpectedly, our results demonstrated
that TLR4 protein is not expressed on murine bone mar-
row monocytes as evidenced by lack of activation of the
TRIF-dependent pathway, absence of TLR4 protein and
lack of effect on IL6 production by a TLR4 blocking anti-
body or TLR4 inhibitor C34. Although it is well known that
TLR expression is high on human monocytes, many
murine cells of myeloid origin, including macrophages,
microglia, myeloid DCs, and granulocytes have been
reported to have high levels of TLR4 expression [62]. How-
ever, the status of TLR4 expression in murine monocytes,
neither TLR4 mRNA nor TLR4 protein was shown [63]. In
contrast, mouse macrophages, as well as the two macro-
phage cell lines RAW264.7 and J774A.1, express TLR4 on
their cell surface. However, neither of these cell lines, nor
peripheral murine macrophages, exhibited an early IL-6
response to LPS (<2h). Thus, most studies on LPS
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stimulated TLR signaling in the mouse are limited to mac-
rophages, while in human, both monocytes and macro-
phages are used. A further source of confusion, relevant to
our study is that mouse monocytes are CEACAM1" and
TLR4™ (our data) while human monocytes are CEACAM1~
and TLR4" (Additional File 1 Figure S9). Notably, when we
generated a human Ceacam1 transgenic (TG) mouse using
the complete human CEACAM1 genome [64] and crossed
them into the Ceacaml™~ background, bone marrow
monocytes in the hCeacaml TG mice did not express
hCEACAM1 protein (data not shown).

The finding that TLR4 negative murine bone marrow
monocytes were responsible for the prompt IL6 response
to LPS necessitated a search for an alternative LPS re-
ceptor. The obvious candidate, RP105, was first reported
in 1995 as a LRR protein expressed on B cells [65]. Al-
though RP105 has only 11 amino acids in the intracellu-
lar portion and lacks a TIR domain, ligation of RP105
with anti-RP105 monoclonal antibody (mAb) transmits
powerful activation signals in B cells, including prolifera-
tion [66]. RP105 shares some features with TLR4. First,
RP105 is associated with MD-1, an MD-2 homolog.
Second, both RP105 and TLR4 contain 22 LRRs in their
extracellular portions, suggesting the possible involve-
ment of RP105/MD-1 in the LPS-induced response. In
fact, RP105-deficient mice as well as MD-1-deficient
mice show reduced LPS-dependent proliferation and
CD86 up-regulation in B cells, albeit to a lesser extent
than TLR4-deficient mice. Third, although LPS appears
to bind to MD-1 with lower affinity than to MD-2 [67],
the RP105/MD-1 complex is expressed not only on B
cells but also on macrophages and dendritic cells [68].
We now report that the RP105/MD1 complex is also
expressed on murine bone marrow monocytes and is
negatively regulated by CEACAMI1 as evidenced by
sequestrating pVAV1 and p-actin from pRP105 in WT
mice and the increased association of RP105 with
PVAV1 and B-actin in CEACAM1~'~ mice. The involve-
ment of pVAV1 and p-actin in LPS stimulated RP105
signaling in B-cells has been previously reported [55].
Furthermore, we show that CEACAMI1 in murine
monocytes is phosphorylated on tyrosine and recruits
the inhibitory tyrosine phosphatase SHP1 after treat-
ment of with LPS, a finding similar to our previous stud-
ies on murine neutrophils treated with LPS [12]. More
importantly, CEACAM], itself an actin recruiting recep-
tor [69], competes with VAV1 for actin recruitment, thus
diminishing the ability of VAV1 to signal downstream to
mediators such as NFkB, required for IL-6 expression.
The dramatic sequestration of actin away from VAV is
shown in Fig. 6¢c. The overall model for LPS/RP105 sig-
naling in murine monocytes in shown in Fig. 7.

It is well-known that macrophages and dendritic cells
are monocyte-differentiated cells that express both TLR4/
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MD2 and RP105/MDI1. In agreement with our finding
that macrophages are more tuned to LPS/TLR4 signaling,
it was shown that macrophages lacking RP105- or MD-1
made TNFa in response to LPS [68]. While DCs from
RP105-deficient mice produced significantly higher con-
centrations of proinflammatory cytokines after stimulation
with LPS, the RP105/MD-1 complex competes with the
binding of LPS to the TLR4-MD-1 complex and negatively
regulate LPS-TLR4-mediated responses in dendritic cells
[70]. If TLR4 is a high affinity receptor for LPS while
RP105 a low affinity receptor, the differential expression
between macrophages/dendritic cells and murine bone
marrow monocytes may be a fine-tuning mechanism to
prevent an over-response to LPS, in this case, initiation of
the fever response. Moreover, peripheral blood monocytes,
acting as adult stem cells, are capable of undergoing mat-
uration into several types of tissue-resident macrophages,
including tissue resident macrophages, Kupffer cells,
Langerhans cells of the skin, dendritic cells, microglia, and
osteoclasts [71]. In the process of their tissue differenti-
ation their requirement for sensitivity to LPS may change.

A major finding of our study is that CEACAM], previ-
ously shown to regulate LPS signaling in neutrophils,
also regulates LPS signaling in monocytes, but in the
case of neutrophils the inhibitory regulation is through
TLR4 [12], while in monocytes through RP105. In both
cases, recruitment of the inhibitory tyrosine phosphatase
SHP1 is involved, suggesting that the ITIM sequence in
CEACAM1 [12] plays a major role in dampening
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immune responses in a wide variety of immune cells. In-
deed, that is also the case for B-cells [16] and T-cells
[19]. A second major finding of our study is that the
prompt secretion of IL6 in response to LPS occurs
through BM monocytes in the mouse and that it is nega-
tively regulated by CEACAMI. Indeed, CEACAMI1 ™'~
mice experience hyper IL6 responses to LPS, included
exaggerated surface temperature depression (the mice
shiver and huddle together in their cages) and overt
diarrhea in about 50% of the treated animals. Not sur-
prisingly, IL-1pB, the other key regulator in the fever re-
sponse, is also regulated by CEACAM1 [12]. Thus,
CEACAMLI plays an inhibitory role at two levels in the
fever response, and may be a candidate drug target for
fever reduction.

Experimental procedures

Mice strains

All mice were of the C56Bl/6 background. The method of
euthanasia (asphyxiation by CO, and cessation of
breathing) is an approved AVMA method of euthanasia.
Ceacaml-/- mice were generated by Nicole Beauchemin
and coworkers (McGill University, Montreal, Canada). WT
C57/B6 mice were purchased from Jackson laboratory (Bar
Harbor, ME). IL-6Ra (CD126)-deficient (I/6ra~'~) mice and
Stat3"™* mice were mentioned in the publication [72].
Mice 7—12 weeks old were used for all the experiments.

Synthesis, radiolabeling and PET imaging of DOTH-
conjugated LPS and synthesis of FAM-labeled LPS

LPS (10 mg, O55:B5 E. coli, Sigma-Aldrich) was made
monomeric by treatment with 5ml of 0.5% triethylamine
(Sigma-Aldrich) and by sonication for 15 min on ice. After
the sonication, 200 pl of LPS was removed from the solu-
tion and added to a tube containing NalO4 (20ul,20 mM,
made freshly), pH7.1. Excess NalO4 was removed on a
Zeba spin column (Thermo Scientific, IL.) after incubated
30 min on ice, reacted with 26ul of DOTH (7.8 mM in
H20, 202 nmol), pH 6.2, at RT for 2 h,, and then treated
with 10ul of sodium cyanoborohydride (200 mM in H20,
2000 nmol) at RT for 2 h., followed by running a Zeba spin
column again to remove excess DOTA and NaCNBHS3.
All reaction was protected from light [73]. Preparation of
FAM-LPS follow the protocol of the FAM conjugation
from company.

Real time RT-PCR

Total RNA was purified from cell pellets using Trizol reagent
(Invitrogen) according to the manufacturer’s instructions.
The concentrations and purity of extracted RNA were mea-
sured using the NanoDrop ND-1000 Spectrophotometer
(NanoDrop, Wilmington, DE) demonstrating RNA with high
purity (260/280 absorbance ratio between 2.1-2.2). Using
Omniscript Reverse Transcription Kit (Qiagen), 1 ug of total
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RNA was used for the generation of cDNA as outlined by
the manufacturer in a total volume of 20 pl. Following cDNA
systhesis, 2 pl was used in real time RT-PCR reactions per-
formed on CFX96 Touch Real-Time PCR Detection System
(Bio-Rad) in a 20 pl volume with iQ SYBR Green Supermix
(Bio-Rad), according to the manufacturer’s instructions.
Primers were applied to a final concentration of 10 uM. Pri-
mer sequences are as follows: IL-6 forward (5-TTCCATC
CAGTTGCCTTCTTGG-3"), IL-6 reverse (5-TTCTCATTT
CCACGATTTCCCAG-3"); TNFu forward (5-AGCACAGA
AAGCATGATCCGC-3’), TNFa reverse (5-TGCCACAAG
CAGGAATGAGAAG-3'); GAPDH forward (5-GTCGGTG
TGAACGGATTTG-3"), GAPDH reverse (5-GAACATGTA
GACCATGTAGTTG-3"), TLR4 forward (5-ATGGCATGG
CTTACACCACC-3’), TLR4 reverse (5-GAGGCCAATTTT
GTCTCCACA-3"); IFNB forward (5-CAGCTCCAAGAAA
GGACGAAC-3’), IENp reverse (5-GGCAGTGTAACTCT
TCTGCAT-3"); [FNa forward (5-TGATGAGCTACTAC
TGGTCAGC-3'), IFNa reverse (5-GATCTCTTAGCACA
AGGATGGC-3"); CCL5 forward (5-GCTGCTTTGCCTAC
CTCTCC-3’), CCLS reverse (5-TCGAGTGACAAACACG
ACTGC-3’). A TagMan probe (Mm00462535_g1) from Life
Technologies was used for detection of Regnasel. After
denaturation for 3min at 95°C, 40 cycles of amplification
were performed (95°C for 10s then 55°C for 10s). Finally,
melting curves were generated between 55 °C and 95 °C, for
every 0.5 °C. All Ct values were normalized to GAPDH, and
quantification of gene expression was calculated by using the
ACT method.

Flow cytometry and cell sorting

Bone marrow cells were flushed out using PBS with 2%
FBS and red blood cells were lysed using red blood cell lysis
buffer (Sigma-Aldrich). For cell surface staining, cells were
washed with PBS, blocked with anti-mouse CD16/32 anti-
body, stained with antibodies described in the figures,
washed 3 times with 1% BSA PBS, and analyzed with a
FACSCanton II cytometer (BD Biosciences). For intracellu-
lar staining, after treated with Brefeldin A (BFA) and 500
ng/mL LPS for 5h, cells were washed with PBS, fixed with
Fixation/Permeabilization Concentrate/diluents (eBioscien
ce, San Diego, USA), blocked with anti-mouse CD16/32
antibody, and stained with antibodies shown in the figures.
After washed with PBS containing 1% BSA and 0.1%
saponin, stained cells were assessed with a FACSCanton II
cytometer.

For cell sorting, total cells were stained with FITC conju-
gated lineage marker antibodies (anti-Ly-6G, anti-B220,
anti-CD3, anti-Ter119, anti-NK1.1 and anti-CD19), and
PE/Cy5 conjugated anti-CD135, PE/Cy7 conjugated anti-
CD11b, APC conjugated anti-CD115, and APC/Cy7 conju-
gated anti-CD117 (Biolegend, San Diego, CA 92121) and
sorted by SROP. Purity was checked using FACSCanton II
and > 95% purity sorted cells were used in the experiment.
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Bone marrow monocyte isolation and cytokine cytometric
bead assay

Sorted bone marrow monocytes (Mo), common monocyte
progenitors (cMoP), monocyte-macrophage DC progeni-
tors (MDP) and common DC precursors (CDP) were cul-
tured in the concentration of 1 x 10°/mL with RPMI1640
supplement with 10% FBS and antibiotics. For surface
staining, cells were stained with TLR4-PE (Clone UT41)
and Isotype-PE (Clone eBR2a) (eBiosciences) and
TLR4-APC (Clone SA15-21), CD14-PE (Clone Sal4—2),
RP105-PE (Clone RP/14), MD1-PE (Clone MD-113) and
isotypes (Biolegend, San Diego, CA 92121). For intracellu-
lar IL-6 and TNFa analysis, cells were treated with BFA
and 500 ng/mL LPS for 5h, then cells were analyzed using
intracellular anti-IL-6-APC and anti-TNFa-APC (Biole-
gend, San Diego, CA 92121) staining. For LPS treatment
or RP105 antibody treatment, cells were treated with 500
ng/mL LPS or 20 pg/mL anti-RP105 antibody (Clone RP/
14, Biolegend) over time shown in the figures and har-
vested for qPCR analysis. For blocking and inhibiting ex-
periment, cells were incubated over time shown in the
figures or preincubated with TLR4 blocking antibody
(Clone 76B357.1, Novus, Littleton, CO80210, USA), VAV1
inhibitor Azathioprine and 6-thio-GTP (abcam, Cam-
bridge, MA02139, USA), CD14 blocking antibody (Clone
M14-23, Biolegend), MD1 blocking antibody (Clone
MD113, abeomics, San diego, CA92121), SHP-1 inhibitor
PTP inhibitor III (Cayman Chemical, Ann Arbor, Mich-
igan), Src inhibitor Src I1 (Tocris, Minneapolis, MN55413,
USA), TLR4 inhibitor C34 (Tocris, Minneapolis,
MN55413, USA) for 20 min following treated with 500 ng/
mL LPS over time shown in the figures. Then, cells were
harvested for qPCR or immunoblot analysis. For IL-6 re-
lease analysis, cells were treated with 500 ng/mL LPS over
time in the figure and supernatants were collected and
analyzed using cytometric bead array. The concentration
of inflammatory cytokines was measured using cytometric
bead array (CBA; BD Biosciences, USA) as described
previously [74]. This assay is multiplexed and measures the
concentration of each cytokine simultaneously. Mean of
fluorescence intensity were converted to cytokine concen-
tration (pg/mL) using a standard curve for each cytokine
measured. Graphs were plotted using GraphPad Prism.

Diarrheogenic activity

The diarrheogenic activity was measured by observing
wet area distance of tail from mouse anus. Any area
more than 2 mm indicated positive diarrhea cases. Each
group consisted of 17 mice and the observation lasted
48 h in all experiments.

Thermometry
Temperatures were measured 1 h before and 1, 2, 4, 6, 8,
24, and 48 h after LPS i.p. injection. Temperatures were
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measured using non-Contact Infrared Thermometer
(EXtech Instruments, Model 42,505) as described [75, 76].
The mice were manually restrained, exposing the ventral
aspect of the body. Body temperature was measured by
aiming the thermometer at the animal’s abdomen.

Murine macrophage cell line RAW264.7 and J774A.1 and
CEACAM1 siRNA

Murine macrophage cell line RAW264.7 (ATCC® RIB-71™)
and J774A.1 (ATCC® TIB-67™) were cultured for 24 h after
seeding, then transfected with CEACAM]1 small interfering
RNA(siRNA) or scrambled control siRNA (Origene, Rock-
ville, MD 20850, USA) according to manufacturer’s proto-
col. After 24h, 48h and 72h of transfection, cells were
harvested and stained with mouse CEACAM1 APC-con
jugated antibody (R&D systems, Inc, Minneapolis, MN
55413, USA) to verify the silencing effect of CEACAMI.
After silencing CEACAM]1 for 48 h, CEACAM1 could not
be detected on RAW?264.7 and J774A.1 cells. RAW?264.7
and J774A.1 cells were treated with 500 ng/mL LPS over
time shown in the figures or with BFA plus 500 ng/mL LPS
for 5h, then cells were harvested and analyzed using qPCR
or intracellular staining. For detection of IL-6 level in the
supernatant, supernatant were harvested and analyzed
using cytometric bead array.

Immunoblot analysis and immunoprecipitation (IP)

After 10 mg/kgip. injection of LPS for 2h, Liver, spleen
and duodenum of both WT and Ceacaml™ mice were
harvested separately, homogenized and lysed in 1% NP-40
lysis buffer as previously described [64]. Total protein
(50 ug) was separated by SDS-gel polyacrylamide electro-
phoresis, transferred to nitrocellulose membranes and
probed with either anti-mouse phospho-gp130 (Clone
A-12, Santa Cruz Biotechnology), anti-mouse phospho-
STAT1, anti-mouse phospho-STAT3, anti-mouse SOCS3
or anti-B-actin antibody (Cell signaling technology, Dan-
vers, MA 01923). Signals were detected on the Odyssey
Infrared Imaging System (LI-COR Biosciences, Lincoln,
NE, USA).

Bone marrow monocytes also were negatively isolated
using EasySep™ Mouse Monocyte Enrichment Kit (Stem-
Cell Technologies Inc., Vancouver, Canada) according to
manufacture protocol. Negatively isolated bone marrow
monocytes with 1x10° concentration in RPMI 1640
medium supplement with 10% FBS and antibiotics. After
incubation in the presence or absence LPS for 15 min,
cells were harvested and lysed on ice for 30 min, and
protein concentration was determined using the Bio-Rad
protein assay. Immunoprecipitation (IP) of RP105 or
CEACAM1 was performed with anti-CEACAMI1 (Clone
MADb-CC1, Biolegend, San Diego, CA) or RP105 (Clone
RP/14) using Pierce protein A/G plus agarose (Thermo
Scientific, Rockford, IL) per the manufacturer’s protocol,
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immunoblotted with appropriate primary antibodies
(anti-MD1 pAb from Santa Cruz Biotechnology, Inc.,
Dallas, TX.; anti-RP105 pAb and anti-CD14 pAb from
Abcam, Cambridge, MA; phospho-VAV1 Y160 pAb
from Bioss Antibodies Inc., Woburn, MA; VAV1 pAb,
SHP1 pAb, phospho-SHP-1 Y564 pAb, Src, and 4G10
pAD from Cell Signaling Technology, Inc., Danvers, MA;
anti-B-actin mAb from GeneTex, Inc., Irvine, CA) and
infrared-labeled IRDye secondary antibodies. Detection
was carried out using the Odyssey infrared imaging [77].

Statistical analysis

Assay results were expressed as means +SEM and paired or
unpaired Student’s t-tests were used for comparisons. All
p-values are two-sided. Data were analyzed with GraphPad
Prism software (version 5.0, GraphPad Software, San Diego,
CA, USA).

Additional file

Additional file 1: Figure S1. /-6 mRNA expression in peritoneal cavity
tissues after LPS challenge. Figure S2. Intracellular IL-6 and TNFa staining
of hepatocytes and Kupffer cells in response to LPS in Ceacam1—/— mice.
Figure S3. IL-6 and TNFa levels of liver cells after LPS treatment in vitro
and IL-6 receptor downstream signaling activation after i.p. LPS in vivo.
Figure S4. CEACAM1 expression on bone marrow CD115+ (M-CSF+) cells
and CD115+ cell pattern change of bone marrow cells after treated with
LPS + BFA. Figure S5. Macrophages are not involved in the early IL-6
response (< 2 h) to LPS. Figure S6. RAW264.7 cells start to produce IL-6
after treatment with LPS + BFA for 11 h, while silencing of CEACAM1 does
not affect IL-6 production in murine macrophage RAW264.7 cells at the
2h and 24 h time points. Figure S7. Murine macrophage cell line
J774A.1 does not produce IL-6 within 5 h after LPS treatment, while silen-
cing of CEACAM1 does not interfere with IL-6 production after LPS treat-
ment at 2 h and 24 h points. Figure S8. PTP inhibitor Ill, a SHP1 inhibitor,
increases levels of phospho-VAV1 in bone marrow monocytes of WT
mice. Figure S9. CEACAM1, TLR4 and RP105 expression on human per-
ipheral blood monocytes. (PDF 1828 kb)
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