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USP13 is significantly amplified in over 20% of lung cancer patients and critical for tumor
progression. However, the functional role of USP13 in small cell lung cancer (SCLC)
remains largely unclear. In this study, we found that the deubiquitinase USP13 is highly
expressed in SCLC tumor samples and positively associated with poor prognosis in
multiple cohorts. In vitro and in vivo depletion of USP13 inhibited SCLC cancer stem cells
(CSCs) properties and tumorigenesis, and this inhibitory effect was rescued by
reconstituted expression of wide type (WT) USP13 but not the enzyme-inactive USP13
mutant. Mechanistically, USP13 interacts with fatty acid synthase (FASN) and enhances
FASN protein stability. FASN downregulation suppresses USP13-enhanced cell renewal
regulator expression, sphere formation ability, and de novo fatty acids biogenesis.
Accordingly, we found FASN expression is upregulated in surgical resected SCLC
specimens, positively correlated with USP13, and associated with poor prognosis of
SCLC patients. More importantly, the small molecule inhibitor of FASN, TVB-2640,
significantly inhibits lipogenic phenotype and attenuates self-renewal ability,
chemotherapy resistance and USP13-mediated tumorigenesis in SCLC. Thus, our
study highlights a critical role of the USP13-FASN-lipogenesis axis in SCLC cancer
stemness maintenance and tumor growth, and reveals a potential combination therapy for
SCLC patients.

Keywords: USP13, cancer stem cells, FASN, ubiquitylation, lipogenesis, TVB-2640, SCLC
Abbreviations: SCLC, Small-cell lung cancer; CSC, Cancer stem-like cell; USP13, Ubiquitin-specific peptidase 13; FASN, Fatty
acid synthase; TMA, Paraffin-embedded tissue microarray; HR, hazard ratio; shRNA, Short hairpin RNA; DUB,
Deubiquitinating-enzyme; Ub, Ubiquitin; USPs, Ubiquitin-specific proteases; WT, Wild type; IP, Immunoprecipitation;
CHX, Cycloheximide; IHC, Immunohistochemistry; qRT-PCR, Real-time quantitative reverse transcriptase-polymerase chain
reaction; MS, Mass spectrometry; OS, Overall survival.
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INTRODUCTION

Small-cell lung cancer (SCLC) is a neuroendocrine (NE), early
metastatic, rapidly progressing and therapy-resistant lung cancer,
with 5-year survival of 15%–30% for limited-stage disease, and less
than 1% for patients with extensive-stage disease according to the
Veteran Affairs Lung Group staging criteria (1–3). Although
the sequencing results have provided a better understanding of
the signaling pathways in SCLC, most recurrent genetic events are
not directly linked to obvious regulatory network. Recently,
proteomic analyses revealed other putative vulnerabilities that
eventually led to the identification of improved therapeutic
strategies (4–6), suggesting the importance of identifying
targetable proteins that directly contribute to tumor development
or drug resistance. Cancer stem cells (CSCs) in SCLC play a central
role in tumorigenesis, metastasis, drug resistance and recurrence
(7–9). Convincing evidences demonstrated that substantial post-
translational heterogeneity exists within cancer cells can affect
characteristics of cancer cell stemness (10–12). Therefore, the
exploration of intracellular important post-translational regulatory
signaling pathways can provide a promising targetable strategy for
tumor treatment.

Protein ubiquitination, post-translational modification that
regulates all kinds of cellular biological processes, is counteracted
upon deubiquitylation by deubiquitinating enzymes (DUBs).
DUBs played crucial role in CSC maintenance and differentiation
through the regulation of core stem cell transcription factors
(SCTFs), such as Oct4, Nanog, and the stem cell surface marker
CD133 along with cancer cell sphere formation ability (13–16). In
more than one hundred DUBs, ubiquitin-specific proteases (USPs)
subfamily is the largest and the most widely studied member.
USP13, as an important deubiquitinase member belongs to USPs
subfamilies, has been revealed as a potential therapeutic target for
its significant role in tumor progression.USP13 gene is amplified in
human lung cancer and clinical samples of non-small cell lung
cancer (NSCLC) showed tumor exhibited high USP13 level
compared with adjacent normal tissues (17). Accordingly, USP13
depletion attenuated cell proliferation in NSCLC. Moreover, a
recent study has shown USP13 was an important target of
intrinsic insensitivity to afatinib in EGFR‐mutant NSCLC.
Genetic or pharmacological inhibition of USP13 could sensitize
EGFR‐mutant NSCLC to EGFR inhibition (18). Although USP13
plays vital role in tumor progression and drug resistance in
NSCLC, its precisely biological functions and the regulatory
mechanisms in SCLC remain undiscovered.

CSCs are highly reliant on elevated lipogenesis, which is
reflected by the upregulation of master enzymes of lipogenesis,
such as fatty acid synthase (FASN), ATP-citrate lyase (ACLY)
and several fatty acid desaturases, including SCD1 and fatty acid
desaturase 1 and 2 (FADS1 and FADS2) (19–22). Previous
studies have reported that disorder of lipid metabolism or
overactivated lipogenesis pathways are associated with tumor
progression and treatment options in SCLC (23, 24).
Pharmacological inhibition of lipogenic pathway significantly
decreased viability of SCLC cell lines (25). Therefore, targeting
lipid metabolism is regarded as a novel strategy against tumor
cells, or even CSCs in SCLC.
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In this present report, we determined to investigate the
contribution of USP13 to SCLC progression. We found ectopic
expression of USP13 promotes SCLC stemness and lipogenesis
in a FASN-dependent manner, which provides a druggable
vulnerability for SCLC patients.
MATERIALS AND METHODS

Cell Lines and Cell Culture Conditions
The human small cell lung cancer cell lines NCI-H1048 and
NCI-H69, the multidrug-resistant cell line NCI-H69AR, and the
human embryonic kidney cell line HEK-293T were purchased
from ATCC. H446, H69 and H69AR cells were cultured in RPMI
1640 medium supplemented with 10% fetal bovine serum (FBS,
Corning). H1048 cells were cultured in DMEM:F12 (Gibco)
supplemented with 10% FBS, 0.005 mg/ml insulin (Sigma),
0.01 mg/ml transferrin (Gibco), 30 nM sodium selenite
(Sigma), 10 nM hydrocortisone (Sigma), 10 nM beta-estradiol
(Sigma) and 4.5 mM L-glutamine (Gibco). HEK-293T cells were
cultured in DMEM (Gibco) supplemented with 10% FBS.
Penicillin-streptomycin solution (10,000 U/mL) (Gibco) was
added to the prepared culture medium with a 1:100 dilution.
Cells were cultured in a humidified incubator at 37°C with
5% CO2.

Lentivirus Packaging and Stable Cell
Line Construction
Short hairpin RNA (shRNA) and wild-type plasmids were
constructed by SyngenTech company (Beijing). Then, HEK-293T
cells were transfected with the recombinant plasmids and packaging
plasmids (pLP1, pLP2 and pLP/VSVG; Thermo Fisher Scientific)
using Lipofectamine 3000 according to the instructions (Thermo).
Forty-eight hours later, lentivirus particles were collected and stored
at -80°C. The shRNA sequences used for knockdown were as
follows: USP13-shRNA-1 5'-TGATTGAGATGGAGAATAA-3';
USP13-shRNA-2 5'-GCACGAAACTGAAGCCAAT-3'; FASN-
shRNA 5'-CCTACTGGATGCGTTCTTCAA-3'.

For stable cell line construction, cells were infected with
lentivirus in culture medium supplemented with 5 mg/ml
polybrene (Sigma) for 24 hours. The effectively transfected cells
were selected with the corresponding antibiotics. The gene
expression efficiency was determined by immunoblot analyses.

RNA Extraction and Quantitative
RT–PCR Analysis
Total RNA was extracted using RNA-Quick Purification Kit (ES-
RN001, YISHAN Biotechnology) according to the
manufacturer’s protocol. Purified RNA was used to generate
cDNA with TransScript All-in-One First-Strand cDNA
Synthesis SuperMix (TransGen Biotech, AT341-01). qRT–PCR
was performed with PerfectStart Green qPCR SuperMix
(TransGen Biotech, AQ601-01) on an ABI 7900HT Real-Time
PCR Thermocycler (Life Technologies). Relative mRNA
expression was determined using the 2-DDCt method, and actin
was used as an endogenous reference. The following primers
July 2022 | Volume 12 | Article 899987
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were used: FASN forward 5′- CAACTCACGCTCCGGAAA-3′,
reverse 5′-TGTGGATGCTGTCAAGGG-3′; actin forward 5′-
ATCAAGATCATTGCTCCTCCTGAG-3 ′ , reverse 5 ′-
CTGCTTGCTGATCCACATCTG-3′.

Immunoblotting and
Immunoprecipitation Assays
Cells were lysed in RIPA buffer (89901, Thermo) containing
proteinase and phosphatase inhibitor cocktail (78442, Thermo).
Then, the cell lysates were quantified with a BCA protein assay
kit (Thermo) according to the manufacturer’s protocol. Equal
amounts of protein from cell lysates were separated by SDS-
PAGE and performed immunoblotting according previous
description (26).

Cells were lysed in IP lysis buffer (87787, Thermo) containing
proteinase and phosphatase inhibitor cocktail and rotated at 4 °C for
30 min. After centrifugation, the cell lysates were incubated
overnight with indicated antibodies or normal IgG at 4 °C with
rotary agitation. Protein A/G agarose beads (sc-2003, Santa Cruz
Biotechnology) were added to the lysates and incubated for an
additional 3 hours at 4 °C. Beads were washed three times with IP
lysis buffer and boiled for 10 min in 1.5% SDS buffer. Whole cell
lysates and immunoprecipitates were analyzed by immunoblot assay.

Antibodies that recognize USP13 (ab99421, 1:1000 dilution),
Nanog (ab109250, 1:1000 dilution) and Oct4 (ab19857, 1:1000
dilution) were purchased from Abcam. Antibodies against FASN
(3180, 1:1000 dilution), HA (3726, 1:1000 dilution), ubiquitin
(3933, 1:1000 dilution) and CD133 (64326, 1:1000 dilution) were
purchased from CST. Antibody against b-actin (A1978, 1:5000
dilution) was purchased from Sigma. Normal rabbit IgG (2729,
1:5000 dilution) and secondary antibodies, including anti-rabbit
IgG HRP-linked antibody (7074, 1:3000 dilution) and anti-
mouse IgG HRP-linked antibody (7076, 1:3000 dilution), were
purchased from CST.

Protein Half-Life Detection
For the FASN protein half-life determination, H1048 cells
expressing specific plasmids were treated with 100 µg/ml
cycloheximide (CHX, HY-12320, MedChem Express) for different
periods of time. The cells were collected, and immunoblot analyses
were performed with an anti-FASN antibody.

Immunofluorescence Analysis
H1048 cells were cultured on coverslips and then fixed in 4%
paraformaldehyde for 20 min, followed by permeabilization with
0.1% Triton X-100 (in PBS) for 5 min. After washing with PBS,
cells were blocked with 5% BSA for 1 hour at room temperature.
Cells were then incubated with the indicated primary antibodies
at 4°C overnight. After washing with PBS three times, the cells
were incubated with secondary antibodies for 1 hour at room
temperature and stained with DAPI (Invitrogen) by using
ProLong™ Gold Antifade Mountant with DAPI (P36935,
Invitrogen). The immunofluorescent staining was observed
using a confocal microscope (Olympus).

Antibody that recognizes USP13 (sc-48357, 1:200) was
purchased from Santa Cruz Biotechnology. Antibody against
FASN (3180, 1:200) was purchased from CST. Anti-mouse IgG
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(H+L) F(ab’)2 Fragment (Alexa Fluor 488 Conjugate) (4408,
1:1000 dilution) and anti-rabbit IgG (H+L) F(ab’)2 Fragment
(Alexa Fluor 555 Conjugate) (4413, 1:1000 dilution) were
purchased from CST.

LC–MS/MS Analysis
USP13 was immunoprecipitated from H1048 cells and separated
by SDS–PAGE gel. Proteins in-gel were digested overnight in
12.5 ng/ml trypsin in 25 mM NH4HCO3. The peptides were
extracted three times with 60% ACN/0.1% TFA and dried
completely in a vacuum centrifuge. LC–MS/MS analysis was
performed on a Q Exactive mass spectrometer (Thermo
Scientific) coupled to an Easy nLC instrument (Thermo Fisher
Scientific) for 60 min.

MS analysis was performed using the MASCOT engine (Matrix
Science, London, UK; version 2.2) embedded in Proteome
Discoverer 1.4 (Thermo Electron, San Jose, CA.) against the
UniProt Human database and the decoy database. MS data were
searched against the UniProt database (https://www.uniprot.org/).
The cutoff of the global false discovery rate (FDR) for peptide and
protein identification was set to 0.01. LC–MS/MS was performed by
Shanghai Applied Protein Technology Co., Ltd (Shanghai, China).

Extreme Limiting Dilution Assay (ELDA)
H1048 or H69 cells were seeded into 96-well ultralow attachment
plates (Corning) in DMEM/F12 (Gibco) supplemented with B27
(Gibco), 20 ng/mL epidermal growth factor (Gibco), and 20 ng/
mL basic fibroblast growth factor (PeproTech) according
previous description (27). After 7 days, the number of positive
(sphere formation) wells in each group were uploaded and
calculated in the ELDA website (28). The images were
observed using an inverted fluorescence microscope (Olympus).

Measurement of Cellular Cholesterol and
Triglyceride Levels
The indicated cells were seeded in 6 cm plates and incubated at 37°
C with 5% CO2 in an incubator. Until appropriate confluence,
cellular cholesterol and triglyceride levels were extracted and
determined using Cholesterol Quantitation Kit (MAK043, Sigma)
and Triglyceride Quantification Kit (MAK266, Sigma) according to
the manufacturer’s protocol, respectively. Cholesterol and
triglyceride levels were normalized to the protein concentration.

CD133+ Cells Sorting
H1048 or H69 cells were digested and separated into a single-cell
suspension with PBS, then adjusted to a density of 1×107 cells/ml,
and subsequently incubated with APC-conjugated anti-CD133
antibody (1:100 dilution) (397906, Biolegend) on ice for 30min in
the dark. Following two washes with PBS, cells were resuspended in
500 µl PBS and subjected to isolation by flow cytometry (BD,
LSRII). Negative control was determined by using equal amounts of
APC-conjugated immunoglobulin G (IgG) (M1310G05,
Biolegend)-stained cells.

Animal Studies
BALB/c nudemice (4–6 weeks old, female, 14–16 g) were purchased
from Beijing HFK Bioscience Co. Ltd. and housed under specific
July 2022 | Volume 12 | Article 899987
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pathogen-free and controlled conditions (25–27, 45–55% humidity,
12 h day/night cycle). The study was approved by the Institutional
Animal Care and Use Committee (IACUC) of the National Cancer
Center/National Clinical Research Center for Cancer/Cancer
Hospital, Chinese Academy of Medical Sciences and Peking
Union Medical College, and the methods were carried out in
accordance with the approved guidelines.

The cells were subcutaneously injected into the flanks of mice
to establish a xenograft tumor. When the size of tumors reached
approximately 100 mm3, animals were randomly divided into four
groups and intraperitoneally injected with 10 mg/kg etoposide
(S1225, Selleckchem), or 8 mg/kg TVB-2640 (#S9714,
Selleckchem), or etoposide (10 mg/kg) and TVB-2640 (8mg/kg)
combination, or 0.9% saline as control. Tumor length (a) and
minor diameter (b) were monitored once a week, and tumor size
was calculated using the following formula: volume=a×b2/2.

Patients and Tissue Samples
SCLC samples with paired normal lung tissues were collected from
patients who underwent radical resections at the Cancer Hospital
of the Chinese Academy ofMedical Sciences (Beijing, China) from
January 2011 to January 2015. Surgically resected tissues have been
pathologically diagnosed and stained with Mayer’s hematoxylin
and eosin (HE). After embedding into paraffin, tissue microarray
(TMA) was then prepared by Superbiotek, Inc. Ethics approval
was granted by the Committee for the Ethics Review of Research
Involving Human Subjects of the Cancer Hospital of the Chinese
Academy of Medical Sciences. Table 1 summarized the clinical
features of the patients.

Immunohistochemical (IHC) Analysis
Immunohistochemistry analyses were performed as previously
described (29). Briefly, the human SCLC TMA slide was
deparaffinized, rehydrated, autoclaved in 10 mM sodium citrate
(pH 6.0) for 30 min to unmask antigens, and then incubated with
primary antibodies against USP13 (ab99421, 1:200, Abcam), FASN
(3180, 1:200, CST), Nanog (ab109250, 1:100, Abcam), or Oct4 (2750,
1:200, CST) at 4°C overnight. The slides were then incubated with
secondary antibody, followed by chromogen diaminobenzidine
(DAB) staining for signal amplification and detection. The IHC
scores were assessed by two independent authors blinded to the
treatment groups. IHC scoring was based on the percentage of
positive cells and the staining intensity, as previously described (30).

Oil-Red O Staining
Oil Red O staining was performed on cryosections (6-10 µm) in
thickness. In brief, the slides were fixed with formaldehyde,
washed with 60% propylene glycerol, and then stained with
0.5% Oil Red O (Sangon Bio) in propylene glycerol for 10 min
at 60°C. After staining, the slides were rinsed, counterstained
with hematoxylin and mounted in glycerin. The red lipid
droplets were visualized by microscopy.

Public Dataset
Public dataset GSE60052 were downloaded from the Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/
geo) database.
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Statistical Analysis
Statistical analyses were conducted with a two-tailed unpaired
Student’s t test. Each experiment was carried out in at least
triplicate, and all data are expressed as the mean ± SD. Kaplan–
Meier analysis and log-rank tests were applied for survival analysis
(31). The correlation between USP13 and FASN levels was analyzed
using a Pearson correlation coefficient. P values < 0.05 were
considered to be significant. Differences that are statistically
significant are labeled with *(p < 0.05), **(p <0.01), or ***(p <
0.001). Statistical analyses were performed by using GraphPad
Prism (Version 9).
RESULTS

USP13 Is Overexpressed in SCLC and
Predicts Poor Clinical Outcomes of
SCLC Patients
To identify the important role of deubiquitinase USP13 in the
clinical features of SCLC, we analyzed the mRNA expression of
USP13 in the published profile GSE60052. Overall survival
analysis of USP13 in SCLC patients showed that USP13 was
prognostically detrimental (Figure 1A), which indicated further
necessary research of USP13. We then collected tumor tissues
and the paired peripheral normal lung tissues which were
surgically resected from patients diagnosed with SCLC.
Immunohistochemical (IHC) analyses revealed that the
expression of the USP13 protein was increased in SCLC tissues
compared with normal lung tissues (Figures 1B, C). Next, we
found that USP13 was significantly upregulated in the tissues of
SCLC patients with lymph node metastasis (Figure 1D).
Moreover, compared to patients evaluated as stage I, patients
in stage II or stage III overexpressed USP13 (Figure 1E).
Consistent with the previous analysis, Kaplan–Meier survival
analysis demonstrated that high USP13 levels were correlated
with poor overall survival of SCLC patients (Figure 1F).
Collectively, these results demonstrated that USP13 is
overexpressed in SCLC and predicts poor clinical outcomes.
Catalytically Active USP13 Promotes SCLC
CSC-like Properties and Rumor Growth
As CSCs contribute to tumorigenesis, we examined the role of
USP13 in SCLC stemness maintenance. The expression of
stemness-related factors Oct4 and Nanog was dramatically
decreased after depletion of USP13 with two different short
hairpin RNAs (shRNAs) in H1048 and H69 cells (Figure 2A),
which indicated an important role of USP13 in stemness
maintenance. Consistently, silencing USP13 significantly
inhibited sphere formation ability (Figure 2B, Supplementary
Figure 1A). Conversely, forced expression of WT USP13 but not
the catalytically inactive USP13 (C345A) mutant significantly
promoted Oct4 and Nanog expression (Figure 2C) and sphere
formation ability (Figure 2D, Supplementary Figure 1B).
CD133+ cells are widely considered to be SCLC stem-like cells
(32). To validate the expression levels of USP13 in SCLC CSCs, we
July 2022 | Volume 12 | Article 899987
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enriched CD133+ subpopulations from H1048 cells with an anti-
CD133 antibody. As shown in Figure 2E and Supplementary
Figure 1C, USP13 expression level in CD133+ subpopulation was
substantially higher than that in the CD133- subpopulation.
Together, these results support a critical role of USP13 which
depends on its catalytic function in promoting SCLC stemness.

We next determined the role of USP13 in tumor growth by
subcutaneously injecting H1048 cells with or without USP13
depletion, or USP13 depletion combined with WT USP13 or
catalytically inactive USP13 (C345A) mutant overexpression
(Supplementary Figure 1D) in mice. The results showed that
mice inoculated with USP13-deficient cells evidently formed
smaller tumor masses than those inoculated with control cells,
and this reduction was abrogated by reconstituted expression of
shRNA-resistant WT USP13 but not the catalytically inactive
USP13 (C345A) mutant (Figure 2F). Moreover, IHC staining
analysis in tumor tissues showed that Nanog and Oct4
expression decreased after USP13 depletion, and this decrease
was rescued by reconstituted expression of WT USP13 but not
catalytically inactive USP13 (C345A) mutant (Figures 2G, H).
Hence, our data strongly indicated that USP13 promotes SCLC
tumor growth.

USP13-Dependent FASN Expression
Promotes SCLC Stemness and Lipogenesis
To verify mechanisms involved in USP13 regulated SCLC
stemness, immunoprecipitation (IP) was performed with an
anti-USP13 antibody and mass spectrometry (MS) were used to
identify proteins that interacts with USP13. MS analysis revealed 2
unique peptides identical to FASN (Supplementary Figure 2A),
which is a critical enzyme for the synthesis of palmitate (precursor
of cholesterol and triglyceride) from acetyl-CoA andmalonyl-CoA
and contributes to CSC maintenance (33). We confirmed the
interaction between endogenous USP13 and FASN by the co-
Frontiers in Oncology | www.frontiersin.org 5
immunoprecipitation (Co-IP) of H1048 cell lysates (Figure 3A).
Consistently, USP13 and FASN were shown to interact physically
by immunofluorescence (IF) analyses (Figure 3B). To determine
the importance of USP13 in the regulation of FASN, we
then analyzed FASN expression with or without USP13
depletion or overexpression. As shown in Figures 3C, D,
USP13 downregulation decreased (Figure 3C), whereas USP13
overexpression increased FASN protein levels (Figure 3D)
without affecting FASN mRNA levels (Supplementary
Figure 2B). To detect the role of USP13-FASN axis in
regulating cancer stemness and lipogenesis in SCLC, we stably
depleted FASN after WT USP13 reconstitution in USP13
knockdown cells. USP13 depletion in SCLC cells decreased the
expression levels of Oct4 and Nanog (Figure 3E), reduced the
sphere formation ability (Figure 3F) and cellular cholesterol and
triglyceride levels (Figure 3G). In contrast, overexpression of
reconstituted WT USP13 in SCLC increased Oct4 and Nanog
expression (Figure 3E), promoted sphere formation ability
(Figure 3F) and increased cellular cholesterol and triglyceride
levels (Figure 3G). Importantly, the effects of USP13 on SCLC
cancer stemness maintenance and lipogenesis were abrogated by
FASN depletion (Figures 3E–G). In addition, IHC analysis and oil
red O staining of tumor tissues indicated that USP13-dependent
FASN expression increases lipogenesis (Supplementary
Figures 2C, D). These results indicated USP13 promotes cancer
stemness and lipogenesis mainly through FASN.

USP13 Inhibits Polyubiquitylation-
Dependent FASN Degradation
As a deubiquitinase, we hypothesized that endogenous USP13 could
regulate FASN stability. We treated USP13 knockdown cells with
the proteasome inhibitor MG-132 and found that inhibition of
FASN expression by USP13 depletion was clearly blocked by MG-
132 treatment in H1048 and H69 cells (Figure 4A). To determine
TABLE 1 | Clinical characteristics of 90 SCLC patients.

Characteristics Total (cases) Percentage (%)

Age (years)
≤ 60 57 63%
> 60 33 37%

Gender
Male 75 83%
Female 15 17%

Smoking status
Non-smoker 22 24%
smoker 68 76%

Vascular invasion
No 15 17%
Yes 21 23%
Unknown 54 60%

Lymph Node Metastasis
No 26 ≈29%
Yes 64 ≈71%

TNM stage
I 24 ≈27%
II 47 ≈52%
III 19 ≈21%
July 2022 | Volume 12
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whether USP13 stabilizes the FASN protein through
deubiquitination, we first examined FASN protein turnover by
using cycloheximide (CHX) and traced the protein levels. Indeed,
the FASN protein was gradually degraded with CHX treatment. As
anticipated, the FASN protein half-life was decreased after depletion
of USP13 (Figure 4B), while ectopic WT USP13 but not
catalytically inactive USP13 (C345A) mutant expression largely
increased FASN stability (Figure 4C). Moreover, we found that
depletion of USP13 enhanced the ubiquitination level of
endogenous FASN (Figure 4D). In contrast, forced expression of
Frontiers in Oncology | www.frontiersin.org 6
WT USP13 but not the catalytically inactive USP13 (C345A)
mutant reduced the ubiquitination of FASN (Figure 4E). Overall,
our experiments indicate that USP13 promotes FASN protein
stability by decreasing polyubiquitination of FASN and thus
prevents its degradation through the proteasome pathway.
FASN is Positively Correlates with USP13
To determine the clinical significance of FASN expression, we
performed IHC analyses of SCLC tissue specimens. IHC staining
B

C D

E F

A

FIGURE 1 | USP13 is overexpressed in SCLC and predicts poor clinical outcomes. (A) Kaplan-Meier analysis of overall survival curves from a public dataset (GSE60052) for
SCLC patients with low or high USP13 expression. p values are calculated using a log-rank test (two-tailed). (B, C) Immunohistochemical analysis of USP13 in SCLC tumor
specimens (T) and their adjacent normal tissues (N). Representative IHC images are shown (B). IHC scores of USP13 expression were calculated (C). Scale bars: 500 µm.
Data represent the means ± SD of samples. Two-tailed student’s t-test was used. ***p < 0.001. (D) The expression of USP13 in SCLC patients with or without lymph node
metastasis is shown. Data represent the means ± SD of samples. Two-tailed student’s t-test was used. **p < 0.01. (E) USP13 expression levels are shown in SCLC patients
of different cancer stages. Data represent the means ± SD of samples. Two-tailed student’s t-test was used. ***p < 0.001. (F) The Kaplan–Meier method with a two-tailed log-
rank test was used to plot survival curves for SCLC patients with high and low USP13 expression.
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FIGURE 2 | USP13 promotes SCLC CSC-like properties and tumor growth. (A) Immunoblot analyses of H1048 (left) and H69 (right) cells with or without USP13
depletion were performed with the indicated antibodies. (B) Left: ELDA was performed in H1048 cells with or without USP13 knockdown. Representative sphere images
(top right) and stemness frequency illustration of the cells with the upper and lower 95% confidence intervals (bottom right) are shown. Scale bars, 50 mm. Data represent
the means ± SD of wells. Two-tailed student’s t-test was used. **p < 0.01, ***p < 0.001. (C) Immunoblot analyses of H1048 (left) and H69 (right) cells with or without WT
USP13 or catalytically inactive USP13 (C345A) mutant overexpression were performed with the indicated antibodies. (D) Left: ELDA was performed in H1048 cells with or
without WT USP13 or catalytically inactive USP13 (C345A) mutant overexpression. Representative sphere images (top right) and stemness frequency illustration of the
cells with the upper and lower 95% confidence intervals (bottom right) are shown. Scale bars, 50 mm. Data represent the means ± SD of wells. Two-tailed student’s t-test
was used. ns, not significant. **p < 0.01. (E) CD133- and CD133+ subpopulations of H1048 cells were sorted. Immunoblot analyses were performed with the indicated
antibodies. (F) Tumor formation in immunodeficient mice transplanted with H1048 cells with or without USP13 depletion, or shUSP13 cells combined with reconstituted
expression of WT HA-rUSP13 or catalytically inactive HA-rUSP13 (C345A) mutant. Tumor sizes and volumes were measured and calculated (n=5 per group). Data
represent the means ± SD of five mice per group. Two-tailed student’s t-test was used. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001. (G, H) IHC staining of
mouse tumor tissues was performed with the indicated antibodies. Representative images are displayed (G), and IHC scores were calculated (H). Scale bars: 100 mm.
Data represent the means ± SD of triplicate samples. Two-tailed student’s t-test was used. ns, not significant. ***p < 0.001.
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showed FASN was highly upregulated in SCLC tissues than in
the paired adjacent normal tissues (Figures 5A, B). More
importantly, the expression of FASN was stage-dependent
(Figure 5C). In addition, patients with high FASN expression
had shorter survival duration than those with low FASN
Frontiers in Oncology | www.frontiersin.org 8
expression (Figure 5D). Consistent with previous results,
FASN protein expression levels were positively correlated with
USP13 expression levels (Figure 5E). These results strongly
suggested that USP13-stabilized FASN expression promotes
clinical aggressiveness of SCLC.
B C

D

E

F

G

A

FIGURE 3 | USP13-dependent FASN expression promotes SCLC stemness and lipogenesis. (A) Immunoprecipitation and immunoblot analyses were performed with
the indicated antibodies in H1048 cells. (B) Immunofluorescence analyses were performed with the indicated antibodies in H1048 cells. DAPI was used for nuclear
staining. Scale bars: 20 mm. (C, D) FASN expression levels were detected in H1048 (top) or H69 (bottom) cells with or without USP13 depletion (C) or overexpression
(D) by immunoblot analyses with an anti-FASN antibody. (E) H1048 cells with or without USP13 shRNA expression, or USP13 depletion reconstituted expression of WT
HA-rUSP13 with or without FASN depletion were analyzed by immunoblotting with the indicated antibodies. (F) Left: ELDA was performed in H1048 cells with or without
USP13 shRNA expression, or USP13 depletion combined with reconstituted expression of WT HA-rUSP13 with or without FASN depletion. Representative sphere
images (top right) and stemness frequency illustration of the cells with the upper and lower 95% confidence intervals (bottom right) are shown. Scale bars, 50 mm. Data
represent the means ± SD of wells. Two-tailed student’s t-test was used. ***p < 0.001. (G) Cellular triglyceride levels (left) and cholesterol levels (right) in H1048 cells with
or without USP13 shRNA expression, or USP13 depletion combined expression of reconstituted expression of WT HA-rUSP13 with or without FASN depletion were
determined. Data shown are the mean ± S.D. (n=3). Two-tailed student’s t-test was used. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 4 | USP13 inhibits polyubiquitylation-dependent FASN degradation. (A) H1048 (upper) and H69 (lower) cells expressing two different USP13 shRNAs were
treated with MG132 (50 mM) for 8 hours. Immunoblot analyses were performed with the indicated antibodies. (B) H1048 cells with or without USP13 depletion were
treated with CHX (100 µg/ml) for the indicated periods of time. FASN expression levels were analyzed with an anti-FASN antibody (upper) and quantification of FASN
levels relative to b-actin expression levels (lower) were performed. (C) H1048 cells with or without WT USP13 or catalytically inactive USP13 (C345A) mutant
overexpression were treated with CHX (100 µg/ml) for the indicated periods of time. Immunoblot analyses were performed with the indicated antibodies (left).
Quantification of FASN expression levels relative to b-actin expression levels is shown (right). (D) H1048 cells expressing two different USP13 shRNAs or a control
shRNA were treated with MG132 (50 mM) for 8 hours. Immunoprecipitation and immunoblot analyses were performed with the indicated antibodies. (E) H1048 cells
with or without WT USP13 or catalytically inactive USP13 (C345A) mutant overexpression were treated with MG132 (50 mM) for 8 hours. Immunoprecipitation and
immunoblot analyses were performed with the indicated antibodies.
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FASN Inhibition Attenuates SCLC
Lipogenesis, Self-Renewal Properties,
Chemotherapy Resistance and USP13-
Dependent Tumorigenesis
Since FASN is a key enzyme involved in USP13-promoted cancer
stemness, we further examined whether FASN inhibitor could be
a favorable treatment strategy. TVB-2640, a highly potent and
Frontiers in Oncology | www.frontiersin.org 10
selective FASN inhibitor, was designed to reduce hepatic fat in
nonalcoholic fatty liver disease (NAFLD) and nonalcoholic
steatohepatitis (34, 35). More importantly, with compelling
support as an oncology therapeutic drug, TVB-2640 was the
first highly selective FASN inhibitor to enter clinical studies (36).
We found that TVB-2640 treatment decreased cellular
cholesterol and triglyceride levels and reduced sphere
B
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A

FIGURE 5 | FASN is positively correlates with USP13. (A, B) Representative images (A) of IHC staining for FASN protein on tissue microarray (TMA) composed of SCLC
tumor specimens (T) with their adjacent normal tissues (N). IHC score (B) was calculated. Scale bars: 100 mm. Data represent the means ± SD of samples. Two-tailed
student’s t-test was used. ***p < 0.001. (C) FASN expression levels are shown in SCLC patients of different cancer stages. Data represent the means ± SD of samples.
Two-tailed student’s t-test was used. ***p < 0.001. (D) Kaplan-Meier plots of the overall survival time of 90 SCLC patients with low or high expression levels of FASN. p
values are calculated using a log-rank test (two-tailed). (E) The correlation between USP13 and FASN expression in an SCLC tissue microarray was analyzed using a
two-tailed Pearson correlation coefficient.
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formation ability in a dose- and time-dependent manner in both
H1048 and H69 cells (Figures 6A–D, Supplementary
Figures 3A, B). Given that FASN expression is associated with
chemoresistance (37), targeting lipid metabolism might be a new
potential therapy for SCLC patients with acquired drug-
resistance. We subcutaneously injected multi-drugs resistant
H69AR cells into mice (38), then treated with VP16
(etoposide) or TVB-2640 for monotherapy, or concurrent
therapy with VP16 and TVB-2640. Consistent with previous
study (38), tumors in the VP16 treatment group displayed slight
shrinkage (Figure 6E). Importantly, TVB-2640 treatment
dramatically suppressed tumor growth (Figure 6E). In
addition, the group treated with both VP16 and TVB-2640
showed an improved better response than the group treated
with TVB-2640 alone (Figure 6E), indicated synergistic
treatment effect. IHC staining analysis confirmed that
lipogenesis inhibition by TVB-2640 repressed SCLC stemness
features, reflected by decreased Nanog expression, and in
combination with classical chemotherapeutics induced a
dramatic synergistic effect (Supplementary Figure 3C). To
further study whether TVB-2640 treatment can reverse USP13-
mediated tumor formation, we subcutaneously injected H1048
cells with or without USP13 depletion, or H1048 USP13-
depleted cells with reconstituted expression of shRNA-resistant
WT USP13 with or without TVB-2640 treatment. Consistent
with previous result, USP13 depletion dramatically suppressed
tumor growth, and forced overexpression of WT HA-rUSP13
rescued the decreased tumor volume (Figure 6F). Importantly,
TVB-2640 treatment can significantly reduce the tumorigenesis
caused by USP13 overexpression. Together, these data show that
the FASN inhibitor TVB-2640 can be used as a potential
chemotherapy combination anti-SCLC drug.
DISCUSSION

The molecular function of USP13 in tumorigenesis has been
controversial in different cancers according to previous studies.
USP13 was first found to deubiquitinate tumor suppressor
protein PTEN in human breast cancer cells, which indicated a
tumor-suppressing role for USP13 (39). However, further studies
revealed that USP13 may have context-dependent functions in
cancer development by interacting with different substrates to
regulate protein stability. USP13 gene is amplified in serious
ovarian cancers and specifically deubiquitinates and thus
upregulates two key metabolic key enzymes, ATP citrate lyase
(ACLY) and oxoglutarate dehydrogenase (OGDH). As a
consequence, USP13 overexpression is correlated with poor
clinical outcome (40). In lung and ovarian cancer cells, USP13
deubiquitinates and stabilizes MCL1, a key member of the anti-
apoptotic BCL-2 family. Pharmacological inhibition of USP13
with spautin-1 significantly inhibits tumor growth and increases
tumor cell sensitivity to BH3 mimetic inhibitors, which suggests
that targeting USP13 may be a valuable strategy for cancer
Frontiers in Oncology | www.frontiersin.org 11
treatment (41). As a highly expressed protein in glioma stem
cells (GSCs), USP13 maintains GSC self-renewal abilities by
stabilizing the critical transcription factor c-Myc (42).
Consistently, we found that USP13 plays an oncogenic role to
maintain SCLC stemness and tumorigenic potential, which is
dependent on its catalytic activity. Importantly, USP13
expression is positively correlated with cancer progression and
predicts poor survival of SCLC patients. Further mechanistic
studies revealed that USP13 interacts with and stabilizes FASN
by reducing FASN polyubiquitination, suggesting a putative
target for SCLC treatment.

Previous studies have shown that cancer cells reprogram
lipogenic metabolism in response to the massive demand for
macromolecules and bioenergy (43, 44), and that increased
expression of FASN is a prominent feature (45). In KRAS
signaling active lung adenocarcinomas, FASN is a primary
responder that induces elevated lipogenesis which mediated by
the ERK pathway. Inhibition of FASN by cerulenin blocked
proliferation of KRAS-driven lung cancer cells, indicating a
promising role of lipid metabolism in tumor treatment (46).
Subsequent studies in EGFR mutated non‐small cell lung cancer
confirmed that FASN-associated fatty acid metabolic pathway
upregulation was the main principal for tyrosine kinase inhibitor
(TKI)‐resistant EGFR mutated NSCLC growth (47). In our
studies, FASN was induced by the stemness-related
deubiquitinase USP13 in SCLC, implying that lipogenesis can
augment the self-renewal property, and that effectively inhibiting
FASN activity may provide an alternative treatment. Although
FASN inhibitors, including C75, C93, GSK837149A, Orlistat and
TVB-3166, have demonstrated preclinical antitumor activity in
cancer cell lines and xenograft models (45, 48), none of these
compounds have been tested in cancer patients due to side
effects. Therefore, we selected the FASN inhibitor TVB-2640,
which has a favorable tolerability profile and entered a phase II
clinical trial (36), as treatment strategy for SCLC. Our results
showed that accompanied by decreased triglyceride and
cholesterol levels, TVB-2640 significantly suppressed self-
renewal ability of SCLC. Further in vivo animal studies
revealed TVB-2640 sensitized chemotherapy-resistant tumor
cells to etoposide treatment and inhibited USP13-dependent
cancer stemness and tumor growth, suggesting a crucial role of
lipogenic pathway in SCLC proliferation and drug resistance.
Previous research has identified that MEK5/ERK5 dual kinase
axis supporting SCLC survival heavily relies on the mevalonate
pathway, which controls cholesterol synthesis (25).
Corroborative evidence has shown that mutated FASN, which
may affect dimer formation or enzyme activity, occurs in SCLC
patients and indicates a better prognosis in those who have
received chemotherapy (49). These results support that
abnormal expression of proteins involved in lipogenic
pathways synergistically promotes cancer cell survival, which
provides a more efficacious strategy for treatment of SCLC.
Finally, the clinical significance of FASN expression in our
cohort was evidenced by its positive association with SCLC
patient clinical stage and poor overall survival.
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FIGURE 6 | FASN inhibition attenuates SCLC lipogenesis, self-renewal properties, chemotherapy resistance and USP13-dependent tumorigenesis. (A) Triglyceride (left)
and cholesterol (right) levels were measured in H1048 cells treated with the FASN inhibitor TVB-2640 at the indicated doses for 72 hours. DMSO was used as the vehicle
control. Data represent the means ± SD of triplicate samples. Two-tailed student’s t-test was used. **p < 0.01, ***p < 0.001. (B) Triglyceride (left) and cholesterol (right)
levels were measured in H1048 cells after 50 mM FASN inhibitor TVB-2640 treatment for the indicated periods of time. Data represent the means ± SD of triplicate
samples. Two-tailed student’s t-test was used. **p < 0.01, ***p < 0.001. (C, D) Left: ELDA was performed in H1048 (C) and H69 (D) cells with or without FASN inhibitor
TVB-2640 treatment at the indicated dose. Representative sphere images (top right) and stemness frequency illustration of the cells with the upper and lower 95%
confidence intervals (bottom right) are shown. Scale bars, 50 mm. Data represent the means ± SD of wells. Two-tailed student’s t-test was used. *p < 0.05, **p < 0.01,
***p < 0.001. (E) Nude mice were subcutaneously injected with H69AR cells and intraperitoneally injected with indicated drugs when the size of the tumor reached
approximately 100 mm3. Tumor sizes and volumes were measured and calculated (n=5 per group). Data represent the means ± SD of five mice per group. Two-tailed
student’s t-test was used. *p < 0.05, **p < 0.01, ***p < 0.001. (F) H1048 cells with or without USP13 depletion, or shUSP13 cells combined with reconstituted
expression of WT HA-rUSP13 were subcutaneously injected into nude mice and then with or without TVB-2640 treatment. Tumor sizes and volumes were measured and
calculated (n=5 per group). Data represent the means ± SD of five mice per group. Two-tailed student’s t-test was used. ns, not significant. ***p < 0.001.
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CONCLUSIONS

In this study, we showed that USP13 promotes SCLC stemness
and lipogenesis by inhibiting proteasome-dependent FASN
degradation. Pharmacological inhibition of FASN with the
small molecule TVB-2640 impaired self-renewal and tumor
growth ability of SCLC.
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Supplemental Figure 1 | USP13 promotes SCLC CSC-like properties:
(A) Left: ELDA was performed in H69 cells with or without USP13 knockdown.
Representative sphere images (top right) and stemness frequency illustration of the
cells with the upper and lower 95% confidence intervals (bottom right) are shown.
Scale bars, 50 mm. Data represent the means ± SD of wells. Two-tailed student’s t-
test was used. ***p < 0.001. (B) Left: ELDA was performed in H69 cells with or
without WT USP13 or catalytically inactive USP13 (C345A) mutant overexpression.
Representative sphere images (top right) and stemness frequency illustration of the
cells with the upper and lower 95% confidence intervals (bottom right) are shown.
Scale bars, 50 mm. Data represent the means ± SD of wells. Two-tailed student’s t-
test was used. ns, not significant. ***p < 0.001. (C) CD133- and CD133+

subpopulations of H69 cells were sorted. Representative cell fractions were
separated by flow cytometry sorting (upper). Immunoblott analyses were performed
with the indicated antibodies (lower). (D) Immunoblot analyses were performed in
H1048 cells with or without USP13 depletion, or shUSP13 cells combined with
reconstituted expression of WT HA-rUSP13 or catalytically inactive HA-rUSP13
(C345A) mutant the indicated antibodies.

Supplemental Figure 2 | USP13-dependent FASN expression promotes
SCLC stemness and lipogenesis: (A) H1048 cells were immunoprecipitated with
anti-USP13 antibody and analyzed by mass spectrometry. The selected FASN
peptide identified by mass spectrometry analyses was shown. (B) Relative mRNA
level of FASN was detected in H1048 cells with or without USP13 depletion (top) or
overexpression (bottom). Data shown are the mean ± S.D. (n=3). ns, not
significant.(C, D) IHC staining of FASN with anti-FASN antibody and the oil red O
staining were performed by using tumor tissues as described in Figure 2F.
Representative images are displayed (C). IHC scores (D, top right) and oil red O-
stained areas (D, bottom right) were calculated. Scale bars: 100 mm. Data represent
means ± SD of triplicate samples. Two-tailed student’s t-test was used. ns, not
significant. *p < 0.05, **p < 0.01, ***p < 0.001.

Supplemental Figure 3 | FASN inhibition attenuates SCLC lipogenesis:
(A) Triglyceride (left) and cholesterol (right) levels were measured in H69 cells based
on FASN inhibitor TVB-2640 treatment with indicated dose for 72 hours. DMSO
was used as control vehicle. Data represent means ± SD of triplicate samples. Two-
tailed student’s t-test was used. **p < 0.01, ***p < 0.001. (B) Triglyceride (left) and
cholesterol (right) levels were measured in H69 cells after 50uM FASN inhibitor TVB-
2640 treatment for the indicated periods of time. Data represent means ± SD of
triplicate samples. Two-tailed student’s t-test was used. ***p < 0.001. (C) IHC
staining of Nanog expression and the oil red O staining were performed with mouse
tumor tissues. Representative images are displayed (left). IHC scores (top right) and
oil red O-stained areas (bottom right) were calculated. Scale bars: 100 mm. Data
represent the means ± SD of triplicate samples. Two-tailed student’s t-test was
used. ns, not significant. *p < 0.05, **p < 0.01.
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