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ABSTRACT

The current deluge of newly identified RNA tran-
scripts presents a singular opportunity for improved
assessment of coding potential, a cornerstone of
genome annotation, and for machine-driven dis-
covery of biological knowledge. While traditional,
feature-based methods for RNA classification are
limited by current scientific knowledge, deep learn-
ing methods can independently discover complex
biological rules in the data de novo. We trained
a gated recurrent neural network (RNN) on hu-
man messenger RNA (mRNA) and long noncod-
ing RNA (lncRNA) sequences. Our model, mRNA
RNN (mRNN), surpasses state-of-the-art methods
at predicting protein-coding potential despite being
trained with less data and with no prior concept of
what features define mRNAs. To understand what
mRNN learned, we probed the network and uncov-
ered several context-sensitive codons highly predic-
tive of coding potential. Our results suggest that
gated RNNs can learn complex and long-range pat-
terns in full-length human transcripts, making them
ideal for performing a wide range of difficult classi-
fication tasks and, most importantly, for harvesting
new biological insights from the rising flood of se-
quencing data.

INTRODUCTION

Deep sequencing technology has yielded a torrent of new
transcript annotations, creating a need for fresh approaches
to unlock the full information potential of these vast

datasets. Existing state-of-the-art methods for classification
of long RNAs as protein-coding RNAs (mRNAs) or long
noncoding RNAs (lncRNAs) rely on human-engineered
features, such as the coverage and length of a predicted open
reading frame (ORF). These features predispose such mod-
els to misclassification of mRNAs encoding small proteins
and of lncRNAs with long, un-translated ORFs. Nucleotide
hexamer frequency is another commonly used feature, but
while it can capture the frequency of codon pairs, it does
not benefit from the larger sequence context. These limi-
tations and the annotation challenges ahead demand new
approaches to biological sequence classification that are ca-
pable of detecting complex, variable-length patterns.

In contrast to conventional machine learning methods,
‘deep learning’––the application of multi-layered artificial
neural networks to learning tasks––can discover useful fea-
tures independently, avoiding biases introduced by human-
engineered features (1). Deep learning methods have repeat-
edly outperformed state-of-the-art ‘shallow’ machine learn-
ing algorithms, such as support vector machines (SVM)
and logistic regression, as approaches to biological prob-
lems in recent years. Multiple bioinformatics applications
of deep convolutional neural networks (CNNs) have been
published (2–4); however, while CNNs adeptly learn spatial
information, recurrent neural networks (RNNs) are better
suited for learning sequential patterns because of their se-
rialized structure and ability to handle variable-length in-
puts (1). RNN-based approaches have had success in the
fields of natural language and music (5), and information
extraction from biomedical texts (6–8). Researchers have
recently begun to apply RNNs to biological sequences for
the identification of splice sites (9), microRNA target sites
(10), DNA binding sites (11) and the prediction of methy-
lation states (12), as well as to microRNA precursor pre-
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Figure 1. mRNN Output and Model Schematic. Coding probability and
coding potential score is shown at nucleotide-level resolution for the tran-
script ENST00000371732.9, which encodes caspase recruitment domain
family member 9. Values at position i correspond to the mRNN coding
probability or Strunc(i ), the mRNN output for the truncated sequence from
1 to i . Vertical dashed lines demarcate the annotated start and end of the
CDS. A schematic of the gated RNN is shown below. Equilateral triangles
signify reset gates, and the height of the gray fill represents the propor-
tional contribution of the previous hidden state (ht−1) to the new candi-
date hidden state (h̃t). The update gate is shown as two circles represent-
ing the proportional contributions of the previous hidden state (ht−1) and
the new candidate hidden state (h̃t) to the new hidden state (ht). Arrows
represent matrix products. The embedding layer maps nucleotides to 128-
dimnensional vectors.

diction using inputs of RNA sequences merged with sec-
ondary structure predictions (13). While basic RNNs are
challenged by most biologically relevant input sequence
lengths due to the ‘vanishing gradient problem,’ a diffi-
culty encountered during training due to the multiplica-
tion of many small terms when computing the gradient
of an error function by the chain rule (14), several recent
adaptations addressed this issue. Among the most popu-
lar of these modified RNNs are long-short-term-memory
(LSTM) RNNs (15) and gated recurrent unit (GRU) RNNs
(aRxiv: https://arxiv.org/abs/1409.1259v2), which manage
memory to improve the learning of long-range dependen-
cies. Recent studies demonstrated superior performance
of GRUs compared to LSTMs for bioinformatics tasks
(10,16). We report the successful implementation of a GRU
network to accurately predict protein-coding potential of
complete, variable-length transcripts. Our method, ‘mRNA
RNN’ (mRNN), not only performs as well, if not bet-
ter than, existing state-of-the-art classifiers, but also learns
complex biological rules in the process.

MATERIALS AND METHODS

The structure of the GRU used in mRNN is depicted
in Figure 1. The GRU is composed of a candidate hid-
den state layer and a hidden state layer of dimension r .
While RNN applications to biological sequences use one-

hot encoding where each input character (A,C,G,U) is en-
coded as a binary vector with a single non-zero entry
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), we achieved
better performance with an embedding layer. The embed-
ding layer maps each input character (A, U, G, C or N) to
a higher-dimensional representation. This map is linear, so
it can be viewed as a multiplication of a r × 5 matrix to a
one-hot vector. The candidate hidden state h̃t at position t is
computed from the input to the network at t and the previ-
ous position’s hidden state ht−1, scaled by the reset gates rep-
resented here as triangles. The hidden state ht−1 is computed
from the previous position’s hidden state ht−1 and the cur-
rent position’s candidate hidden state h̃t, scaled by the up-
date gates represented here as circles. The gates and hidden
states are real-valued vectors of the same dimension, where
the dimension is determined via hyper-parameter tuning.

For training, we provided mRNN with a dataset contain-
ing full-length human transcript sequences labeled as mR-
NAs or lncRNAs. All training and test sets were selected
from GENCODE Release 25 (17). This resource for tran-
script data was recently used to train and test an existing
state-of-the-art lncRNA classification tool called FEELnc
(18). The data set is challenging for protein-coding po-
tential assessment because 10% of these transcripts lack a
start codon and 25% lack a stop codon in the annotated
CDS. However, the presence of these incomplete sequences
in the data set allows us to train a model that is robust
enough to classify sequences in a transcriptome newly built
from RNA-sequencing data, which often contains incom-
plete transcripts. We evaluated mRNN’s performance us-
ing a test set––an unbiased random sample of human tran-
scripts composed of 500 mRNAs and 500 lncRNAs selected
from the full GENCODE annotation. We also selected a
secondary test set––the ‘challenge’ set––of more challeng-
ing transcripts, including 500 mRNAs with short CDSs
(≤50 codons in GENCODE annotation) and 500 lncRNAs
with long (untranslated) ORFs (≥50 codons). Transcripts
for training and testing are separated by their associated
genes, and transcripts associated with genes used in the test
and challenge set are excluded from the training set. At last,
we evaluated performance on the entire mouse transcrip-
tome, composed of 77 725 transcripts more than 200 nt
long.

From the sequences remaining after the removal of the
test and challenge sets, we selected a validation set equal
in size to the test set for mRNN’s hyper-parameter tuning
and model selection (Supplementary Figure S1). We eval-
uated several different training strategies, and all decisions
for training and hyper-parameters were based on minimiz-
ing loss or maximizing accuracy of predictions made on the
validation set (Supplementary Figures S2 and 3). We found
that mRNN’s performance was improved significantly by
pre-training it with augmented data (19) consisting of sev-
eral mutated copies of each sequence (aRxiv: https://arxiv.
org/abs/1601.03651v2). mRNN showed higher validation
accuracy when the dataset was augmented by random 1-
nt point insertions than by random point mutations. (Sup-
plementary Methods and Figure S4A). Moreover, we found
that length-filtered augmented training data (transcripts be-
tween 200- and 1000-nt long) yielded lower validation loss

https://arxiv.org/abs/1409.1259v2
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than augmented training data unrestricted by length (Sup-
plementary Figure S4B). Therefore, rather than training on
the full available training data, we trained on a set of 16 000
mRNAs and 16 000 lncRNAs selected from the sequences
between 200- and 1000-nt long. The augmented data set
used for pre-training was built from this same training set.
In addition to ‘data augmentation,’ we implemented ‘early
stopping,’ which exits training if loss on the training set de-
creases while validation loss does not; both of these strate-
gies help prevent over-fitting during training. We also used
ensemble testing using the uniformly weighted predictions
of five models (20). We used embedding vectors to repre-
sent each nucleotide because this yielded higher validation
accuracy than did one-hot encoding when using ensemble
testing for the RNN library Passage (Supplementary Figure
S3), and we computed the cosine distance between embed-
ding vectors to quantify any learned similarity between nu-
cleotides (Supplementary Figure S5). We also used dropout,
which randomly sets network inputs to zero in Passage’s
GRU implementation, because when combined with an em-
bedding layer, it improved validation accuracy (Supplemen-
tary Figure S2). For detailed methods see Supplementary
Methods.

For comparison, we used the same test set to assess per-
formance of three non-comparative classifiers considered to
be state-of-the-art in speed and performance: CPAT, which
is a logistic regression model based on hexamer frequen-
cies and other features computed from the transcript (21);
FEELnc, which is a random forest model, also based on
human-defined features of the input sequences (18); and
longdist, which is an SVM model using principal compo-
nent analysis (PCA) to reduce the dimensionality of the
features that include di-, tri- and tetra-nucleotide patterns,
and other pre-defined features computed from ORF lengths
(22). No length restrictions were imposed on sequences
in the training set for CPAT, FEELnc and longdist, giv-
ing these classifiers substantially more training data than
mRNN.

We applied a number of approaches to evaluate what
mRNN learned. In each case, we computed the change in
the mRNN score due to perturbations of the mRNA se-
quence, and examined sequence features at locations where
perturbations significantly changed the predicted coding
score. First, we examined the effect of randomly shuffling
different regions of mRNAs. Next, we performed a point-
mutation analysis where we computed the mRNN score
for all possible single-nucleotide mutations to all GEN-
CODE mRNAs fewer than 2000 nt in length (59 133 in
total), and examined the distribution of significant score
changes. We also performed a pairwise mutation analysis
by computing the mRNN score for all possible pairs of mu-
tations, and identified dependent positions with combined
score changes significantly higher than the sum of the score
changes due to the individual mutations. We defined a mea-
sure of ‘synergy’ or dependence, �Ssyn(i, j ), for a pair of
mutations at positions i and j with the equation:

�Ssyn (i, j ) = mina,b (�S (i, a, j, b) − �S (i, a) − �S ( j, b))

where �S(i, a) and �S( j, b) are the change in score due
to mutating position i to nucleotide a and j to b, respec-
tively, and �S(i, a, j, b) is the change in score from mak-

ing both mutations. We defined a similar score for compen-
satory score changes (see Supplementary Methods). At last,
we performed a coding score trajectory analysis where we
defined a smoothed coding score Strunc(i ) for the truncated
transcript from position 1 to i , which is depicted in Figure
1. We then studied the score change �Strunc(i ) as a function
of position for each sequence in our test set, using the same
window size w = 50,

�Strunc(i ) = Strunc

(
i + w

2

)
− Strunc

(
i − w

2

)

To locate regions containing important predictive in-
formation, we identified coding score ‘spikes,’––sharp in-
creases in the coding score trajectory. We identified com-
mon sequence features present in a region of length 50
nt around spike positions [i − w/2, i + w/2]. We found
codons that are statistically enriched in the spike regions by
comparing the frequencies of each codon in the spike re-
gions to codon frequencies upstream of the spike regions,
using the frame defined by the annotated CDS. We com-
puted a P-value using a t-test for each codon compar-
ing the number of occurrences in the spike regions (the
spike position ±25 nt) for each significant spike to the
50-nt region immediately before the spike, and applied a
Benjamini–Hochberg correction using a false discovery rate
(FDR) threshold of 0.01.

RESULTS

Training and testing

The best resulting mRNN model after training selected by
accuracy on the validation set is referred to hereafter as
‘mRNN’. We also implemented an ensemble testing method
called ‘mRNN ensemble,’ which uses the weighted aver-
age of the five best mRNN models. While the single best
mRNN model matched or outperformed CPAT, FEELnc
and longdist on the test set, the mRNN ensemble method
showed significant improvements in performance over these
methods in accuracy, specificity and other metrics at an
FDR of 0.05 (Figure 2A). We also compared the classi-
fiers using the challenge set of atypical transcripts (Figure
2B). Both mRNN and mRNN ensemble methods signif-
icantly outperformed CPAT, FEELnc and longdist in all
metrics on this challenge set. Notably, CPAT, FEELnc and
longdist showed low sensitivity for the challenge set (63,
66.2 and 67.6%, respectively), indicating a bias against clas-
sification of mRNAs with short ORFs as protein-coding,
while mRNN ensemble achieved a sensitivity of 79.2%,
demonstrating its superior predictive power for these atyp-
ical transcripts.

As a final test, we compared the generalizability of these
methods trained with human data by evaluating their per-
formance on the entire set of mouse GENCODE transcripts
>200 nt. This dataset includes 61 834 mRNAs and 15 891
lncRNAs. The mRNN ensemble method performed best in
all metrics except sensitivity, with statistically significant (P-
value < 0.05) improvements in accuracy, specificity, PPV,
MCC and F1-score, showing that it can be used for classifi-
cation of long RNAs in a new transcriptome when trained
on transcripts from a related species (Figure 2C).
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Figure 2. Comparison of Classifier Performance. (A–C) Performance of four classifiers trained with human transcript sequences. Error bars are 95%
confidence intervals computed from 100 000 bootstrap trials. Asterisks above mRNN or ensemble mRNN indicate the method’s improvement over CPAT,
FEELnc and longdist-SVM with an empirical P-value < 0.05 computed from the bootstrap trials. (A) Performance on human test set transcripts, consisting
of 500 mRNAs and 500 lncRNAs. (B) Performance on human challenge set transcripts, including 500 mRNAs with ORFs < 50 codons and 500 lncRNAs
with ORFs > 50 codons. (C) Performance on GENCODE mouse transcripts greater than or equal to 200nt, including 61 834 mRNAs and 15 891 lncRNAs,
using models trained with human data.

Our results demonstrate that mRNN performed at least
as well as existing state-of-the-art machine learning applica-
tions at the task of classifying mRNAs and lncRNAs, and
it achieved this without the aid of user-defined features re-
lated to known mRNA characteristics. We next turned our
attention to uncover what mRNN learned during training.

Point mutation analysis

To begin deducing what mRNN learned, we conducted se-
quence perturbation analyses (Supplementary Methods).
Score changes for sequences with shuffled coding sequence
(CDS) regions compared to those with shuffled 3′ or 5′ un-
translated regions (UTRs) demonstrate that mRNN pri-
marily utilizes organized sequence information in the CDS

(Supplementary Figure S6). We next conducted a point-
mutation analysis to evaluate changes in score resulting
from every possible single-nucleotide substitution for all
GENCODE mRNA transcripts under 2000 nt in length
(Figure 3). We analyzed score changes resulting from these
mutations in thousands of transcripts at positions relative
to start codons and stop codons or control AUGs and
UGA/UAA/UAG trinucleotides. While the colors of the
cells in the heat map in Figure 3 represent the average of a set
of score changes resulting from mutations to that position
and base over all transcripts examined, the asterisks indi-
cate statistical significance (FDR of 1e-4) of a t-test com-
paring this set to a set of score changes resulting from mu-
tations to each instance of the same base in the same re-
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Figure 3. Transcript Point Mutation Maps. Heat maps representing the
average change in coding score for 10 s of thousands of transcripts due to
point mutations at positions relative to the following elements (from top
to bottom): annotated start codons, AUGs in 5′ UTRs, annotated stop
codons, and UGA/UAA/UAGs in 3′ UTRs. Sequence logos present the
nucleotide composition of the sequences analyzed around the same win-
dows. Asterisks represent cells that are statistically significant at an FDR
of 0.0001 using a two-tailed t-test comparing score changes over all tran-
scripts with mutations at a given position to all score changes from mu-
tations of the same base in the corresponding background region. Back-
ground regions are 5′ UTRs for the start codons and AUGs, or 3′ UTRs
for the stop codons and UGA/UAA/UAGs.

gion (5′ UTR, CDS or 3′ UTR). The annotated start codon
marked a clear boundary, with low score changes preceding
it and strong changes following it, indicating that sequence
perturbations early in the CDS erase more predictive infor-
mation than perturbations in the 5′ UTR. In contrast, score
changes around non-start AUGs in the 5′ UTR were more
symmetric before and after the AUG and significantly lower
on average. Strikingly, the pattern of average score changes
in the true CDS exhibited three-nucleotide periodicity with
a persistent aversion to mutations that made codons more
similar to in-frame stop codons. This pattern was not ob-
served upstream of the annotated start codon (5′ UTR),
nor in the regions flanking either AUGs in the 5′ UTR or
control CUGs (Supplementary Figure S7). An aversion to
stop codon-like trinucleotides was also observed preceding,
but not following, annotated stop codons, suggesting that
mRNN recognizes the end of the CDS. This pattern was
not observed in regions preceding UGA/UAA/UAG trin-
ucleotides in the 3′ UTR. Notably, mutation of the anno-
tated stop codon significantly increased the coding poten-
tial score, showing that mRNN displays a preference for
longer ORFs.

Pairwise analysis

To evaluate whether mRNN learned relationships between
distinct features, we performed a pairwise-mutation analy-
sis. To select transcripts for analysis, we first identified those
having a 5′ UTR of at least 100 nt, at least 100 codons in
the CDS and at least 50 nt in the UTR. We then examined

the shortest two transcripts with these properties for conve-
nience of visual data representation. We define �Ssyn(i, j )
as the minimum of the difference between the coding score
change resulting from mutations at two positions i and j
and the sum of score changes associated with the individ-
ual mutations. Therefore, �Ssyn(i, j ) quantifies the ‘score
change synergy’ of the pair of mutations, and is strongly
negative for highly related positions. We examined both
transcripts by altering every possible combination of two
nucleotides within the sequence, 945 999 and 987 713 pairs
in total.

Score changes resulting from pairs of mutations made
to the shorter transcript, encoding parathyroid hormone 2,
PTH2, (Supplementary Figure S8A), illustrate that mRNN
learned rules governing stop codons. Pairs of mutations that
result in an early stop codon when combined significantly
reduce the coding score (Supplementary Figure S8B). When
one mutation creates a stop codon, a second mutation cre-
ating a second, earlier stop codon renders the latter muta-
tion moot; the total score change for these two mutations is
smaller than the sum of individual mutation score changes
(Supplementary Figure S8C).

The second shortest transcript, encoding a cancer/testis-
specific antigen SPANXB1, has a coding trajectory with a
strong spike shortly after the start codon (Figure 4A). We
identified several pairs of synergistic mutations, including a
point mutation that changed an AAC codon to AAA and
another that changed an AAG codon to UAG, which, when
combined, resulted in the 12th largest score change synergy,
resulting in a reduction in score 6.8-times the sum of the in-
dividual score changes (Figure 4B). In other examples, we
identified compensatory changes, such as a decrease in score
from a nonsense mutation that was significantly diminished
when another mutation changed a UGU codon to UAU
(Figure 4C). In both cases described, the two mutated posi-
tions are located within the coding score spike, despite being
separated by 18 and 29 bases, respectively.

The examples above show that some mutations can
exacerbate or compensate for the effects of other, ORF-
truncating mutations. Notably, we found prediction-
flipping pairs of synergistic mutations as far apart as 200
nt in the top 10 Ssyn(i, j ) values (out of close to 500 000
negative values). Taken together, these results demonstrate
that mRNN learned complex and long-range sequence
information dependencies, and can leverage these rules for
classification.

Coding trajectory analysis

To visualize mRNN’s decision-making process, we com-
puted the coding trajectory Strunc(i ) for all transcripts in the
human test set (Figure 5A). Remarkably, we found several
examples of mRNAs with long 5′ UTRs that mRNN clas-
sified as coding only after observing the CDS more than
4000 nt from the transcript start (Supplementary Figure
S9). Thus, mRNN remains sensitive to information toward
the end of transcripts longer than sequences previously used
in any bioinformatics RNN applications that we are aware
of, despite being trained only on sequences shorter than
1000 nt long.
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Figure 4. Pair-wise mutation analysis. (A) The mRNN coding trajectory (as in Figure 1), for ENST00000449283.1, a transcript encoding SPANXB1.
(B) Pair-wise mutation heat map of synergistic score changes for the same transcript. Values are the score change synergy for a pair of mutated bases at
positions i and j , where i < j . Score change synergy is the minimum difference between the resulting change in score when the pair of bases is mutated and
the sum of the score changes from individual mutations of each base in the pair. (C) Pair-wise mutation heat map of compensatory score changes for the
same transcript. Values are the compensatory score change for a pair of mutated bases at positions i and j , where i < j . Compensatory score change is the
maximum difference between the resulting change in score when the pair of bases is mutated and the sum of the score changes from individual mutations
of each base in the pair. (B and C) Bottom-right of each heat map shows a zoomed-in view of a position pair with a highly compensatory or synergistic
score change. Each line spanning three nucleotides represents a codon.
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Figure 5. Model Interrogation for Feature Discovery. (A) mRNN coding score trajectories without smoothing for each transcript in the test set. Blue,
protein-coding; red, non-coding. Bold lines represent average coding probability when five or more transcripts had lengths at of least i nt. (B) Coding
score trajectory for transcript ENST00000458629.1, which encodes C-X-C motif chemokine receptor 6. Vertical dashed lines mark CDS boundaries. (C)
Histogram of significant spike locations in test set mRNAs relative to true CDS start positions. (D) Scatterplot showing codons enriched in the spike
regions (±25 nt around most significant spike position) compared to 50-nt regions upstream of the spikes. The x-axis is the frequency of each codon in the
full set of GENCODE annotated coding regions. The y-axis represents the frequency of the codon in the indicated region. Each pair of points represents
a codon. Large, labeled points are TICs––codons statistically enriched (FDR ≤ 0.05) in spike regions compared to the regions upstream of spikes. The
dashed line corresponds to global codon frequency, and the blue band is the range of standard error computed from a binomial model. (E) Receiver
operator characteristic analysis for five prediction methods including our mRNN ensemble, the best single mRNN model, FEELnc, CPAT, longdist-
SVM, TIC frequency and all-model ensemble (a uniformly weighted ensemble of 5 mRNN models, FEELnc and CPAT). TIC frequency is the number
of occurrences of TICs within 1000 nt of, and in-frame with, an upstream AUG, but not after an in-frame UGA/UAA/UAG. AUROC values for each
method are presented in the legend. (F) mRNN coding score changes resulting from in silico TIC mutations. While the majority of mutations to TICs lead
to a decrease in coding score, mutations to control codons (the codons least enriched in the spike regions) result in smaller score changes on average.
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To identify regions of the sequence that most strongly im-
pact mRNN’s decision, we performed unweighted sliding-
average smoothing of the coding potential trajectories, then
computed the change in score �Strunc(i ) across the sequence
for a window w of 50 nt (Figure 5B). Statistically signifi-
cant spikes (Supplementary Figure S10) were identified in
412 of the 500 test mRNAs, and in only 47 of the 500 lncR-
NAs by fitting a Gaussian to the distribution of lncRNA
spike magnitudes, and computing a P-value for the mRNA
spike values with these parameters. The distribution of the
significant spike positions for mRNAs peaked within the
CDS, shortly after the start codon (Figure 5C; Supplemen-
tary Figures S11 and 12A-B).

To identify the sequence elements associated with sig-
nificant spikes in coding potential score, we compared the
frequencies of in-frame codons in 50-nt windows centered
at the spike, to the codon frequencies in the 50-nt win-
dows preceding these spikes. We found 11 significantly en-
riched codons using a t-test and an FDR of 0.05 (Figure 5D
and Supplementary Table S1); we named these translation-
indicating codons (TICs). 9 of the 11 TICs were also signif-
icantly enriched in spike regions of an independent set of
mRNAs with long 5′ UTRs (Supplementary Figure S12).
Notably, two codons in the synergistic and compensatory
pairwise mutation examples above (AAC and UAU) are
TICs.

To assess the predictive power of TICs, we defined a TIC-
score as the maximum number of TICs occurring within
1000 nt downstream of an in-frame AUG, and preceding the
first in-frame stop codon. This TIC-score was able to accu-
rately predict coding potential in the test set with an AU-
ROC of 0.953, just below that of CPAT at 0.969 and above
longdist (Figure 5E). The same rule distinguished mR-
NAs from lncRNAs in the full mouse GENCODE dataset
with an AUROC of 0.939 (Supplementary Figure S13). We
next computed the reduction in the spike magnitude––the
change in �Strunc(i )––resulting from the mutation of a given
TIC codon in silico. Mutation of TICs resulted in spike
height decreases 94.7% of the time, while mutations to the
least enriched codons in the spike regions decreased spike
height only 59.9% of the time (Figure 5F), demonstrat-
ing that TICs are an important part of mRNN’s classifi-
cation process. We also identified a frame-biased, 12-mer
motif enriched in spike regions, which possesses some pre-
dictive power (Supplementary Figure S14 and Tables S2-3).
Some of the TICs are enriched in GENCODE CDSs rela-
tive to UTRs and out-of-frame triplets, demonstrating that
mRNN learned the complex sequence context that gives
these codons predictive power (Supplementary Figure S15).

DISCUSSION

In this study, we have shown that GRU networks can
successfully model full-length human transcripts. Previous
bioinformatics applications of RNNs restricted input se-
quence length to 2000 nt or fewer by one of three strategies:
filtering the dataset on a length threshold (aRxiv: https://
arxiv.org/abs/1701.08318v1), dividing input sequences into
segments of a fixed size (23,24), or truncating input se-
quences (25). However, one important advantage that deep
RNNs have over other deep learning methods is the ability

to interpret context and long-range information dependen-
cies. In order to exploit the full power of our GRU network,
we did not truncate or segment our training sequences, and
we did not constrain our test set inputs by sequence length
in any way. Our model showed no impairment in classifying
long transcripts when evaluated on the entire mouse tran-
scriptome, or even the longest sequences in human, which
exceeded 100 000 nt.

Despite mRNN’s featureless architecture, which pre-
cluded it from integrating human knowledge of mRNA
structure into its learning process, mRNN was able to learn
true defining features of mRNAs, including trinucleotide
patterns and depletion of in-frame stop codons after the
start of an open-reading frame. In addition to surpassing
state-of-the-art accuracy in assessment of transcript cod-
ing potential, we demonstrate that the GRU network can
be harnessed for identifying specific biological attributes,
such as the TICs, that distinguish sequence classes. Many
TICs are statistically enriched in coding regions and may
affect mRNA structure and translation efficiency. Interest-
ingly, some TIC mutations are known to affect protein ex-
pression in human disease contexts; for example, in a study
of a disease-causing mutant of the cystic fibrosis transmem-
brane conductance regulator, Bartoszewski et al. found that
a single synonymous mutation of Ile507ATC (a TIC) to
Ile507ATT (a non-TIC) altered the mRNA structure and
reduced expression of the protein (26). Future work is
needed to assess whether TICs play a more general role in
mRNA structure and protein expression.

At last, we showed that the recurrent nature of mRNN
enabled it to leverage long-range information dependen-
cies for classification, as evidenced by the pairwise mutation
analysis. This analysis identified many compensatory and
synergistic relationships between distant codons, which may
be generally important for protein function conservation
(27) and adaptation (28), respectively. In agreement with
a previous study of intragenic epistasis in prokaryotes, eu-
karyotes and viruses, we observed that the majority of com-
pensatory mutations occurred between nearby codons (29);
however, mRNN was also able to identify long-range com-
pensatory mutations.

We anticipate that GRU-based approaches will be highly
useful for future bioinformatics classification tasks, as
well as for uncovering new biological insights in the vast
amounts of available sequencing data.
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