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Abstract: Triple-negative breast cancer (TNBC) is a subset of breast cancer with aggressive charac-
teristics and few therapeutic options. The lack of an appropriate therapeutic target is a challenging
issue in treating TNBC. Although a high level expression of epidermal growth factor receptor (EGFR)
has been associated with a poor prognosis among patients with TNBC, targeted anti-EGFR therapies
have demonstrated limited efficacy for TNBC treatment in both clinical and preclinical settings.
However, with the advantage of a number of clinically approved EGFR inhibitors (EGFRis), combi-
nation strategies have been explored as a promising approach to overcome the intrinsic resistance
of TNBC to EGFRis. In this review, we analyzed the literature on the combination of EGFRis with
other molecularly targeted therapeutics or conventional chemotherapeutics to understand the current
knowledge and to provide potential therapeutic options for TNBC treatment.

Keywords: anticancer; combination therapy; epidermal growth factor receptor (EGFR); anti-EGFR
therapy; EGFR inhibitor (EGFRi); EGFRi resistance; triple-negative breast cancer (TNBC)

1. Introduction

The epidermal growth factor receptor (EGFR) family (also known as the human epi-
dermal growth factor receptor (HER) or erythroblastic leukemia viral oncogene homolog
(ERBB) family) belongs to the receptor tyrosine kinase (RTK) superfamily, which con-
sists of 58 transmembrane RTK proteins [1]. The EGFR/ERBB family members include
EGFR (HER1/ERBB1), HER2 (ERBB2), HER3 (ERBB3), and HER4 (ERBB4) [2–5]. Under
normal physiological conditions, the EGFR family members are activated by homo- and
heterodimerization among them induced by their cognate ligands, such as epidermal
growth factor (EGF), transforming growth factor alpha (TGF-α), or amphiregulin (AREG),
binding to their ectodomain (extracellular domain) [2,6]. After ligand binding, the ac-
tivated EGFR dimer triggers multiple downstream signaling pathways, including the
phosphatidylinositol-3-kinase (PI3K)/v-akt oncogene homolog (AKT)/mammalian target
of rapamycin complex 1 (mTOR1) pathway, the rat sarcoma (RAS)/v-raf-1 murine leukemia
viral oncogene homolog (RAF)/MAPK/ERK kinase (MEK)/extracellular signal-regulated
kinase (ERK) pathway, and the Janus kinase (JAK)/signal transducer and activator of
transcription 3 (STAT3) pathway, which are known to play key roles in various cellular
responses such as cell proliferation, cell cycle progression, cell survival, and cell motil-
ity [2,6–9]. Aberrant activation of EGFR caused by various alterations such as copy number
amplification, mutations, and protein overexpression has been reported in the majority
of human cancers, including bladder, breast, colon, head and neck, kidney, liver, lung,
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ovary, pancreas, prostate, and stomach cancers [10]. In addition, inhibition of the oncogenic
activity of EGFR with targeted drugs has been proven to be an effective clinical strategy
in treating tumors driven by abnormal EGFR activation. However, the efficacy of this
clinical tactic is quite limited due to the rapid emergence of drug resistance in patients
following drug treatment. In lung adenocarcinoma, several resistance mechanisms of
EGFR-targeted drugs such as erlotinib and osimertinib (EGFR-targeted small-molecule
inhibitors) have been well established [11,12]. These include acquisition of additional
mutations to EGFR such as T790M and C797S as resistance mechanisms to erlotinib and
osimertinib, respectively [13,14]. Several concurrent genomic alterations including MET
amplification or anexelekto (AXL) overexpression have also been identified as major drug
resistance mechanisms [15].

Triple-negative breast cancer (TNBC) is clinically defined as a breast cancer subtype
that lacks expression of the estrogen receptor (ER) and progesterone receptor (PR) and
has no amplification of HER2 [16,17]. TNBC accounts for approximately 15–20% of di-
agnosed breast cancers [16–21]. However, few targeted therapies with limited clinical
outcomes have been approved for TNBC treatment [22]. In addition, more than 50%
of cases of TNBC are known to express a high level of EGFR, which is associated with
a poor prognosis [4,5,16,21,23,24]. EGFR expression has also been implicated with an
unfavorable response to chemotherapy in patients with TNBC [25]. TNBC has been clas-
sified into at least six molecular subtypes, including basal-like 1 and 2 (BL1 and BL2),
immunomodulatory (IM), luminal androgen receptor (LAR), mesenchymal (M), and mes-
enchymal stem-like (MSL) subtypes [19,26]. This classification was further refined into four
subgroups, including BL1, BL2, M, and LAR, using histopathological quantification and
laser-capture microdissection of clinical samples, since the IM and MSL subtypes have been
identified to be contributed from infiltrating lymphocytes and tumor-associated stromal
cells, respectively [27]. Continuous efforts to stratify molecular subtypes of heterogenous
TNBC are still ongoing (reviewed in [28–30]).

Although activated EGFR signaling is observed in the BL2 and MSL subtypes of
TNBC [19], TNBC has intrinsic resistance to anti-EGFR therapies [31], which has been
supported by the disappointing outcomes of earlier attempts to treat TNBC with anti-EGFR
monotherapies [32–35]. Thus, these results suggest that alternative oncogenic signaling
initiated by receptors or downstream effectors may be the potential mechanism associated
with the inefficacy of EGFR-targeted therapy against TNBC [36]. Consistent with this
notion, various drug combination strategies to overcome resistance to EGFR-targeted
drugs are currently under investigation.

In this report, we reviewed the recent progress of combination approaches related to
anti-EGFR therapies for TNBC in 73 published studies. These publications were further
analyzed to explore the current knowledge on the therapeutic windows of potentiating
EGFR inhibition using drug combinations for TNBC treatment. Since multigeneration
EGFR tyrosine kinase inhibitors (TKIs) and anti-EGFR antibody therapeutics have already
been approved, the development of a combination strategy may provide an alternative
therapeutic option to treat TNBC.

2. Anti-EGFR Therapeutics

To date, four anti-EGFR antibodies and twelve EGFR TKIs have been approved
globally for treatment of various human cancers (Figure 1).

2.1. Anti-EGFR Antibody Therapeutics

Currently, three anti-EGFR antibodies have been approved by the US Food and Drug
Administration (FDA), including cetuximab (Erbitux®), panitumumab (Vectibix®), and
necitumumab (Portrazza®) (Table 1) [37]. All of these antibody therapeutics are infused
intravenously over the recommended time period [38,39]. Therapeutic anti-EGFR anti-
bodies have been proposed to suppress the enzymatic activity of EGFR by the following
mechanisms: (1) blockage of ligand binding to EGFR; (2) steric inhibition of homo- or
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heterodimerization among EGFR family members; (3) enhancement of EGFR internaliza-
tion and subsequent degradation; (4) induction of the complement-dependent cytotoxicity
(CDC) pathway; (5) induction of G1 cell cycle arrest; (6) inhibition of proangiogenic factor
expression; (7) induction of apoptosis; (8) induction of antibody-dependent cellular cyto-
toxicity (ADCC) by natural killer (NK) cells or monocytes or macrophages; or (9) induction
of DNA damage [37].

Figure 1. Milestones of anti-EGFR therapeutics approved globally. Some important milestones of regulatory approval for
EGFR inhibitors are presented. See Tables 1 and 2 for more details. If not specified in parentheses, anti-EGFR therapeutics
were approved by the US Food and Drug Administration (US FDA). Abbreviations: BC, breast cancer; CRC, colorectal
cancer; HNC, head and neck cancer; NSCLC, non-small cell lung cancer; TC, thyroid cancer; TKIs, tyrosine kinase inhibitors.

Cetuximab is the first FDA-approved anti-EGFR antibody therapeutic. It is an IgG1
chimeric (mouse–/human) monoclonal antibody that potentially inhibits EGF from binding
to EGFR and disrupts EGFR dimerization, leading to inhibition of its cognate downstream
signaling activation [40,41]. It also induces ADCC by NK cells and neutrophils [42].

Panitumumab is the first fully human IgG2κ monoclonal antibody specific to the
extracellular ligand-binding domain of EGFR, blocking the downstream signaling path-
ways [43]. The threshold level of EGFR for antitumor effects of panitumumab was found
to be more than 17,000 receptors per cell in xenograft models using human cancer cells [44].
Panitumumab is the only FDA-approved IgG2 anti-EGFR antibody, and unlike cetuximab,
it does not induce ADCC [42].

Necitumumab is the most recently FDA-approved IgG1 monoclonal anti-EGFR anti-
body and is used in combination with gemcitabine and cisplatin for the first-line treatment
of patients with advanced squamous NSCLC [39]. Necitumumab is an EGFR antagonist
that binds to EGFR and inhibits the binding of EGFR to its ligands, preventing EGFR
dimerization and activation. Necitumumab has also been demonstrated to induce ADCC
in EGFR-positive cells in vitro [39].

Nimotuzumab is a humanized IgG1 monoclonal anti-EGFR antibody that has been
approved for the following cancer types: (1) squamous cell carcinoma of the head and neck
(SCCHN) in India, Cuba, Argentina, Colombia, Ivory Coast, Gabon, Ukraine, Peru, and
Sri Lanka; (2) pediatric and adult glioma in Cuba, Argentina, Philippines, and Ukraine; (3)
nasopharyngeal cancer in China [45]. Similar to other IgG1 anti-EGFR antibodies, it blocks
ligand binding to EGFR, exerting an antitumor effect, and can also induce ADCC [42,45,46].
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Table 1. Approved anti-EGFR antibody therapeutics.

First Appr Anti-EGFR Antibodies KD
1 in nM Developer Indications Approved by the US FDA 2

2004
Cetuximab

(Erbitux®, ICM-C225) 0.201 [40]; 1.8 [46] ImClone Systems 2004 Advanced CRC 3

2011 Late-stage HNC 4

2006
Panitumumab

(Vectibix®, ABX-EGF) 0.05 [47] Abgenix

2006 Metastatic CRC

2014
First-line use of panitumumab
and FOLFOX for wild-type
KRAS metastatic CRC

2017 Wild-type KRAS metastatic
CRC

2006
Nimotuzumab

(TheraCIM, h-R3,
BIOMAb EGFR)

21 [46] CIMYM
BioSciences

2006
HNC by the Central Drugs
Standard Control Organization
(CDSCO), India

2008 HNC by the China Food and
Drug Administration (CFDA) 5

2015 Necitumumab
(Portrazza®) 6.1 [48] Eli Lilly 2015 Advanced squamous NSCLC

1 KD, dissociation constant; 2 https://www.drugs.com/, accessed on 15 April 2021; 3 CRC, colorectal cancer; 4 HNC, head and neck cancer;
5 https://www.pharmacodia.com/, accessed on 15 April 2021.

2.2. Small-Molecule TKIs

As of December 23, 2020, 62 small-molecule protein kinase inhibitors (PKIs) have been
approved by the US FDA [49]. Among them, small-molecule TKIs for EGFR, including
gefitinib, erlotinib, afatinib, osimertinib, and dacomitinib (Table 2), have been initially ap-
proved to treat non-small cell lung cancer (NSCLC) [50]. The EGFR/HER2 dual inhibitors,
lapatinib and neratinib, which have similar half-maximal inhibitory concentration (IC50)
values for EGFR and HER2, have been approved for patients with HER2-positive breast
cancer (Table 2). To date, first-to-fourth-generation EGFR TKIs have been developed [51].
Unlike anti-EGFR antibodies, all EGFR TKIs are orally bioavailable [52], making it easy for
patients to take the medicine.

2.2.1. First-Generation EGFR TKIs

The first-generation EGFR TKIs are oral, reversible inhibitors that block the binding of
adenosine triphosphate (ATP) to the tyrosine kinase domain [50]. These include gefitinib,
erlotinib, lapatinib, and icotinib [50,51].

Gefitinib (Iressa®) is the first US FDA-approved small-molecule TKI [50]. It received
accelerated US FDA approval in 2003 as a monotherapy for patients with advanced NSCLC
after failure of both platinum and docetaxel therapies [50]. However, gefitinib was vol-
untarily withdrawn in 2012 due to its limited efficacy in subsequent clinical trials [50,53].
More recently, gefitinib received US FDA approval for the first-line treatment of patients
with metastatic NSCLC with EGFR exon 19 deletion (ex19del) or exon 21 substitution
(L858R) mutations [50,53]. This new approval is because clinical trials have demonstrated
the efficacy of gefitinib in patients carrying EGFR mutations [54–57].

Erlotinib (Tarceva®) was discovered in 1997 as a selective EGFR inhibitor [58]. It was
approved by the US FDA in 2004 to treat patients with advanced or metastatic NSCLC after
the failure of at least one prior chemotherapy [59,60]. Due to its superiority compared with
other chemotherapeutics in response and progression-free survival (PFS), erlotinib was fur-
ther approved for the first-line therapy of patients with NSCLC with EGFR mutations [50].

Lapatinib (Tykerb®) is a potent dual EGFR/HER2 inhibitor [61]. Lapatinib was
approved by the US FDA in 2007 for breast cancer in combination with capecitabine
(Xeloda) [62]. Crystal structure analysis revealed that the conformation of lapatinib-bound
EGFR is different from that of erlotinib-bound EGFR, leading to much slower dissociation
of lapatinib from the complex than erlotinib [63]. Consistently, lapatinib downregulates
tyrosine phosphorylation for much longer periods than erlotinib and gefitinib.

https://www.drugs.com/
https://www.pharmacodia.com/
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Icotinib (Conmana®) is another first-generation EGFR TKI that is solely approved (in
2011) and marketed in China for the second- or third-line therapy of metastatic NSCLC [50].
Icotinib is structurally similar to gefitinib and erlotinib but is less toxic and better tolerated
than gefitinib [64]. In 2014, it was further approved for the first-line treatment of patients
with EGFR-mutant NSCLC in China [65].

2.2.2. Second-Generation EGFR TKIs

Second-generation EGFR TKIs are irreversible kinase inhibitors that covalently bind
to the kinase domain of EGFR [66]. Afatinib (Tovok®, BIBW2992) is an ATP-competitive
irreversible TKI that covalently binds and irreversibly blocks enzymatically active EGFR
family members (EGFR, HER2, and HER4) [67]. It was approved by the US FDA in 2013
for late stage NSCLC, in 2016 for squamous cell carcinoma of the lung, and in 2018 for
EGFR mutation-positive NSCLC (Table 2). The superiority of afatinib in terms of PFS and
responses over pemetrexed plus cisplatin [68] or gemcitabine plus cisplatin [69] for patients
with EGFR-mutant NSCLC was demonstrated in two clinical trials.

Neratinib (Nerlynx®) is an irreversible HER2 and EGFR TKI approved for the treat-
ment of HER2-positive breast cancer [70]. In the EU and the US, neratinib was approved
as an adjuvant treatment for adults with early-stage, hormone-receptor-positive, HER2-
overexpressed or amplified breast cancer and adults with less than one year from prior adju-
vant trastuzumab-based therapy [71]. In the US, neratinib in combination with capecitabine
was also approved for adults with advanced or metastatic HER2-positive breast cancer [72].

Dacomitinib (Vizimpro®) is an irreversible pan-HER inhibitor (Table 2). It covalently
binds to a cysteine residue in the ATP pocket of the kinase domain. Similar to afatinib,
it blocks signal transduction from both homo- and heterodimers of all members of the
EGFR/HER family [73,74]. Dacomitinib demonstrates longer pharmacodynamic effects
than the first-generation TKIs [75].

2.2.3. Third-Generation EGFR TKIs

To overcome the limited efficacy of second-generation EGFR TKIs for EGFR-activating
mutations such as T790M, L858R, or ex19del, third-generation mutation-selective EGFR
TKIs including alflutinib (AST2818), almonertinib (HS-10296), avitinib (AC0010), lazertinib
(Leclaza®; YH25448), olmutinib (OlitaTM), osimeritinib (Tagrisso®, AZD9291), narzatinib
(EGF816), rociletinib (CO-1686), and WZ4002 have been developed [51,76].

Osimertinib is the first FDA-approved third-generation EGFR TKI for EGFRT790M

mutation-positive NSCLC and was approved in 2015 [76]. The T790M mutation may
confer intrinsic (de novo or primary) or acquired (or secondary) resistance following first-
line treatment with other EGFR TKIs, such as gefitinib and afatinib [13]. Although it is
effective in treating locally advanced or metastatic NSCLC with T790M or other activating
EGFR mutations [77], resistance to osimertinib usually occurs due to a C797S mutation
approximately 10 months after treatment [14].

Olmutinib was approved in Korea in May 2016 for patients previously treated with an
EGFR TKI with locally advanced or metastatic NSCLC with an EGFRT790M mutation [78].
Olmutinib has been granted accelerated approval by the Korea Ministry of Food and Drug
Safety (MFDS) under the condition that a phase 3 clinical trial would be conducted post-
marketing. The US FDA also granted olmutinib a breakthrough therapy designation for
NSCLC in December 2015 [78]. The C797S mutation of EGFR also develops after treatment
with olmutinib [14].

Lazertinib was also conditionally approved in Korea in January 2021 for patients
with NSCLC with EGFRT790M mutations (Table 2). Lazertinib has been reported to have a
higher selectivity and fewer off-target effects than osimertinib [79]. The phase 1–2 study of
127 patients in 14 hospitals in Korea reported a tolerable safety profile with a median PFS of
9.5 months for patients with EGFRT790M-positive NSCLC versus 5.4 months for those with
EGFRT790M-negative NSCLC [80]. Resistance to lazertinib caused by the C797S mutation of
EGFR has also been reported [81].
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2.2.4. Fourth-Generation EGFR TKIs

Allosteric inhibitors are under development as fourth-generation EGFR TKIs to over-
come EGFRL858R, EGFRT790M, and EGFRC797S-mediated resistance [51]. BBT-176 is a first-
in-class fourth-generation EGFR TKI designed to inhibit EGFRC797S mutation that arises
following osimertinib treatment in patients with NSCLC and is in a phase 1–2 clinical trial
for advanced NSCLC [82]. The clinical trial was designed to use BBT-176 alone or in combi-
nation with cetuximab (NCT04820023). In preclinical studies, it showed strong antitumor
activity in xenografts with EGFRex19del/T790M/C797S and EGFRL858R/T790M/C797S, and its
efficacy was enhanced in combination with anti-EGFR antibody. BBT-176 was discovered
by the Korea Research Institute of Chemical Technology (KRICT) and has been licensed by
Bridge Biotherapeutics, with worldwide exclusive rights for further development.

EAI001 and EAI045 are non-ATP competitive inhibitors that bind allosterically to EGFR
with higher specificity for mutant EGFRT790M/C797S than for wild-type EGFR [83,84]. Another
mutant-selective EGFR allosteric inhibitor, JBJ-04-125-02, blocks the EGFRL858R/T790M/C797S

signaling both in vitro and in vivo and has antitumor activity against an NSCLC xenograft
tumor [85]. Further clinical benefits may be addressed in the future.

2.2.5. Multitargeting TKIs

Examples of multitargeting TKIs with inhibitory activity against EGFR include briga-
tinib and vandetanib. Brigatinib (Alunbrig®; AP26113) is a multi-kinase inhibitor that was
originally developed as a TKI against anaplastic lymphoma kinase (ALK) [86]. Brigatinib
further inhibits multiple tyrosine kinases including proto-oncogene tyrosine protein kinase
ROS, fms-related receptor tyrosine kinase 3 (FLT3), and insulin-like growth factor 1 recep-
tor (IGF1R), with IC50 values of 1.9 nM, 2.1 nM, and 24.9 nM, respectively [86]. A drug
screening against cells harboring EGFRC797S/T790M/ex19del identified that brigatinib also has
inhibitory activity against mutant EGFR including C797S/ex19del (IC50 = 39.9 nM), ex19del
(IC50 = 43.7), C797S/T790M/ex19del (IC50 = 67.2), and T790M/ex19del (IC50 = 150.3) [87].
Brigatinib received accelerated approval by the US FDA in 2017 for ALK-positive (ALK+)
metastatic NSCLC and was further approved in 2020 as a first-line treatment option for
patients with ALK+ metastatic NSCLC (Table 2).

Vandetanib (Caprelsa®; Zactima®; ZD6474) is an orally available RTK inhibitor targeting
vascular endothelial growth factor receptor 2/3 (VEGFR2/3), rearranged during transfection
(RET), and EGFR, which are important targets in thyroid cancer (Table 2) [88,89]. It was
the first FDA-approved medication for the treatment of advanced medullary thyroid cancer
(MTC) [90]. Importantly, its in vivo antitumor effects are indirectly mediated by reducing
the production of EGFR-induced angiogenic growth factor [89]. Vandetanib can prolong the
PFS of patients with aggressive MTC and can stabilize the disease [90]. Vandetanib has been
found to be effective in inducing in vivo tumor regression in TNBC PDX models with high
expression of RET or EGFR with concordant suppression of RET/EGFR phosphorylation and
MEK/ERK pathway activation [91]. Overexpression of RET was found in < 10% and 20–40%
of TNBC- and HER2-positive breast cancer samples, respectively.



Pharmaceuticals 2021, 14, 589 7 of 76

Table 2. Approved anti-EGFR TKIs.

First Appr Gen 1 EGFRi Known Targets
(IC50 or EC50 nM) Developer Indications Approved by the US FDA 2

2003 1st
Gefitinib

(Iressa®, ZD-1839) EGFR (37) [92] AstraZeneca
2003 Advanced NSCLC 3

2015 First-line treatment of metastatic
NSCLC

2004 1st
Erlotinib

(Tarceva®, OSI-774,
CP358774, NSC

718781)

EGFR (2) [58] OSI
Pharmaceuticals

2004 NSCLC
2010 Advanced NSCLC

2013 First-line therapy of
EGFR-mutant NSCLC [50]

2007 1st
Lapatinib
(Tykerb®,

GSK572016,GW2016)

HER2 (9.2), EGFR (10.8),
HER4 (367) [61] GlaxoSmithKline

2007
Advanced or metastatic breast
cancer in combination with
Xeloda (capecitabine)

2010 First-line combination treatment
of metastatic breast cancer

2011 -

Vandetanib
(Caprelsa®,

Zactima®, ZD6474,
ZD6)

VEGFR2 (40), VEGFR3 (110),
RET (130), EGFR (500)

[88,89]
AstraZeneca 2011 Advanced medullary

thyroid cancer

2011 1st
Icotinib

(Conmana,
BPI-2009H)

EGFR (5) [93] Beta Pharma
2011 Solely approved for NSCLC

by CFDA [50]

2014
First line treatment for advanced
NSCLC patients with EGFR
mutation by CFDA [65]

2013 2nd
Afatinib

(Gilotriff®,
BIBW2992)

EGFRL858R (0.4), EGFR (0.5),
HER4 (1), EGFRL858R/T790M

(10), HER2 (14) [94,95]

Boehringer
Ingelheim

2013 late stage NSCLC

2016 squamous cell carcinoma of
the lung

2018 EGFR mutation-positive NSCLC

2015 3rd
Osimertinib
(Tagrisso®,
AZD9291)

EGFRex19del/T790M (3),
EGFRL858R (9), EGFRex19del

(12), EGFRL858R/T790M (13)
[96]

AstraZeneca

2015 EGFRT790M
mutation-positive NSCLC

2017 Full approval

2018 First-line treatment for
EGFR-mutated NSCLC

2020
Adjuvant treatment of patients
with early-stage,
EGFR-mutated NSCLC

2016 3rd
Olmutinib

(OlitaTM, HM61713,
BI 1482694)

EGFRL858R/T790M (18) [78];
BTK (13.9), EGFR (17.6) [97]

Hanmi
Pharmaceutical 2016

Approved for locally advanced
or metastatic
EGFRT790M-mutated NSCLC by
the Korea MFDS 4 [78]

2017 -
Brigatinib

(Alunbrig®,
AP26113)

ALK (0.37), ROS1 (1.9), FLT3
(2.1) IGF1R (24.9),

EGFRC797S/ex9del (39.9),
EGFRex19del (43.7),

EGFRC797S/T790M/ex19del

(67.2) [86,87]

ARIAD
Pharmaceuticals

2017 Accelerated approval for
patients with ALK+ NSCLC

2020
First-line treatment option for
patients with ALK+
metastatic NSCLC

2017 2nd
Neratinib

(Nerlynx®,
HKI-272)

HER2 (59), EGFR (92) [70]
Puma

Biotechnology

2017 Extended adjuvant treatment of
early stage HER2+ breast cancer

2020 HER2+ metastatic breast cancer

2018 2nd
Dacomitinib
(Vizimpro®,
PF00299804)

EGFR (6.0), HER2 (45.7),
HER4 (73.7) [74] Pfizer 2018

First-line treatment of
EGFR-mutated metastatic
NSCLC

2021 3rd

Lazertinib
(Leclaza®,

YH25448,GNS-
1480)

EGFRex19del/T790M (1.7),
EGFRL858R/T790M (2),

EGFRex19del (5.3),
EGFRL858R (20.6), EGFR (76)

[79]

Genosco/Yuhan 2021
Approved for
EGFRT790M-mutated NSCLC by
the Korea MFDS

1 Gen, generation; 2 https://www.drugs.com/, accessed on 15 April 2021; 3 NSCLC, non-small cell lung cancer; 4 Ministry of Food and
Drug Safety.

https://www.drugs.com/
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3. Resistance to Anti-EGFR Therapeutics

Resistance of cancer to anticancer therapeutics is classified into two main categories:
intrinsic (de novo or primary) resistance and acquired (secondary) resistance [98]. Current
knowledge and management strategies have recently been described in detail [98]. Here,
we provide a brief overview of cancer resistance to anti-EGFR therapies, especially in TNBC.

TNBC has been demonstrated to have an intrinsic resistance to anti-EGFR therapies,
including both anti-EGFR antibodies and EGFR TKIs [31]. For example, a study with
20 TNBC cell lines reported that twelve (60%) were classified as refractory to most of the
24 EGFR TKIs tested [99]. In addition, acquired resistance to anti-EGFR monotherapy has
been reported in various types of cancers. For example, acquired resistance of NSCLC
to EGFR inhibitors (EGFRis) develops within 9 to 14 months of treatment [85]. From the
studies on NSCLC in which mechanisms of resistance to EGFRis have been extensively
studied, intrinsic EGFRi resistance of TNBC may be due to (1) EGFR-activating mutations
or amplification, (2) activation of bypass signaling pathways (e.g., MET amplification), or
(3) activation of downstream pathways [50,76,77,100,101]. Rewiring of signal transduction
pathways by dynamic signaling networks, including feedback loops and crosstalk, also
contributes to unexpected adverse effects or EGFRi resistance in cancer cells [102,103].

3.1. EGFR Mutations or Amplification

Mutations conferring EGFR TKI resistance were discovered several months after
EGFR TKI therapy [50,76,85,100,101]. T790M, the gateway mutation, was found in 50–65%
of patients who had acquired resistance to EGFR TKIs [104–106]. This mutation blocks
binding of first-generation TKIs to EGFR by increasing the binding affinity of EGFR to
ATP [106]. In addition, a tertiary mutation, EGFRC797S, was detected in 20–25% of patients
with NSCLC who received osimertinib [107,108]. C797 is the covalent binding site for all
known second-generation EGFRis, while the C797S point mutation blocks the covalent
binding of irreversible EGFR TKIs [107]. EGFRC797S-mediated resistance has also been
reported in patients treated with olmutinib [109], rociletinib [110], and nazartinib [111].

In contrast to NSCLC, the incidence rate of EGFR-activating mutations in TNBC
has been reported to be relatively low, at between 0% and 11.4% [112]. For example, a
mutational analysis identified EGFR mutations in only 8 of 70 TNBC samples, with four
samples demonstrating ex19 deletions, including 15-nucleotide deletions (del E746-A750)
in 2 samples and 24-nucleotide deletions (del S752-I759) within the kinase domain in other
samples. Furthermore, one sample showed inversion of the complementary strand of exon
19 and three samples showed exon 21 mutations, including one case of L858R and two cases
of T847I [113]. Although positive staining for EGFR does not correlate well with EGFR
mutations in these TNBC samples, the ex19del and exon 21 substitutions are commonly
found in NSCLC and are good predictors of EGFR TKI sensitivity [114]. Additionally,
no activating EGFR mutations were identified by tissue microarray and pyrosequencing
analysis in 493 TNBC cases [112]. In fact, EGFR mutations are very rare in patients with
TNBC in various populations. including American [115], Australian [116], British [117],
French [118,119], German [120], Korean [112,121,122], Chinese [113,123], Switzerland [124],
and Japanese [117,125,126] populations. Currently, intrinsic resistance of TNBC to anti-
EGFR monotherapies has been understood to be a consequence of activation of a bypass or
downstream signaling pathway(s) rather than due to EGFR mutations.

Accumulation of nuclear EGFR has been linked to drug resistance in TNBC [127–130].
Nuclear EGFR activates the transcription of genes involved in cell cycle progression, such
as cyclin D1 [131] and aurora kinase A (AURKA) [132]. Nuclear EGFR, independent of
canonical signaling pathway, has been reported to increase DNA repair in response to
cisplatin and ionizing radiation by increasing nuclear accumulation and activation of the
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) [133]. DNA-PKcs plays a
critical role in non-homologous end-joining DNA repair [134]. Interestingly, cetuximab
and gefitinib have been reported to inhibit nuclear accumulation of EGFR, leading to cyto-
plasmic retention and inhibition of DNA-PKcs [135,136]. In addition, EGFR has also been
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associated with two essential components of the homology-directed recombinational repair
(HDR), the RAD51 (S. cerevisiae) homolog (RAD51), and the breast cancer susceptibility
gene 1 (BRCA1). The EGFRi gefitinib decreased the protein stability of RAD51 and its
mRNA levels [137]. Erlotinib has also been demonstrated to decrease HDR by reducing
RAD51 foci and increasing cytoplasmic BRCA1 [138].

3.2. Activation of Bypass Signaling Pathways

Although anti-RTK antibodies block the binding of the cognate ligands to the ectodomain
of RTKs, leading to shutdown of downstream signaling pathways, agonist-like or partial
agonist effects of RTKs have also been reported [139–142]. This partial agonistic action
may induce autophosphorylation of RTKs that activate downstream signaling pathways,
eventually causing resistance to anti-RTK antibodies. For example, trastuzumab and
cetuximab exert agonistic effects on HER2 and EGFR, respectively [143–145]. In addition,
the agonistic action of an anti-RTK antibody may transactivate other RKTs, such as IGF1R
or VEGFRs [142].

Amplification or activation of other RTKs, such as mesenchymal epithelial transition
factor (MET, also known as hepatocyte growth factor receptor (HGFR)), HER2, IGF1R,
fibroblast growth factor receptor (FGFR), and AXL, might be a potential mechanism of
intrinsic resistance to anti-EGFR monotherapies in TNBC [15]. Amplification of these
RTKs drives activation of their downstream targets, such as the PI3K/AKT/mTORC1,
RAS/RAF/MEK/ERK, and JAK/STAT3 pathways [98,146–149].

MET overexpression has been found in various cancers in association with a poor prog-
nosis and confers resistance not only to therapies targeting EGFR, BRAF, and MEK, but also
to chemotherapies [148]. High expression of MET in clinical TNBC samples has been associ-
ated with poor overall survival (OS) and disease-free survival (DFS) [150,151]. A previous
study demonstrated that HGF, the ligand for MET, is secreted from fibroblasts and activates
MET in TNBC cells, leading to EGFRi resistance through EGFR–MET crosstalk [152]. The
fact that knockdown of EGFR in TNBC cells abolished the HGF-dependent TNBC cell
survival further supports the importance of EGFR–MET crosstalk in TNBC cells [152].
Activation of MET by HGF has also been reported to promote resistance to EGFRis in
TNBC cells [153].

HER2 has also been identified to induce drug resistance via activation of nuclear factor
E2-related factor-2 (NRF2) by a direct physical interaction, leading to induction of NRF2
target gene products, such as heme oxygenase 1 (HO1), cytochrome P450 3A4 (CYP3A4),
glutathione S-transferase A2 (GSTA2), glutathione S-transferase P1 (GSTP1), multidrug
resistance protein 1 (MDR1), multidrug resistance-associated protein 1 (MRP1), MRP4, and
MRP5 [154]. NRF2 is a master transcription factor that regulates the expression of genes in
oxidative stress responses, detoxification, and drug resistance [155].

Although HER3 has a catalytically inactive kinase domain, it serves as a signaling
platform by heterodimerizing other receptors [156]. Overexpression of HER3 or its ligand
heregulin (HRG, also known as neuregulin-1 (NRG1)), has been linked to EGFR TKI
resistance [157–159]. Additionally, an increase in HER3 was identified in patients with
TNBC treated with cetuximab or panitumumab [159]. A compensatory increase in and
activation of HER3 has been identified as a result of gefitinib treatment in breast cancer cells
through release of the AKT-mediated negative feedback loop [157]. Since AKT negatively
regulates Forkhead box O (FOXO) transcription factors that are responsible for transcription
of RTKs, such as HER3, IGF1R, FGFR2, and insulin receptor, blocking the PI3K/AKT
pathway results in the expression of these RTKs in TNBC cells [160]. Activated protein–
tyrosine kinase 2 (PYK2 or focal adhesion kinase 2 (FAK2)) has also been reported to inhibit
the binding of HER3 to neural precursor cell expressed developmentally downregulated
protein 4 (NEDD4) [161]. Since NEDD4 is an E2 ubiquitin ligase for HER3, disruption of
the HER3–NEDD4 interaction leads to blocking of the proteasome-dependent degradation
of HER3. In addition, EGFR inhibition induced upregulation of HER3, leading to EGFRi
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resistance, and increased HER3 was associated with a decreased response of patients with
TNBC to panitumumab or cetuximab in clinical studies [159].

Activated AXL has also been linked to intrinsic resistance to osimertinib [162,163].
Overexpression of AXL has been associated with acquired resistance to EGFRis in
NSCLC [164,165]. In the TNBC cell line MDA-MB-231, AXL was found to be overex-
pressed and physically associated with EGFR [166]. Additionally, AXL knockdown (KD)
reduced the EGFR-dependent activation of downstream signaling and the EGF-stimulated
migration of MDA-MB-231 cells.

Adaptive kinome reprogramming has been established as a mechanism of kinase
inhibitor resistance via upregulation of expression of different RTKs [167]. For example,
blocking the RAS/RAF/MEK/ERK pathway may lead to destabilization of the onco-
gene product v-myc avian myelocytomatosis viral oncogene homolog (MYC) through
a proteasome-dependent manner in TNBC cells (see Section 3.3.1. Activation of the
RAS/RAF/MEK/ERK pathway.) [168,169]. Since MYC-KD induces the expression of
the platelet-derived growth factor receptor beta (PDGFRβ), VEGFR2, and platelet-derived
growth factor subunit B (PDGFB) and increased tyrosine phosphorylation of PDGFRβ,
VEGFR2, HER3, and AXL in the TNBC cell line SUM159PT [168], the degradation of MYC
by kinase inhibition causes resistance of cancer cells to the inhibition.

3.3. Activation of Downstream Pathways

The components in the downstream pathways of RTKs, such as the RAS/RAF/MEK/ERK,
PI3K/AKT/mTORC1, and JAK/STAT3 pathways, have been studied as intervening nodes
either for monotherapy or combination therapy for TNBC cells [170–173]. However, the EGF-
induced activation of the RAS/RAF/MEK/ERK and PI3K/AKT/mTORC1 pathways persists
even in the presence of lapatinib in EGFRi-resistant TNBC cell lines, suggesting that EGFRi
resistance occurs through the bypassing activation of downstream survival pathways [99].

3.3.1. Activation of the RAS/RAF/MEK/ERK Pathway

Single nucleotide point mutations in codons 12 and 13 of KRAS lead to amino acid
substitutions including G12D, G12V, G12C, G12S, G12A, and G13D [36]. All of these
mutations impair KRAS GTPase activity, causing accumulation of the hyperactive GTP-
bound form of KRAS proteins [174]. This accumulation of active KRAS results in the
EGFR-independent constitutive activation of the RAS/RAF/MEK/ERK pathway.

Interestingly, only a small proportion of breast cancers have mutations in KRAS (5%),
HRAS (1%), and BRAF (2%) [175]. Nevertheless, hyperactivation of the RAS/RAF/MEK/ERK
pathway is associated with TNBC [176]. However, its clinical relevance remains to be
determined. The 3′UTR, which contains a polymorphism in a let-7 miRNA complemen-
tary site of a KRAS variant has been linked to TNBC clinical samples with altered gene
expression [177]. This variant was further associated with a low level of let-7 expression
in TNBC. Interestingly, a recent study demonstrated that TNBC has higher KRAS signal-
ing than ER-positive breast cancer [178]. In addition, patients with TNBC with enriched
KRAS signaling gene sets are associated with inflammation and a favorable tumor-immune
microenvironement, as well as improved DFS and OS [178].

Aberrant activation of the RAS/RAF/MEK/ERK pathway may induce stabilization of
MYC via ERK-dependent phosphorylation at S62 in TNBC cells [168]. Thus, p-MYC could
escape proteasomal degradation [169]. Furthermore, the RAS-mediated activation of the
PI3K pathway leads to blocking of the inhibitory phosphorylation of MYC at T58 by GSK3β,
which is negatively regulated by AKT. In addition, the phosphorylation and stability of the
beta-transducin repeat-containing protein 1 (β-TrCP1), which antagonizes the E3 ubiquitin
ligase FBXW7 to stabilize MYC [179], is also regulated by the PI3K/mTORC2 pathway in
TNBC cells [171]. Overexpression of MYC has been reported in TNBC and is associated
with drug resistance [180–182]. β-TrCP1 is also a F-box/WD repeat-containing protein
(FBXW) subfamily member and the substrate-recognition subunit of the SKP1-cullin 1-
F-box protein (SCF) ubiquitin–ligase complex [183–185]. β-TrCP1 plays roles as a both
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an oncogene and a tumor suppressor in a tissue-specific and cellular-context-dependent
manner. β-TrCP1-KD has been reported to suppress the growth of the MSL TNBC cell
lines HS578T and MDA-MB-231 [171]. Overexpression of β-TrCP is known to promote
tumorigenesis and is associated with various cancers such as breast, colorectal, gastric,
hepatoblastoma, melanoma, pancreatic, and prostate cancers [184,185]. β-TrCP binds to
phosphorylated DEP-domain-containing mTOR-interacting protein (DEPTO), a negative
regulator of mTORC1/2, leading to degradation of DEPTOR [186–188]. In contrast, β-TrCP-
KD results in DEPTOR accumulation, which causes reduced mTOR and S6K activities and
autophagy induction [187,188].

3.3.2. Activation of the PI3K/AKT/mTORC1 Pathway

The PI3K/AKT/mTORC1 pathway is a major effector of the EGFR. Three hotspot
PIK3CA (PI3K catalytic subunit)-activating mutations include E453K, E545K, and H1047R [189].
Mutation analyses of TNBC have found frequent mutations in PIK3CA (~10% to 24%) and
phosphatase and tensin homolog (PTEN) (~8%) [190,191]. In addition, high frequencies
of PTEN loss or inactivation (35%) and AKT3 amplification (28%) were also found in
TNBC [192]. PTEN is a lipid phosphatase that inhibits the activity of PI3K by removing
a phosphate from phosphatidylinositol (3,4,5) triphosphate to form phosphatidylinositol
(4,5) bisphosphate [193]. PTEN serves as a tumor suppressor, and loss of PTEN activates
the PI3K/AKT/mTORC1 pathway [194]. In fact, the PI3K/AKT/mTOR pathway has been
reported to be activated in approximately 60% of patients with TNBC [167].

PIK3CA mutations have also been associated with resistance of TNBC cell lines to
chemotherapy [195]. In addition, activating PIK3CA mutations in basal-like breast cancer
were found to induce paracrine activation of AREG/EGFR/ERK signaling [196]. High
levels of both AREG mRNA and protein were correlated with the mutation status of
PIK3CA in breast cancer cell lines.

Among three isoforms (AKT1, AKT2, and AKT3), AKT3 has been identified as over-
expressed both at the DNA and mRNA levels in TNBC [197]. In addition, high levels of
p-AKT (T308) and p-AKT (S473), markers for the PI3K/AKT activation, are associated
with TNBC [192].

3.3.3. Activation of the NF-κB Pathway

Aberrant activation of the nuclear factor kappa light chain enhancer of activated B cells
(NF-κB) pathway also confers intrinsic and acquired resistance [198]. Furthermore, NF-κB
is constitutively active in many type of cancers [199]. The activity of NF-κB is negatively
regulated by inhibitor of NF-κB (IκB) through a complex formation. The dissociation of IκB
is controlled by the IκB kinase (IKK) complex-induced phosphorylation and subsequent
degradation of p-IκB [199–201]. EGFR-NF-κB crosstalk in cancer cells has previously
been identified, showing that (1) EGFR directly or indirectly activates NF-κB in human
various cells, including ER-negative breast cancer cells [202–210], while (2) the IKK/NF-κB
pathway activates EGFR signaling [211–214]. In addition, activated NF-κB confers EGFRi
resistance. Inhibition of NF-κB consistently sensitizes cancer cells to EGFRis [202,215–219].
For example, NF-κB activates the expression of the anti-apoptotic proteins BCL2-like
protein 1 isoform 1 (BCL2L1, also known as BCL-xL) and BCL2-related protein A1 (BCL2A1)
in a Mucin 1 carboxy terminal subunit (MUC1-C)-dependent manner [220,221]. Notably,
a high expression level of MUC1-C has been reported in TNBC [222,223]. Although the
IKK/NF-κB pathway has been recognized as a potential therapeutic target for TNBC
treatment [209,217,224], further studies are needed to determine the effects of IKK/NF-
κB inhibition on EGFRi resistance in TNBC. Our group very recently identified an IKK
inhibitor as a sensitizer of EGFRi in TNBC cells (You et al., manuscript in preparation).

3.3.4. Activation of the c-Jun N-Terminal Kinase (JNK) Pathway

The activation of JNKs has been correlated with EGFR expression in TNBC [225] and
leads to increased c-Jun mRNA associated with a decreased DFS among patients with
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TNBC [226]. The JNK pathway has been linked to increases in invasiveness, angiogenesis,
and metastasis; cancer stem cell (CSC) phenotype; and acquired resistance to EGFR/HER2-
targeted therapies [226–230]. Of interest, the EGFR and HER2 dual inhibitor lapatinib has
been reported to induce increased p-c-Jun and p-JNK in the TNBC cell line MDA-MB-231,
resulting in resistance of these cells to lapatinib [231] (see Section 4.1.6. Combination with
JAK Inhibitors).

3.3.5. Activation of the Notch Pathway

The Notch signaling pathway is composed of single-pass transmembrane Notch re-
ceptors in the signal receiving cells and their ligands jagged and delta-like proteins in the
signal sensing cells [232,233]. Dysregulation or activation of the Notch signaling pathway
is a hallmark for TNBC, with a strong correlation with aggressive clinicopathological fea-
tures [232]. Four Notch receptors have been associated with tumor growth (Notch1, Notch2,
and Notch3), CSC regulation (Notch1, Notch2, Notch4), tumor invasion and metastasis
(Notch1, Notch2, Notch3, Notch4), angiogenesis (Notch3), and drug resistance (Notch1
and Notch3) [232,233]. Inactivation of Notch3, either by knockdown or by raft depletion,
has been reported to sensitize the TNBC cell lines BT549 and MDA-MB-468 to gefitinib by
enhancing dephosphorylation of EGFR at Y1173 and its intracellular retention, preventing
its membrane localization into lipid rafts [234]. The dephosphorylation of p-EGFR (Y1173)
is promoted by the Notch3-KD-induced interaction of EGFR with the protein tyrosine phos-
phatase H1 (PTPH1). These results suggest that reducing the EGFR cell surface expression
may prevent survival signaling to enhance drug-induced cell death [234].

3.4. Others Resistance Mechanisms
3.4.1. Expression of Mutant p53 (mtp53)

Mutations of the tumor suppressor p53 are well established as being associated with
approximately 50% of human cancers [235–239]. A panel of TNBC cell lines has been iden-
tified to express mutant p53 (mtp53) [240], which is commonly found in TNBC [120,192].
For example, one study reported that 297 of 450 (66.0%) breast cancer clinical samples
contained p53 mutations. More frequent p53 mutations were found in TNBC (74.8%) than
in HER2-positive breast cancer (55.4%) [241]. In addition, a separate study conducted a
mutation analysis of 104 primary TNBC cases and revealed that approximately 85% had
somatic p53 mutations [190]. Mutations of p53 often result in stabilization and overexpres-
sion of mtp53 protein [240], and overexpression of mtp53 has been associated with cancer
resistance to anticancer drugs [242,243].

One plausible mechanism of EGFR overexpression in TNBC is the oncogenic
mtp53 [244–246]. The activity of EGFR is regulated at multiple levels, including endosomal
recycling. Endocytosis occurs to remove part of the plasma membrane including associ-
ated proteins, such as EGFR, and subsequently to form internalized membrane vesicles
(early endosomes). It is a very active process, such that the entire plasma membrane is
endocytosed at least once per hour [247]. Upon ligand binding, the ligand–EGFR com-
plex is internalized by endocytosis and the early endosome forms multivesicular bodies
(MVBs). MBVs now may follow three alternative pathways: (1) fuse with the lysosome to
degrade their cargo; (2) go back to the plasma membrane to recycle their cargo; (3) fuse
with the plasma membrane to release intralumenal vesicles into the extracellular space
as exosomes [248–250]. P53R273H enhances recycling of EGFR to the plasma membrane
in combination with integrin α5β1, leading to constitutive activation of EGFR–integrin
signaling [251]. Mtp53 indirectly promotes the interaction of the Rab coupling protein
(RCP) with α5β1 in the EGFR–integrin complex, while the presence of RCP has been
associated with enhanced recycling of the receptor complex [251,252].

In addition, mtp53 upregulates EGFR expression through suppression and upregu-
lation of miR-27a and miR-155, respectively [245,246]. Furthermore, p53R273H has been
demonstrated to bind and suppress the promoter of miR-27a, which targets the 3′-UTR
of EGFR [246]. In the TNBC cell line MDA-MB-468, stable expression of miR-27a mimics
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or p53 shRNA reduced the EGFR levels, with decreased colony formation in vitro and
reduced the volume of xenograft tumors in vivo. The mtp53s, including R248Q, R282W,
and R249S, upregulate the expression of miR-155 by relieving p63-mediated transcriptional
suppression [245]. MiR-155 targeted the ZNF652, a transcriptional repression of EGFR. The
ZNF652 level was consistently reduced and inversely correlated with the miR-155 level in
TNBC cell lines with mtp53s.

3.4.2. Overexpression of Anti-apoptotic Proteins

Upregulation of anti-apoptotic proteins confers drug resistance in many cancers [253–255].
Two major anti-apoptotic protein family members tightly control both the intrinsic and
extrinsic apoptosis pathways: (1) inhibitors of apoptosis proteins (IAPs) control the activity
of caspases; (2) B-cell lymphoma 2 (BCL2) family proteins regulate the integrity of the
mitochondrial outer membrane [253].

The anti-apoptotic members of BCL2 family proteins include BCL2, BCL2L1 (BCL-xL),
BCL2-like 2 (BCL2L2, BCL-w), and myeloid cell leukemia 1 (MCL1) [256]. High expression
levels of BCL2 are also associated with a poor clinical prognosis of TNBC [257]. A human
tumor microarray analysis demonstrated that TNBC tumors express EGFR and co-express
BCL-xL or both BCL-xL and BCL2 [258]. MCL1 has been determined to be commonly
overexpressed in TNBC and is associated with a poor clinical prognosis. MCL1 is further
stabilized by the overexpressed MUC1-C-mediated activation of the RAS/MEK/ERK and
PI3K/AKT pathways in TNBC cells [259]. MUC1-C has additionally been determined to
activate the transcription of BCL2A1 in an NF-κB-dependent manner in TNBC cells [220].
Recently, upregulation of MCL1 by elongator (ELP) complex has been reported to mediate
resistance to the EGFRi erlotinib [260]. Depletion of ELP proteins, such as ELP3, ELP4,
ELP5, and ELP6, sensitized TNBC cells to erlotinib, while ELP4-KD reduced expression of
MCL1 in the TNBC cells in the presence of erlotinib.

3.4.3. Contributions of Phosphatases

In human genomes, 189 known and predicted protein phosphatases have been iden-
tified [261]. Protein phosphatases antagonize the action of protein kinases by hydrolysis
of phosphate groups from target proteins. Both protein kinases and phosphatases work
as key regulators of various cellular processes in normal and disease conditions. Limited
number of studies reported the potential roles of protein phosphatases in EGFRi resistance
in TNBC.

The protein tyrosine phosphatase non-receptor type 12 (PTPN12) has been known as
a tumor suppressor in TNBC [262]. Loss of PTPN12 function is frequently found in human
TNBC, leading to activation of HER2, EGFR, and PDGFRβ pathways. These results suggest
a rationale to target multiple RTK pathways in TNBC [262]. In addition, the activation or
compensation of PTPN12 activity may also overcome EGFRi resistance in TNBC.

The SRC homology region 2-containing protein tyrosine phosphatase (SHP2; also
known as PTPN11) has been demonstrated to contribute adaptive resistance to ERK sig-
naling inhibition in TNBC [263]. In fact, SHP2 regulates both upstream and downstream
targets of RTKs, including EGFR [264]. Silencing of SHP2 by shRNA suppressed the
RAS/RAF/MEK/ERK and PI3K/AKT pathways in TNBC cells. In addition, SHP2 deple-
tion reduced expression of RTKs such as EGFR, FGFR, and MET, leading to suppression of
TNBC cell proliferation, anchorage-independent growth, and mammosphere formation.
Although small molecule inhibitors of SHP2 have been developed as potential therapeutics
for treatment of cancers including TNBC [265–267], the efficacy of the combination of these
inhibitors with EGFRi remains to be determined.

3.4.4. Overexpression of the Heat Shock Protein 90 (HSP90)

As a molecular chaperone, HSP90 interacts with and regulates the stability and func-
tion of over 200 client proteins, including EGFR, HER2, ALK, MET, and AKT [268–271].
Since overexpression of HSP90 has been evidenced in cancers, including breast and cer-
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vical cancers and osteosarcoma, HSP90 inhibitors (HSP90is) show therapeutic effects by
suppressing multiple oncogenic pathways that are activated by its client proteins. For
example, the HSP90i geldanamycin reduced the level of RPS6 in a proteasome-dependent
manner [272]. Notably, RPS6-KD suppressed the proliferation of TNBC cells over time [15].
However, the efficacy of HSP90is has been limited in patients with TNBC due to both
intrinsic and acquired resistance [273]. To the best of our knowledge, the potential of
combined treatment of HSP90is and EGFRis has not been tested yet.

3.4.5. Overexpression of the Estrogen Receptor Alpha (ERα) Variant

A novel variant of ERα with a molecular weight of 36 kDa (ERα36 or ER36) has been
identified [274]. ERα36 is an alternatively spliced product of ERα46 that is transcribed by
an alternative promoter located in the first intron of the ERα66 gene. ERα36 differs from
the canonical ERα66, as it lacks both transcription activation domains (activation factor
(AF)-1 and AF-2) but retains the DNA-binding domain and partial ligand-binding domain.
ERα36 is involved in mammary tumor progression and resistance to drug treatment due to
its ability to activate non-genomic signaling pathways such as the PI3K/AKT/mTORC1
and RAS/RAF/MEK/ERK pathways [275,276]. The primary location of ERα36 is the
cytoplasm, in which it is associated with the plasma membrane to induce signal transduc-
tion [277]. A positive feedback loop of ERα36/EGFR has been identified in TNBC cells:
(1) in response to estrogen, ERα36 physically associates with the EGFR/v-src avian sarcoma
(Schmidt-Ruppin A-2) viral oncogene homolog (SRC)–SRC homology 2 domain-containing-
transforming protein C (SHC) complex to induce phosphorylation of EGFR (Y845) and
SRC (Y416); (2) EGFR-induced signaling activates the transcription of ERα36 through an
AP-1 site in its promoter; (3) ERα36 prevents EGFR protein from proteasome-dependent
degradation [278]. In addition, tamoxifen, a selective ER modulator [279], has been iden-
tified to enhance the stemness and metastasis of breast cancer by upregulating aldehyde
dehydrogenase 1A1 (ALDH1A1) transcription in cancer cells through direct binding to and
activation of ERα36 [280].

3.4.6. Overexpression of Adenosine Diphosphate Ribosylation Factor (ARF)

ARF1 has been associated with resistance to anticancer drugs in various cancers [281–285].
ARF1 is a member among 29 human ARF family members that belong to the small GTPase
RAS superfamily [286,287]. GTP binding to ARF1 switches its conformation to an active
one from the GDP-bound inactive form [286,287]. ARF1 is a key regulator that maintains
the structure and function of the Golgi apparatus. Recently, ARF1 overexpression has
been reported to promote resistance of TNBC cells to the EGFRi gefitinib [288]. Of inter-
est, treatment of gefitinib to MDA-MB-231 cells induces increased ARF1 activity through
its enhanced recruitment of AXL. ARF1 is also involved in the gefitinib-induced activa-
tion of ERK1/2, AKT, and SRC and inhibits gefitinib-induced EGFR internalization and
subsequent degradation. Pharmacological inhibition of ARF1 activity potentiates gefitinib-
mediated anticancer activity in MDA-MB-231 cells [288] (see Section 4.2.4. Combination
with ARF Exchange Activity Inhibitors (ARFis)).

3.4.7. Dysregulation of Reactive Oxygen Species (ROS)

ROS are important intracellular second messengers [289], and dysregulation of ROS is
associated with anticancer drug resistance [290–292]. Specifically, ROS inactivate SHP2 by
transient oxidation of the catalytic cysteine residue, leading to EGFR transactivation [293].
ROS also contribute to anticancer drug resistance through metabolic deregulations, in-
cluding increased drug efflux, altered oncogenes or tumor suppressors, drug inactivation,
epithelial–mesenchymal transition (EMT), and enhanced DNA repair [292].

3.4.8. Expression of the Cluster of Differentiation 44 (CD44)

CD44 is a type 1 transmembrane glycoprotein that serves as a receptor for hyaluronic
acid [294–296], type 2 and IV collagens [297,298], E-selectin [299,300], fibronectin [301],
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matrix metalloproteinase 9 (MMP9) [302], and osteopontin (OPN) [303]. CD44 is also
known as extracellular matrix receptor type 3 (ECM-III) [304], Hermes antigen [305],
homing cell adhesion molecule (HCAM) [306], lymphocyte homing receptor [307], and
phagocytic glycoprotein-1 (Pgp-1) [304]. The biology of CD44 is extremely complex, and
more than 29 isoforms from a single gene consisting of 19 exons have been described in
humans [308]. The shortest standard form (CD44s) is encoded by the 10 constant exons,
whereas CD44 variant isoforms (CD44v) are encoded by alternatively spliced mRNAs
containing the 10 constant exons and any combination of an additional 9 variant exons [309].

CD44 is involved not only in tissue tropism of stem cells and their exosomes [248,310–312],
but also in tumor initiation and progression [313]. CD44 has also been established as
a potential CSC marker that contributes to cancer proliferation, metastasis, and drug
resistance [314]. The expression of CD44 has been correlated with the EGFR level in a
variety of cancer, and their expression is positively regulated reciprocally [315]. CD44
also serves as a co-receptor for RTKs to stimulate downstream signaling pathways [309].
Recently, siRNA-based CD44s-KD has been reported to sensitize TNBC cells to cetuximab,
with enhanced EGFR degradation and downregulation of p-AKT and p-ERK [316].

In addition, OPN has been identified as a biomarker for predicting responsiveness to
the EGFR TKI, erlotinib, in two TNBC cell lines, MDA-MB-231 and MDA-MB-468 [317].
Engineered cell lines that overexpress OPN are more sensitive to erlotinib-mediated growth
inhibition than parental cells. This might be dependent on OPN binding to integrin and
provoking activation of EGFR kinase activity [318]. Consistent with these findings, OPN
has been associated with poor outcomes among patients with breast cancer [319–323].

3.4.9. Overexpression of Annexin A2 (ANAX2)

ANXA2 is a member of the annexin family of calcium-dependent phospholipid bind-
ing proteins containing an annexin repeat [324,325]. ANXA2 has been reported to play an
important role in cancer cell proliferation, metastasis, and drug resistance [326]. It also
contributes to EGFR dimerization and endocytic recycling [327,328]. Recently, knockdown
of ANXA2 in the TNBC cell line MDA-MB-231 has been shown to increase gefitinib sensi-
tivity [324]. In contrast, overexpression of ANXA2 induces resistance to gefitinib in MCF7
breast cancer cells. Phosphorylation of ANXA at Y23 has been further negatively correlated
with gefitinib sensitivity in TNBC cells [324].

3.4.10. Induction of Autophagy

Autophagy is the controlled removal of unnecessary or dysfunctional components
from cells, enabling the recycling of cellular components [329]. Although autophagy has
tumor-suppressive roles in normal cells by removing damaged organelles [330], it also
protects cancer cells from cell death [331,332]. Mounting evidence further supports the idea
that drug-induced autophagy causes resistance of cancer cells, and combined inhibition of
autophagy is a plausible strategy to overcome this resistance [331–333].

EGFR TKIs and neutralizing antibodies have been shown to induce autophagy in
cancer cells [334–337]. In addition, the EGFR TIK-induced accumulation of the inactive
EGFR in endosomes may play a role in autophagy induced by EGFR TKIs [338]. However,
more details remain to be determined to understand the function of autophagy in cancer.
A recent study suggested that EGFRi-induced autophagy has a pro-survival role in TNBC
cells, while combined inhibition of autophagy with EGFRis confers anticancer effects
in TNBC cells [339] (see Section 4.1.11. Combination with Rho-Associated, Coiled-Coil-
Containing Protein Kinase (ROCK) Inhibitors).

3.4.11. Contribution of Secretomes

Secretomes, including cytokines, growth factors, extracellular nucleic acids, and
extracellular vesicles (EVs), either from cancer cells or from stromal cells, confer drug
resistance [147,340–343]. For example, HGF was identified as a resistant growth factor in a
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co-culture screening of 23 stromal cell types with 45 cancer cell lines against 35 anticancer
drugs [344]. NRG1 was also shown to drive the resistance of cancer cells to PKIs [147].

IL-25 (IL-17E), a member of the IL-17 family, binds and activates the IL-17RA/IL17RB
heterodimer through direct biding to IL-17B [345,346]. The IL-25/IL17RB pathway has
contributed to the resistance of TNBC to EGFRis [347]. IL-25 activates the EGFR path-
way in TNBC cells with resistance to the EGFRi gefitinib. IL-25 also activates PYK2 and
SRC, leading to the SRC-dependent activation and nuclear translocation of p-STAT3 and
p-EGFR [347].

EVs collectively refer to the membranous vesicles released from living cells, such as
exosomes, microvesicles, and apoptotic bodies [248,348]. Tumor-derived EVs have been
demonstrated to mediate drug resistance via multiple mechanisms. For example, EVs can:
(1) reduce the accumulation of anticancer drugs inside cancer cells; (2) traffic functional
cargo, activating pro-survival or anti-apoptotic signals in cancer cells; (3) suppress immune
reactions in cancer microenvironments; (4) enhance EMT and induce CSC-like properties
(reviewed in [349]). In addition, tumor-derived EVs from patients’ body fluids could
be used for liquid biopsy to diagnose disease status and drug sensitivity [350]. More
importantly, tumor-derived EVs may serve as therapeutic targets, drug delivery vehicles,
or therapeutics themselves [350].

Taken together, the understanding of the complicated interplay of autocrine and
paracrine signaling occurring between tumor cells and normal cells in their associated
microenvironment will provide valuable information to develop more effective clinical
strategies to combat drug resistance.

4. Combination Strategy for Overcoming EGFRi Resistance in TNBC

Combination therapies have been proven to overcome resistance to EGFR TKIs in
clinical settings for NSCLC [351–363]. A variety of combination strategies has been explored
preclinically in TNBC cells (Table 3). Among the 73 publications analyzed, 60 reported the
preclinical results of combinatorial therapies. Combination approaches were explored as
early as 2004 with small-molecule EGFR TKIs and the anti-EGFR antibodies [364]. with
a growing number of small-molecule PKIs, combination strategies have been applied to
target multiple cellular pathways. We briefly summarize EGFR-potentiating strategies
according to the target categories.

4.1. PKIs

Protein kinases play pivotal roles in the pathogenesis of various diseases, including
cancer. A plethora of PKIs targeting such kinases are under development to be used for
therapeutic interventions. As of 23 December 2020, sixty-two PKIs have already been
approved by the US FDA [49]. In addition, three more PKIs, including tepotinib (Merck),
trilaciclib (G1 Therapeutics), and umbralisib (TG Therapeutics), have been approved by the
US FDA as on 2 March 2021(PKIDB: a curated, annotated, and updated database of protein
kinase inhibitors in clinical trials, https://www.icoa.fr/pkidb/, accessed on 2 March
2021) [457,458]. The FDA-approved PKIs that have been tested for efficacy in combination
treatment with EGFRis in TNBC cells are shown in Table 4. Notably, most anti-EGFR
therapeutics used in combination are also FDA-approved EGFR TKIs or antibodies.

https://www.icoa.fr/pkidb/
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Table 3. Potentiating EGFR inhibition by combination strategies.

Year EGFRi

Combination Drug

TNBC Cells Molecules Affected by
Combination

Combination Effects

Ref
Name Known Target

(IC50, nM) Level Effects

2004 Gefitinib Cetuximab EGFR MDA-MB-468 - Cell - Reduced cell proliferation [364]

2008 Cetuximab Cisplatin DNA MDA-MB-468 Down: EGFR
Up: BRCA1 Cell - Synergistically induced apoptotic cell death

- Depleted EGFR protein [365]

2009 Gefitinib Carboplatin +
Docetaxel

DNA
Microtubule

BT20
HCC9137 - Cell - Reduced cell viability

- Induced G2/M cell cycle arrest [366]

2011 Erlotinib Gemcitabine Antimetabolite
BT-549

MBA-MB-231
MDA-MB-468

- Cell - Synergistically reduced cell viability [11]

2011 Lapatinib Sirolimus
(Rapamycin) mTOR (~0.1) [367]

MDA-MB-231
MDA-MB-468

Down: p-AKT (S473), p-EGFR
(Y1173), p-ERK1/2 (T202/Y204), p-S6

(S235/236)
Cell

- Reduced survival of MDA-MB-231 and
MDA-MB-468 but only induced apoptosis of
MDA-MB-468 with a concomitant increase of
cleaved caspase 3
- Differentially affected p-eIF4E (S209) levels in
MDA-MB-468 (down) versus in MDA-MB-231 (up)

[368]

MDA-MB-231
MDA-MB-468

Down: Ki67
Up: Caspase-3 Xeno 1

- Inhibited growth of xenograft tumors of both cells
with decreased Ki67 in both tumors and increased
apoptosis in MDA-MB-468 tumor

2011 Cetuximab IL-2 or IL-15 NK cells IIB-BR-G
IIB-BR-G MT

Up: IFN-γ from NK cells in a
co-culture Cell - Increased ADCC by NK cells [369]

2012 Cetuximab IL-2 or IL-15 NK cells IIB-BR-G
IIB-BR-G MT

Up: CD107a in NK cells in a
co-culture

Cell
Ex vivo

Xeno

- Increased ADCC by NK cells
- Reduced tumor volume in xenografts with an
increase in the number of infiltrating NK cells in the
tumors
- No effect on tumor proliferation in xenografts

[370]

2012 Lapatinib
Veliparib

(NSC 737664,
ABT-888)

PARP2 (2.9), PARP1
(5.2) [371]

MDA-MB-231
MDA-MB-453
MDA-MB-468

Down: nuclear BRCA1, nuclear EGFR
Up: cleaved caspase-3, cleaved

caspase-9, γ-H2AX
Cell - Reduced colony formation

- Induced apoptosis [372]

MDA-MB-231 - Xeno - Reduced tumor growth

2012 Gefitinib CAT-SKL 2 - MDA-MB-468
SUM149PT Down: p-EGFR (Y1068) Cell - Reduced cell proliferation [373]
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Table 3. Cont.

Year EGFRi

Combination Drug

TNBC Cells Molecules Affected by
Combination

Combination Effects

Ref
Name Known Target

(IC50, nM) Level Effects

2013 Cetuximab Dasatinib + Cisplatin

Dasatinib: ABL1
(0.6), SRC (0.8) [374];

KITD816V (37), KIT
(79) [375]

BT20
BT549

MDA-MB-231
SUM102PT
SUM149PT
SUM229PE

Down: p-AKT (S473), p-EGFR (Y845),
p-EGFR (Y1068), p-EGFR (Y1173),

p-ERK (T202/Y204)
Up: cleaved caspase-9

Cell - Induced apoptosis
- Reduced cell growth and migration [376]

2013 Gefitinib PI-103

DNA-PK (2), PI3Kα
(8), mTORC1 (20),

PI3Kδ (48), mTORC2
(83), PI3Kβ (88),

PI3Kγ (150) [377]

MDA-MB-
468SUM149PT

Down: p-AKT (S473), BCL2, p-ERK
(Y204.Y187), MCL1, XIAP

Up: caspase-3/7
Cell

- Reduced cell viability and induced apoptosis in the
BL subtype (MDA-MB-468 and SUM149PT) but not
in the MSL subtype (HS578T and MDA-MB-231)

[378]

2013 Lapatinib
Bortezomib

(Velcade®, PS-341,
LDP-341, LM341)

20S proteasome (Ki =
0.6) [379]

HS578T
MDA-MB-231

Down: BCL2
Up: BAX, Cleaved Caspase-3,

Cleaved PARP
Cell - Reduced colony formation

[380]

MDA-MB-231 Down: P65
Up: BAX Xeno - Reduced tumor growth

2013 Panitumumab mAb111 EGFR
BT549 Down: EGFR Cell - Reduced in vitro invasion of BT549- Reduced

colony formation of HCC70 [381]

HCC70 - Xeno - Reduced tumor volume

2014 Erlotinib PHA-665752 MET (9), RON (68),
FLK1 (200) [382]

BT20
CRC029

MDA-MB-468
- Cell - Reduced cell viability [150]

2014 Gefitinib
Tepotinib

(Tepmetko®,
EMD1214063)

MET (4) [383] MDA-MB-468 Down: p-AKT (T308), p-ERK
(T202/Y204), p-RPS6 (S235/236) Cell - Reduced growth and colony formation [153]

2014
Duligotuzumab
(MEHD7945A)

Ipatasertib
(GDC-0068, RG7440)

AKT1 (5), AKT3 (8),
AKT2 (18) [384]

HCC70
MDA-MB-468

Down: p-EGFR (Y1068), p-ERK
(T202/Y204), p-HER3 (Y1289),

p-RPS6 (S240/244)Up: p-AKT (T308)
Cell - Reduced cell proliferation

[159]

Pictilisib
(GDC-0941, RG7321)

PI3Kα (3), PI3Kδ (3),
PI3Kβ (33), PI3Kγ
(75), mTOR (Ki =

0.58 µM) [385]

Down: p-AKT (S473), p-AKT (T308),
p-EGFR (Y1068), p-ERK (T202/Y204),
p-HER3 (Y1289), p-RPS6 (S240/244)

Xeno
PDX

- Reduced tumor growth of HCC70 and PDX
- Reduced Ki67 index in xenograft tumor

2014 Gefitinib Temsirolimus mTOR (1760) [386]
BT20

MDA-MB-468
MDA-MB-231

Down: p-eIF4B (S422) Cell
- Reduced cell growth, colony formation, and cell
viability
- Reduced cap-dependent translation

[387]
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Table 3. Cont.

Year EGFRi

Combination Drug

TNBC Cells Molecules Affected by
Combination

Combination Effects

Ref
Name Known Target

(IC50, nM) Level Effects

2014 Gefitinib SKI II
(SphK-I2) SPHK (500) [388]

HS578T
MDA-MB-231
MDA-MB-436
MDA-MB-468

-
Cell - Reduced cell proliferation

[389]
Xeno - Reduced the growth of MDA-BM-468 xenograft

tumor

2015 Gefitinib SU11274 MET (10) [390] HS578T
MDA-MB-231

Down: p-AKT (S473), RPS6, p-RPS6
(S235/236) Cell - Reduced cell viability and colony formation

- No synergistic effect on cell cycle distribution [15]

2015 Gefitinib Selumetinib
(AZD6244)

MEK1 (14) [391],
MEK2 (KD = 530)

[392]

HCC70
MDA-MB-231
MDA-MB-468

SUM149PT
SUM159PT

Down: p-AKT (S473), p-ERK
(T202/Y204) Cell - Induced G0/G1 cell cycle arrest and apoptosis in

SUM149PT [393]

2015 Gefitinib Brefeldin A

ARF purified from
bovine brain (2 µM)
[394], ARF1 (10 µM)

[395]

MDA-MB-231 Down: p-AKT, EGFR, p-ERK1/2,
HER2, p-SRC Cell - Induced cell death [288]

2015 Lapatinib Imatinib
(Gleevec®)

PDGFR (100), KIT
(100), ABL1 (600)

[396]

HCC1806
MDA-MB-231

SUM159PT
Down: HOTAIR, β-catenin, MYC Cell - Reduced cell viability

[397]

MDA-MB-231 - Xeno - Reduced tumor growth

2015 Gefitinib Ad-wtp53 - MDA-MB-468
Down: p-AKT (S473)

Up: cleaved caspase-3, caspase-9
Cell - Inhibited cell growth and colony formation

- Induced apoptosis and G2/M arrest [398]

Xeno - Reduced tumor growth

2016 Erlotinib
Glesatinib

(MGCD265)

DDR2 (1.9), AXL
(5.3), MERTK (7.8),

PDGFRα (14),
VEGFR3 (FLT4) (23),
FLT3 (31), MET (46),
VEGFR2 (KDR) (66),
PDGFRβ (69) [399]

Primary TNBC Down: p-ERK1/2 (T202/Y204),
p-RPS6 (S240/244) PDX 3 - Reduced tumor growth [400]
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Table 3. Cont.

Year EGFRi

Combination Drug

TNBC Cells Molecules Affected by
Combination

Combination Effects

Ref
Name Known Target

(IC50, nM) Level Effects

Crizotinib
(PF-02341066)

MET (11) [401],
ROS1 (Ki < 0.025),

ALK (Ki < 0.07), LTK
(2.7), FER (3.3), FES
(6), PTK2B (FAK2)

(14), TNK2 (17),
PTK2 (FAK) (17),
TRKB (23), TRKA

(24), TRKC (46), FRK
(PTK5) (53),

EGFRL858R/T790M

(53), EGFRT790M (56)
[402]

2016 Gefitinib or
Erlotinib

Cetuximab or
Panitumumab EGFR MDA-MB-468

SUM1315MO2 - Cell - Induced G1 cell cycle arrest [403]

2016 Gefitinib GSK269962A
ROCK1 (1.6),

ROCK2 (4), MSK1
(49), RSK1 (132) [404]

HCC1806 - Xeno - Reduced tumor growth
[405]

MDA-MB-231 Down: CDK2, Cyclin A, p27, p-RB
(S807/811) Cell - Inhibited colony formation

- Reduced S phase and increased G2 cell cycle arrest

2016 Cetuximab Ixabepilone Microtubule SUM159PT
Down: LC3B, p62 Cell - Reduced mammosphere formation efficiency [406]

- Xeno - Reduced tumor growth

2017
Cetuximab
or panitu-
mumab

Cisplatin or
epirubicin SUM1315MO2 - Cell

- Induced G1 cell cycle arrest compared to a
DNA-damaging agent alone that induced G2 cell
cycle arrest

[407]

2017 Lapatinib JNK-IN-8
(JNK Inhibitor XVI)

JNK3 (1), JNK1 (4.7),
JNK2 (18.7),

KITV559D/T670I (56),
KITV559D (92) [408]

HCC1569
MDA-MB-231
MDA-MB-436

- Cell - Induced apoptosis [231]

MDA-MB-231 - Xeno - Reduced tumor growth

2017
Erlotinib or

gefitinib

PF573228 FAK1 (4) [409]

BT20
HCC38

HCC1143
HCC1937

MDA-MB-468

Down: p-AKT (S473), p-AKT (T308),
HER3, p-S6K (T389), p-STAT3 (Y705) Cell - Reduced cell proliferation and colony formation

[410]

PF431396 FAK1 (2), PYK2 (11)
[411] MDA-MB-468 - Xeno - Reduced tumor growth
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Table 3. Cont.

Year EGFRi

Combination Drug

TNBC Cells Molecules Affected by
Combination

Combination Effects

Ref
Name Known Target

(IC50, nM) Level Effects

2017 Gefitinib
Fingolimod

(Gilenya®, FTY720) S1PR (0.033) [412]

HCC1806
MDA-MB-468 Down: CD44, IGFBP3 Cell - Reduced cell proliferation

[413]HCC1806
MDA-MB-468 Down: p-EGFR (Y1068), Ki67

Up: cleaved caspase-3
Xeno - Inhibited tumor growth and increased mouse

survival
4T1 Syn 4

2017 Gefitinib

3-methyladenine
(NSC 66389)

PIK3C3 (25 µM),
PI3Kγ (60 µM) [414]

MDA-MB-231
MDA-MB0465

Down: BCL2
Up: p-ATM (S1981), BAX, cleaved

caspase-3, p-CHK1 (S345), p-CHK2
(T68), Cytochrome C, γ-H2AX

Cell

- Reduced cell viability and colony formation
- Induced G0/G1 cell cycle arrest
- Induced DNA damage
- Promoted mitochondria-dependent apoptosis [415]

Bafilomycin A1 H+-ATPase (0.44)
[416] MDA-MB-468 Up: cleaved caspase-3 Xeno - Reduced tumor growth

2017 Erlotinib
CAT-SKL - HCC70

MDA-MB-468
- Cell - Reduced cell viability [417]

(−)-epicatechin

2018 Cetuximab YM-1
BAG3-HSP70

interaction (4.8 µM)
[418]

BT549
MDA-MB-468 - Cell - Reduced cell viability [419]

2018 Gefitinib MK-2206 AKT1 (5), AKT2 (12),
AKT3 (65) [420]

HS578T
MDA-MB-231

Down: p-mTOR (S2448), RPS6,
p-RPS6 (S235/236), p-RPAS40 (T246),

XIAP
Cell

- Reduced cell viability, proliferation, and colony
formation
- No synergistic effect on cell cycle distribution

[421]

2018 Lapatinib Foretinib
(GSK1363089, XL880)

MET (0.4),
VEGFR2/KDR (0.86),

TIE2 (1.1),
VEGFR3/FLT4 (2.8),
RON (3), FLT3 (3.6),
PDGFRα (3.6), KIT

(3.6), VEGFR1/FLT1
(6.8), PDGFRβ (9.6)

[422]

BT549
MDA-MB-231 Down: p-AKT (S473) Cell - Reduced cell viability and migration [423]

2018 Gefitinib

Tepotinib
(Tepmetko®,

EMD1214063)
MET (4) [383]

MDA-MB-468
Down: p-ERK1/2 (T202/Y204),

p-STAT3 (Y705) Cell - Reduced cell viability and colony formation [424]

PF431396 FAK1 (2), PYK2 (11)
[411]
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Table 3. Cont.

Year EGFRi

Combination Drug

TNBC Cells Molecules Affected by
Combination

Combination Effects

Ref
Name Known Target

(IC50, nM) Level Effects

2019
Erlotinib or
Gefitinib or
Lapatinib

PHA-767491

CDC7 (10), CDK9
(34), GSK3β (220),
CDK2 (240), CDK1
(250), CDK5 (460),
MAPKAPK2/MK2
(470), PLK1 (980)

[425]

BT549
HS578T
SKBR7

Down: p-AKT (S473), CDC7, CDK4,
Cyclin D1, p-EGFR (T1173), pERK1/2

(T202/Y204), MCM2, p-MCM2
(S40/41), RB, p-RB (S780), POLR2A,

p-POLR2A (S2/5),

Cell

- Reduced cell proliferation
- Inhibited DNA replication and CDK9-mediated
transcriptional elongation
- Increased apoptosis and G2/M cell cycle arrest

[99]

2019 Osimertinib Chloroquine
(CHQ, Aralen) - MDA-MB-231 Up: p-BAD (S112), caspase-3, LC3B-II Cell - Reduced cell viability [426]

2019 Erlotinib
Palbociclib
(Ibrance®,

PD-0332991, LQQ)

CDK4/Cyclin D3 (9),
CDK4/Cyclin D1

(11), CDK6/Cyclin
D1 (15) [427]

HS578T-MMP17 5

MDA-MB-231-
MMP17

MDA-MB-468-
MMP17

Down: p-EGFR (Y1068), p-RB
(S807/811) Cell - Reduced cell proliferation

[428]

MDA-MB-231-
MMP17PDX Down: Ki67, p-RB (S807/811) Xeno - Reduced tumor growth

- Reduced MMP17 and p-RB

2019 AEE788

Everolimus
(RAD001) mTOR (1.6–2.4) [429]

SUM149PT
Down: CDK4, Cyclin B1, Cyclin D1,

p-mTOR (S2448) Cell
- Reduced cell proliferation
- Induced apoptosis [430]Sirolimus

(Rapamycin) mTOR (~0.1) [367]

Temsirolimus mTOR (1760) [386]

2019 Cetuximab PP2
(AG 1879, AGL 1879)

LCK (4), FYN (5),
HCK (5), SRC (100)

[431,432]

MDA-MB-231
MDA-MB-468

Down: p-AKT (S473), p-EGFR
(Y1173), p-IGF1R (Y1161), p-PI3K,
p-SRC (Y416), p-VEGFR2 (Y1175)

Cell - Reduced cell proliferation [142]

2020
ABT-414 Navitoclax

(ABT-263)
BCL-xL (Ki ≤ 0.5),

BCL2 (Ki ≤ 1),
BCL2L2 (Ki ≤ 1)

[433]

- - PDX - Reduced PDX tumor growth in vivo [258]
ABBV-321

2020 Erlotinib S63845 MCL1 (Kd = 0.19)
[434]

BT20, H38, H1806,
H1937,

MDA-MB-231,
MDA-MB-468,

- Cell - Reduced cell viability [260]

2020 Gefitinib Crizotinib +
Talazoparib

Crizotinib: see above
Talazoparib: PARP1

(0.57) [435]

PARPi-resistant
SUM149PT - Cell - Reduced cell viability [436]

2020 Erlotinib THZ1 CDK7 (3.2) [437] MDA-MB-231 - Cell - Reduced cell proliferation [438]
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Table 3. Cont.

Year EGFRi

Combination Drug

TNBC Cells Molecules Affected by
Combination

Combination Effects

Ref
Name Known Target

(IC50, nM) Level Effects

2020 Cetuximab IL-15 NK cells IIB-BR-G
Up: CD25 and CD69 in NK cells;

CD83 and CD86 in DCs; IFN-γ and
TNF-α in co-culture supernatant

Cell - Activated NK cell tumor killing
- Stimulated maturation of DCs [439]

2020 Cetuximab Dasatinib

ABL1 (0.6), SRC (0.8)
[374]

KITD816V (37), KIT
(79) [375]

MDA-MB-468 Down: SRC, p-SRC (Y416) Xeno - Reduced tumor volume [440]

2020 Gefitinib GSK269962A

ROCK1 (1.6),
ROCK2 (4), MSK1

(49), RSK1 (132) [404]

MDA-MB-231 Down: p-RPS6 (S235/236)
Up: p-AMPK (T172)

Cell - Increased accumulation of autophagic vacuoles [339]
CAL120HCC1806HS578T Down: p-RPS6 (S235/236)

Up: LC3-II

2020 Afatinib Dasatinib
ABL1 (0.6), SRC (0.8)

[374]
KITD816V (37), KIT

(79) [375]

BT20
HCC1937
HDQP1

Down: p-EGFR (Y1068), p-SFKs
(Y416), p-SRC (Y527)Up: cleaved

caspase-7, p27
Cell - Reduced cell proliferation- Induced G1 cell cycle

arrest [441]

HCC1806 Down: CDC42, p-EGFR (Y1068) Xeno - Reduced tumor growth

2020 Gefitinib Everolimus
(RAD001) mTOR (1.6–2.4) [429] CAL-51 Down: p-4E-BP1 (T37/46), Cyclin B1,

Cyclin E1, p-mTOR (S2448) Cell - Reduced cell proliferation
- Induced G1 cell cycle arrest and apoptosis [442]

2020 Afatinib

Dasatinib +
Trametinib
(Mekinist®,
JTP-74057,

GSK1120212)

Dasatinib: see above
Trametinib: MEK1
(0.92), MEK2 (1.8)

[443]

BT20
MDA-MB-468 - Cell - Reduced cell proliferation [444]

2020
Bispecific antibody for EGFR

(cetuximab) and HER3 (IgG 3-43)
EGFR (KD = 21),

HER3 (KD = 19) [445] MDA-MB-468
Down: p-AKT (T308), p-EGFR

(Y1068), p-ERK (T202/Y204), p-HER3
(Y1289) in FaDu, the hypopharyngeal

carcinoma cell line

Cell - Reduced cell proliferation and mammosphere
formation [445]

Xeno - Reduced tumor growth with concordant reduction
of CSCs

2020

Pan-HER antibody mixture
(combination of 3 sets of 2 antibodies

each targeting non-overlapping
epitopes of EGFR, HER2, and HER3)

- 15 PDXs
Down: p-AKT (T308), EGFR, p-EGFR

(Y1068), p-ERK1/2, p-FAK (Y397),
HER3, p-HER3 (Y1289)

PDX - Reduced tumor growth [446]
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Table 3. Cont.

Year EGFRi

Combination Drug

TNBC Cells Molecules Affected by
Combination

Combination Effects

Ref
Name Known Target

(IC50, nM) Level Effects

2020
Cetuximab
or Panitu-
mumab

CD32A-CR T cells CD32A131R MDA-MB-468 Up: IFN-γ and TNF-α from
CD32A131R-CR T cells Cell - Induced cancer cell killing [447]

2020 Afatinib
YM155

(Sepantronium
bromide)

BIRC5 6 gene
expression (0.54)

[448]
- - PDX - Reduced PDX mammary tumor growth in vivo [449]

2020 Cetuximab Icaritin - MDA-MB-231
MDA-MB-436 Cell - Induced apoptosis- Reduced cell proliferation [450]

2020
Gefitinib,

Erlotinib, or
Lapatinib

MK-2206 AKT1 (5), AKT2 (12),
AKT3 (65) [420]

MDA-MB-468
Down: p-AKT (S473), p-AKT (T308),

p-EGFR (Y1068), p-ERK (T202/Y204),
p-PRAS40 (T246), p-RPS6 (S235/236)

Cell - Reduced cell proliferation (by gefitinib or lapatinib
in the presence of MK-2206, AZD8186, or pictilisib)

[451]AZD8186 PI3Kβ (4), PI3Kδ
(12), PI3Kα (35) [452] Xeno

- Reduced tumor growth of HCC70 or MDA-MB-468
xenografts (by Erlotinib + AZD8186)

Pictilisib
(GDC-0941, RG7321)

PI3Kα (3), PI3Kδ (3),
PI3Kβ (33), PI3Kγ
(75), mTOR (Ki =

0.58 µM) [385]

2021 Cetuximab
miR-155-5p
antagomir miR-155-5p

MDA-MB-468
Down: BCL2, p-EGFR

Up: BAX, cleaved caspase-1, cleaved
caspase-3, GSDME, IL-1β

Cell
- Reduced cell proliferation
- Increased apoptosis and induced pyroptosis-
Reduced migration and invasion [453]

MDA-MB-468 Down: p-EGFR, Ki67
Up: cleaved caspase-1, GSDME Xeno - Reduced tumor growth

- Increased TUNEL-positive cells

2021 Gefitinib
AT7867 +

PD-0325901
(Mirdametinib)

AT7867: AKT2 (17),
PKA (20), AKT1 (32),
AKT3 (47), p70 S6K

(85) [454]
PD-0325901: MEK

(0.33) [455]

HS578T
MDA-MB-231

Down: ERK1/2, GSK3β, p-GSK3β
(S9), RPS6, p-RPS6 (S235/236), XIAP

Up: cleaved caspase-3
Cell - Reduced cell proliferation and colony formation-

Induced apoptotic cell death [22]

1 Xeno, xenograft; 2 CAT-SKL, genetically engineered human catalase with serine-lysine-leucine (SKL) sequence to target peroxisome and 11 arginine peptide transduction domain [373,456]; 3 PDX, patient-derived
xenograft; 4 Syn, syngeneic; 5 HS578T-MMP17, MDA-MB-231-MMP17, and MDA-MB-468-MMP17: TNBC cell lines with overexpression of MMP17 (MT4-MMP); 5 BIRC5, baculoviral IAP repeat-containing
protein 5; the gene encoding survivin.



Pharmaceuticals 2021, 14, 589 25 of 76

Table 4. FDA-approved PKIs that have been experimentally tested with EGFRis in TNBC.

Drug Primary Target Initial Year
Approval Company Approved Indications 1 EGFRi Tested

Crizotinib ALK, ROS1, MET 2011 Pfizer

· ALK -positive advanced
NSCLC
· ROS1-positive NSCLC
· ALK-positive anaplastic
large cell lymphoma

Erlotinib [400]

Dasatinib BCR-ABL, SRC 2006 Bristol-Myers
Squibb

· CML
· Philadelphia
chromosome (Ph)-positive
ALL
· Ph-positive CML

Cetuximab
[376,440]

Everolimus mTOR 2009 Novartis

· HER2-negative breast
cancer, pancreatic
neuroendocrine tumors,
renal cell carcinoma,
angiomyolipoma,
subependymal giant cell
astrocytoma

AEE788 [430]
Gefitinib [442]

Imatinib BCR-ABL 2002 Novartis
· Rare gastrointestinal
cancer
· ALL

Lapatinib [397]

Palbociclib CDK4/6 2015 Park Davis · ER- and HER2-positive
breast cancer Erlotinib [428]

Sirolimus mTOR 1999 Wyeth · Kidney transplant,
lymphangioleiomyomatosis Lapatinib [368]

Selumetinib MEK1/2 2020 Astra Zeneca · Neurofibromatosis type 1
plexiform neurofibromas Gefitinib [393]

Temsirolimus mTOR 2007 Wyeth · Advanced kidney cancer Gefitinib [387]

Tepotinib MET 2021 EMD Serono
· Metastatic NSCLC with
METex14 skipping
alterations

Gefitinib [153,424]

Trametinib MEK1/2 2013 GlaxoSmithKline · Melanoma Afatinib (with
Dasatinib) [444]

1 https://www.drugs.com/, accessed on 15 April 2021.

4.1.1. Combination with Other EGFRis

Interestingly, among 60 preclinical studies, no study has reported on the combination
of different generation EGFR TKIs in TNBC (Table 3). As mentioned earlier (see Section 3.1.
EGFR Mutations or Amplification), this may reflect the fact that TNBC has been reported
to possess rare EGFR mutations.

Another interesting strategy is the combination of small-molecule EGFRis and anti-
EGFR antibodies. Since EGFRis target the intracellular kinase domain and anti-EGFR
antibodies bind to the ectodomain, the mode of action would be complementary [364,403]
This hypothesis has been proven in several studies. A combination of gefitinib with cetux-
imab was evaluated across various cancer cell lines, including breast, colon, prostate, and
vulvar squamous carcinoma cells [364]. A TNBC cell line MDA-MB-468 was demonstrated
to be a susceptible cell line in response to the gefitinib and cetuximab combination, whereas
MDA-MB-435S did not respond to this combination [364]. MDA-MB-435S has been shown
to express no detectable EGFR [459]. A combination of cetuximab or panitumumab with
erlotinib or gefitinib has shown an anticancer effect in TNBC cell lines that harbor EGFR

https://www.drugs.com/
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amplification (MDA-MB-468) and wild-type KRAS and PTEN (SUM1315MO2) [403]. This
combination induced G1 cell cycle arrest and subsequent apoptosis with concomitant
inhibition of the RAS/RAF/MEK/ERK pathway. Susceptible TNBC cells were sensitive to
anti-EGFR antibody alone, while TNBC cells containing mutations in KRAS (MDA-MB-231)
or PTEN (HCC1937) were resistant to anti-EGFR antibody treatment. Consistent with these
results, anti-EGFR antibody alone could not inhibit the RAS/RAF/MEK/ERK pathway in
resistant cells [403].

4.1.2. Combination with MET Inhibitors (METis)

As mentioned, MET activation confers resistance to EGFRis in TNBC cells [152,153]
(see Section 3.2. Activation of Bypass Signaling Pathways). An earlier study demon-
strated that the addition of the METi tepotinib reduces resistance of MDA-MB-468 cells
to gefitinib [153,424]. Interestingly, the gefitinib and tepotinib treatment together reduced
cell growth of MDA-MB-468 cells but not that of MDA-MB-231 cells, whereas the same
combination reduced colony formation of both cell lines. Furthermore, the addition of
cetuximab to tepotinib had no effect on MDA-MB-231 colony formation but had an effect
on MDA-MB-468 colony formation. Mechanistically, the gefitinib and tepotinib treatment
synergistically reduced levels of p-AKT (T308), p-ERK (T202/Y204), and p-ribosomal pro-
tein S6 (p-RPS6) (S235/236) in MDA-MB-468 cells, while no significant suppression was
observed by single-agent treatment [153]. More interestingly, signal activation, including
p-MET, p-EGFR, p-HER2, p-AKT, and p-ERK signaling, was provoked by EGF and HGF
treatment of susceptible cells (MDA-MB-468) but not of non-susceptible cells (MDA-MB-
231 and T47D). Antibody microarray analysis identified that p-MET and p-HER3, which
were induced by EGF and HGF co-treatment, were abolished by the gefitinib and tepotinib
combination in MDA-MB-468 cells. In addition, knockdown of EGFR combined with the
METi PHA-665752 or the erlotinib and PHA-665752 combination synergistically reduced
the cell viability of TNBC cells in vitro [150].

The MSL subtype TNBC cell lines HS578T and MDA-MB-231 have been reported
to be more resistant to gefitinib than BL subtype cell lines such as MDA-MB-468 and
SUM149PT [15,378]. The addition of the METi SU11274 potentiated the cytotoxicity of
gefitinib and reduced X-linked inhibitor of apoptosis (XIAP). Most interestingly, the gefi-
tinib and SU11274 treatment markedly reduced the levels of both total RPS6 and p-RPS6
(S235/236). The reduction in the total RPS6 occurred as early as 2 h and was sustained over
time to 16 h post-treatment, whereas the reduction in p-AKT (S473) returned to normal
levels at 24 h post-treatment. Furthermore, knockdown or RPS6 alone reduced proliferation
of HS578T and MDA-MB-231 TNBC cells [15]. The mechanism of RPS6 reduction achieved
by this combination remains to be determined.

A combination of METis and EGFRis was further evaluated with the METis glex-
atinib (MGCD265) and crizotinib (PF-02341066) and the EGFRi erlotinib [400]. Glexa-
tinib and crizotinib are multitarget, ATP-competitive inhibitors of DDR2, AXL, MERTK,
PDGFRα, VEGFR3 (FLT4), FLT3, MET, VEGFR2 (KDR), and PDGFRβ [399]; and of ROS1,
ALK, LTK, FER, FES, MET, PTK2B (FAK2), TNK2, PTK2 (FAK), TRKA/B/C, and FRK
(PTK4), respectively [401,402]. Interestingly, crizotinib also inhibits EGFRL858R/T790M and
EGFRT790M [402]. The addition of glexatinib or crizotinib to erlotinib synergistically re-
duced tumor growth in a patient-derived xenograft (PDX) model with consistent reduction
in p-ERK1/2 and p-RPS6 in PDX tumor samples [400].

The MET and VEGFR inhibitor foretinib (XL880) [422] has been identified as a potentia-
tor of the dual EGFR and HER2 inhibitor lapatinib in reducing the viability and migration
of TNBC cells [423]. Furthermore, the invasiveness of TNBC cells was reduced by the
lapatinib and foretinib combination, with robust reductions in the number of invadopodia
formed and the ability of gelatin digestion. This combination could reduce p-AKT (S473)
in BT549 and MDA-MB-231 cells but not p-ERK1/2 (T202/Y204) in MDA-MB-231 cells.
Further study is needed to determine the molecular mechanism of this combination effect.
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4.1.3. Combination with PI3K/AKT/mTORC1 Inhibitors

The first report on the potentiation of EGFRis via vertical inhibition of the PI3K/AKT/
mTORC1 pathway demonstrated that PI-103 enhanced apoptotic cell death in the BL sub-
type TNBC cell lines MDA-MB-468 and SUM149PT [378]. No potentiation was observed in
the MSL TNBC cell lines HS578T and MDA-MB-231. Synergistic reduction of anti-apoptotic
proteins, including XIAP, BCL2, and MCL1, was detected in sensitive cells. Overexpression
of these anti-apoptotic proteins is associated with drug resistance and a poor progno-
sis [253] (See Section 3.4.2. Overexpression of Anti-apoptotic Proteins). For example, MCL1
is regulated at multiple levels in cancer cells. Transcription factors such as STAT3 and
MYC activate MCL1 transcription [460]. In addition, inhibitory phosphorylation by AKT
alleviates the GSK3β-mediated destabilization of MCL1. AKT further promotes the stabil-
ity of MCL1 through its phosphorylation by mTORC1. A chemically modified LY294002
with the RGDS integrin-targeting peptide was also reported to potentiate gefitinib [461] in
MDA-MB-468 TNBC cells [460]. The peptide leads to targeting of the RGDS integrins αvβ3
and α5β1 and is released to liberate LY294002 by hydrolysis at physiological pH [462].

Dual blocking of EGFR and PI3Kβ has been identified as an effective way to overcome
the compensatory activation of the EGFR downstream signaling in a G protein-coupled
receptor of thrombin (PAR1/F2R)-dependent manner [451]. A genome-wide shRNA
screening approach has identified EGFR as an additional target that synergizes with PI3K
inhibitors and AKT inhibitors in the PTEN-deficient TNBC cell line MDA-MB-468. Phar-
macological inhibition of EGFR by gefitinib in combination with AZD8186, which is a
PI3K inhibitor that specifically targets PI3Kβ, PI3Kδ, and PI3Kα (Table 3) [452], synergisti-
cally reduces cell proliferation of PTEN-null TNBC cells but not that of PTEN wild-type
TNBC cells [451]. This synergism was confirmed in vivo in orthotopic xenograft models
of HCC70 or MDA-MB-468 cells by the erlotinib and AZD8186 combination. In addition,
this combination also showed anticancer effects in an immunocompetent syngeneic mouse
model. Among the components in the PI3K/AKT/mTORC1 pathway, the response of
p-RPS6 (S235/236) represents a useful predictive marker for sensitivity to PI3K inhibition.
A co-immunoprecipitation assay revealed that PI3Kβ is a key component of the activated
PI3K/AKT/mTORC1 pathway in PTEN-null TNBC cells. Targeted deletion screening
by CRISPR-Cas9 further identified that targeting G protein β and γ subunits sensitized
TNBC cells to EGFRis and PI3Kis. Inhibiting G protein β and γ subunits blocked the PAR1-
dependent activation of AKT. Vorapaxar, an inhibitor of PAR1, consistently synergizes the
effect of pictilisib or lapatinib to reduce colony formation of MDA-MB-468 cells [451].

Rapamycin (silorimus) is a specific mTOR inhibitor that directly inhibits mTORC1 [463,464].
Rapamycin, in combination with lapatinib, has been reported to reduce the increase in
xenograft tumors of MDA-MB-231 and MDA-MB-468 cells [368]. The lapatinib and ra-
pamycin combination preferentially induces apoptosis in MDA-MB-468 cells compared
to MDA-MB-231 cells both in vitro and in vivo. Similar to previous reports [465,466], the
level of p-eIF4E was associated with apoptotic resistance of MDA-MB-231 cells [368].

Analogs of rapamycin (rapalogs), including temsirolimus, everolimus, and deforolimus,
have been developed as mTORC1 inhibitors [467]. A separate study reported that the
blocking of mTOR by temsirolimus in the presence of gefitinib reduces cell growth,
viability, colony-forming ability, and cap-dependent translation, with concomitant de-
creases in p-eIF4B in the TNBC cell lines BT20, MDA-MB-231, and MDA-MB-468 [387].
Similar to RPS6 [468], eIF4B is a converging point of the RAS/RAF/MEK/ERK and
PI3K/AKT/mTORC1 pathways [469]. Interestingly, p-p90RSK (S380) rather than p70S6K
(T389) was found to be a mediator of this combination effect in these TNBC cells.

When combined with the EGFRi, AEE788 rapalogs induce synergistic reduction of
TNBC cell proliferation [430]. An antiproliferation screening of 378 small-molecule PKIs
in combination with rapamycin was performed against 19 TNBC cell lines. Multiple
EGFRis, such as AEE788, afatinib, AC480, AZD8931, AZD9291, AST-1306, and gefitinib,
have been shown to induce antiproliferative effects synergistically or additively in com-
bination with rapamycin in the TNBC cell line SUM149PT. AEE788 is a dual inhibitor
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of EGFR and HER2, with IC50 values of 2 and 6 nM, respectively [470]. AEE788 also in-
hibits ABL1 (IC50 = 52 nM), FLT1 (IC50 = 59 nM), FMS (IC50 = 60 nM), SRC (IC50 = 61 nM),
KDR (IC50 = 77 nM), and HER4 (IC50 = 160 nM). The AEE788 and rapamycin combination
induced apoptosis in SUM149PT as well as HCC1143 cells [430]. In contrast, this combina-
tion did not have antiproliferative effects or induce apoptosis in normal mammary cells
(MCF10A cells) and renal cells (RPTEC cells). This combination abolished p-mTOR (S2448),
while no significant inhibition of p-mTOR was observed after single-agent treatment. P-
AKT (S473) and p-ERK1 (T202/Y204) were inhibited by AEE788, and this inhibition was
sustained by the combination. In addition, siRNA-based screening further revealed that
RPS6KA3, RPS6KA6, RPS6KB1, and RPS6KL1 appear to be synthetic lethal targets for
the AEE788 and rapalog combination treatment. An interesting point was that treatment
with rapalogs induced the expression of both protein and mRNA of cyclin D1, while the
addition of AEE788 abolished the rapalog-induced cyclin D1 expression in TNBC cells.
Furthermore, the AEE788 and rapalog combination downregulated the expression of cyclin
B1 and CDK4.

The susceptibility of TNBC cells to the EGFRi and mTORi combination has been
shown to be correlated with the PIK3CA mutation status. The gefitinib and everolimus
combination was effective in PIK3CA-mutatnt CAL-51 cells but not in wild-type HCC1937
cells [442]. CAL-51 cells contain a heterozygous E542K mutation in the PIK3CA gene
with the PTEN-null background [442,471]. These results are consistent with the fact that
the PIK3CA mutation amplifies AKT activation by PTEN loss in TNBC cells [19]. The
combination reduced the levels of p-4E-BP1 (T37/46) and p-mTOR (S2448) in susceptible
cells. No significant effects were observed on p-AKT (S473), whereas downregulation of
p-ERK (T202/Y204) was observed. The combination further reduced the levels of cyclin B1
and cyclin E1 protein and mRNA, with a concordant increase in G1 cell cycle arrest and
apoptosis. Gene expression profiling analysis identified upregulation of genes involved
in DNA damage repair and cell cycle progression, such as checkpoint kinase 1 (CHEK1),
CHEK2, cyclin A1 (CCNA1), CCNB1, and CCNE1.

Another study further supported the notion that the mTORC1 serves as a promising
target for sensitizing TNBC cells to EGFRis. Combined treatment with gefitinib and MK-
2206, a selective AKT inhibitor [420], synergistically reduced cell viability and colony
formation of the TNBC cell lines HS578T and MDA-MB-213 [421]. More importantly,
knockdown of the regulatory-associated protein of mTOR (RPTOR), but not rapamycin-
insensitive companion of mTOR (RICTOR), confirmed the effects of MK-2206 in terms of the
reductions in cell viability and total RPS6 levels in TNBC cells in the presence of gefitinib.
Since RPTOR is the mTORC1-specific component [464], these results support the idea that
the selective targeting of mTORC1 is a potential strategy to overcome EGFRi resistance.

Similar to small-molecule EGFR TKIs, a combinatorial benefit of vertical inhibition
has also been reported with an anti-EGFR antibody in combination with either a PI3Ki
or an AKTi. Duligotuzumab is a dual-acting human IgG1 monoclonal antibody against
EGFR and HER3 [472,473]. Combined treatment with duligotuzumab and ipatasertib (a
pan-AKTi) [384] or pictilisib (a pan-PI3Ki) [385] showed anticancer effects in TNBC cells
both in vitro and in vivo, with prolonged inhibition of EGFR or HER3 signaling [159]. As
expected, the duligotuzumab and pictilisib combination was more effective than the cetux-
imab and pictilisib combination in the regression of tumor growth of HCC70 xenografts,
since inhibition of EGFR, AKT, or PI3K induced the abundance of HER3 [474–476], which
was inhibited by duligotuzumab but not by cetuximab.

4.1.4. Combination with RAS/RAF/MEK/ERK Inhibitors

Treatment with the MEK inhibitor selumetinib was shown to induce p-AKT (S473)
in a panel of TNBC cells [393]. Combined treatment with selumetinib and gefitinib syn-
ergistically reduced the viability of TNBC cells and induced G0/G1 cell cycle arrest and
apoptosis in selumetinib-sensitive SUM149PT cells. The gefitinib and selumetinib combina-
tion showed nearly complete inhibition of p-ERK1/2 (T202/Y204) and a further reduction
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in the selumetinib-mediated p-AKT (S473) level. In contrast, this combination did not
induce G0/G1 cell cycle arrest and did not reach the IC50 value in the selumetinib-resistant
TNBC cells MDA-MB-468 and SUM159PT. However, the molecular mechanism of this
difference remains elusive.

4.1.5. Combination with IKK/NF-κB Inhibitors

The therapeutic potential for targeting NF-κB in combination with EGFRis has been
demonstrated by bortezomib [380]. Bortezomib (Velcade®) is the first FDA-approved
proteasome inhibitor for the treatment of multiple myeloma [477]. One mode of action of
bortezomib is downregulation of NF-κB activity through blocking proteasomal degradation
of IκB [379,478]. As mentioned, activation of the NF-κB pathway has been described in
ER-negative breast cancer cells [209,479]; however, a phase 2 clinical trial resulted in limited
benefits [480]. Lapatinib, but not gefitinib or erlotinib, has been demonstrated to be able to
induce activation of NF-κB through SRC-dependent p65 and IκBα phosphorylation [380].
Studies have shown that lapatinib upregulates SRC activity in an EGFR/HER2-independent
manner. This lapatinib-induced NF-κB activation leads to the synergistic anticancer activity
of co-treatment with lapatinib and bortezomib both in vitro and in vivo in two TNBC cells,
HS578T and MDA-MB-231 [380]. Consistent with this finding, our group has identified
that the combination of an IKK inhibitor and the EGFRi gefitinib has an anticancer effect in
TNBC cells (You et al., manuscript in preparation).

4.1.6. Combination with JNK Inhibitors

JNK-IN-8 is the first irreversible JNK inhibitor for JNK1, JNK2, and JNK3, with IC50
values of 4.7, 18.7, and 1 nM, respectively [408]. It covalently binds to C116 of JNK1 and
JNK2, inhibiting phosphorylation of its target, c-Jun, at S63. Recently, the combination
of lapatinib and JNK-IN-8 has been demonstrated to induce apoptosis of the TNBC cell
lines, HCC1569, MDA-MB-231, and MDA-MB-435, in vitro and to retard MDA-MB-231
xenograft tumor growth in vivo [231]. The lapatinib and JNK-IN-8 combination reduced
the transcriptional activities of NF-κB, activating protein 1 (AP-1), and NRF2 in TNBC cells,
leading to an increase in the ROS level. As mentioned, NRF2 is a master regulator of a
battery of genes involved in antioxidant responses, drug resistance, and detoxification [155].
Of importance, NRF2-KD reduces the expression of CSC markers, such as ALDH1A1 and
ALDH3A1, in pancreatic cancer cells [481].

4.1.7. Combination with CDK Inhibitors

In humans, twenty-one cyclin-dependent kinases (CDKs) have been identified based
on sequence similarity [482]. The CDK family is composed of two major subgroups
of protein kinases: (1) those that regulate cell cycle progression (CDK1, CDK2, CDK4,
and CDK6); (2) those that play roles in transcriptional processes (CDK7, CDK8, CDK9,
CDK12, and CDK13) [483–485]. The functions of the remaining CDKs are still under
investigation [482,484]. Dysregulation of CDKs has been associated with tumorigenesis or
cancer progression, and they have been well established as anticancer targets [484,485].

Cell cycle progression is regulated by interplay between CDKs, cyclins, retinoblastoma
(RB), CDK inhibitors, and transcription factor E2Fs [486,487]. Matrix metalloproteinase-17
(MMP17; also known as membrane-type-4 matrix metalloproteinase, MT4-MMP) has been
identified as a copartner and is co-expressed with EGFR in approximately 80% of clinical
TNBC samples. Its expression sensitizes TNBC cells to erlotinib [488,489]. In a subsequent
study, dual targeting of EGFR and CDK4/6 by erlotinib and palbociclib, respectively, is
additively effective in reducing tumor growth in TNBC xenografts and PDX cells expressing
MMP17, EGFR, and RB, whereas PDX-TNBC cells without RB expression were resistant to
this combination [428]. Interestingly, the expression of these markers has been found in
approximately 50% of TNBC samples, which is useful to predict the sensitivity of TNBC to
EGFR and CDK4/6 dual inhibition.
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CDK9 is a catalytic subunit of a multiprotein complex, positive transcription elon-
gation factor b (P-TEFb) [490], and is activated by CDK7 [491]. Both CDK9 and CDK7
positively activate gene transcription through sequential phosphorylation of the C-terminal
domain of RNA polymerase 2 at S5/7 and S2, respectively [492–494].

CDK7 has been noted as a novel anticancer target, and its mRNA expression is
linked with a poor prognosis in TNBC [495]. A covalent inhibitor of CDK7, THZ1 [437],
has been reported to effectively repress the proliferation of breast cancer cells [496,497].
Very recently, the combination of THZ1 and erlotinib was identified to have synergistic
or additive anticancer effects on various subtypes of breast cancer in vitro, including
TNBC [438]. Although THZ1 represses a variety of genes such as CDKN1B, MYC, EGFR,
FOXC1, PLK2, and CTED2, the mechanism of action of the combination of erlotinib and
THZ1 remains to be elucidated.

A dual PKI of cell division cycle 7-related protein kinase (CDC7) and CDK9, PHA-
767491, has been identified as a sensitizer of EGFRi in TNBC cells through a high-throughput
screening of 273 PKIs in combination with lapatinib [99]. The synergism of the lapatinib and
PHA-767491 combination in antiproliferative activity has been confirmed across 17 TNBC
cell lines. This combination reduced CDC7 levels and phosphorylation of its downstream
target, minichromosome maintenance protein 2 homology (MCM2), at S40/41. Since
MCM2 is a crucial component of DNA helicase [498], the reduction of p-MCM2 suggests
inhibition of DNA replication initiation by this combination. In addition, this combination
reduced the CDK9-mediated phosphorylation of the DNA-directed RNA polymerase 2 sub-
unit A (POLR2A) and the level of total POLR2A. This synergism is EGFR-specific, since
EGFR TKIs, such as erlotinib and gefitinib, also resulted in synergism with PHA-767491.
The lapatinib and PHA-767491 combination further repressed the levels of CDK4, cyclin D1,
and p-RB (S780), with a concordant reduction in the G0/G1 phase and induction of G2/M
cell cycle arrest. EGFRi and CDC7/CDK9i-induced G2/M cell cycle arrest is consistent with
abnormal DNA replication origin activation checkpoint in cells, with loss-of-function p53
mutations that are commonly found in TNBC cells [99,120,192,240,499]. This combination
also induced apoptosis in TNBC cell lines. In clinical ER-negative breast cancer samples,
high expression levels of CDC7 and POLR2A were associated with a poor prognosis [99].

4.1.8. Combination with SFK Inhibitors

Human SRC family kinases (SFKs) are a group of non-receptor tyrosine kinases,
including B lymphocyte kinase (BLK), Gardner–Rasheed feline sarcoma viral oncogene
homolog (FGR), FYN-related kinase (FRK), proto-oncogene c-Fyn (FYN), hematopoietic
cell kinase (HCK), lymphocyte-specific protein tyrosine kinase (LCK), Lck/Yes-related
novel protein tyrosine kinase (LYN), v-src avian sarcoma (Schmidt-Ruppin A-2) viral
oncogene homolog (SRC), and v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1
(YES1) [500,501]. SFKs play crucial roles in regulating signal transduction provoked by cell
surface receptors.

As mentioned earlier, anti-EGFR antibodies may exert an agonistic action on EGFR,
leading to resistance of TNBC cells to anti-EGFR antibody therapeutics (see Section 3.2.
Activation of Bypass Signaling Pathways). Recently, the combination of cetuximab and
the SFK inhibitor PP2 was found to overcome this resistance in the TNBC cell lines MDA-
MB-231 and MDA-MB-468 [142]. Cetuximab alone induced phosphorylation of PI3K
and SRC. In addition, cetuximab activated RTKs, including IGF1R and VEGFR2. The
combination of cetuximab and PP2 abolished cetuximab-induced p-IGF1R and p-VEGFR2,
with a concordant reduction in cell proliferation.

Dasatinib is an orally available TKI of ABL1, SRC family kinases, KIT, and PDGFRα/β,
and has been approved for the treatment of chronic myeloid leukemia (CML) and Philadelphia-
chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) (Table 4) [502,503]. Treat-
ment with dasatinib alone reduced p-EGFR (Y845) and p-SRC (Y416), with a concordant
reduction in nuclear EGFR and SRC and induction of radio-labeled cetuximab binding
to the cell surface in TNBC cell lines such as MDA-MB-231 and MDA-MB-468 cells [440].



Pharmaceuticals 2021, 14, 589 31 of 76

In an MDA-MB-468 xenograft model, the cetuximab and dasatinib combination further
reduced the tumor volume compared with dasatinib alone, while no significant change
was observed in an MDA-MB-231 xenograft model with this combination treatment [440].
Although the noted difference in these cell lines was a KRAS mutation (MDA-MB-468, wild-
type vs. MDA-MB-231, mutated), further study is needed to determine the contributions of
KRAS mutations to the differential effects of this combination.

A benefit of the combination of dasatinib with the EGFRi afatinib has also been
reported [441]. The afatinib and dasatinib combination was synergistic or additive in 13 out
of 14 TNBC cell lines. Interestingly, low levels of BCL2 and mTOR were associated with the
synergism of this combination. P-EGFR (Y1068) and p-SRC (Y527) levels were commonly
suppressed by the afatinib and dasatinib combination, with a concordant increase in G1
cell cycle arrest and without significant induction of apoptosis. The anticancer effect of
this combination was confirmed in a TNBC xenograft model with decreases in CDC42 and
p-EGFR (Y1068) in the xenograft tumor [441].

4.1.9. Combination with ABL1 Inhibitors

Additional blocking of Abelson murine leukemia viral oncogene homolog 1 (ABL1)
by imatinib overcomes EGFRi resistance in TNBC cells. Co-treatment of the TNBC cell
lines HCC1806, MDA-MB-231, MDA-MB-468, and SUM159PT with imatinib and lapatinib
resulted in a reduction in nuclear β-catenin accumulation, leading to the suppression of the
tumor-promoting transcription factor MYC [397]. More interestingly, the expression of the
long non-coding RNA (lncRNA) HOX antisense intergenic RNA (HOTAIR) was suppressed
by the imatinib and lapatinib combination treatment. Nuclear β-catenin has been shown
to bind the promoter region of HOTAIR according to a chromatin immunoprecipitation
(ChIP) assay. HOTAIR is known to promote tumor progression and is associated with a
poor prognosis [504–506]. The combination also reduced the tumor size of the MDA-MB-
231 xenograft [397].

4.1.10. Combination with Focal Adhesion Kinase (FAK) Inhibitors

FAK1 and PYK2 (or FAK2) are non-receptor tyrosine kinases controlling cell shape,
adhesion, and motility [410]. High expression levels of FAK1 and activated PYK2 are
associated with TNBC [507–509]. High expression levels of EGFR and PYK2 have been
further associated with a poor prognosis among patients with TNBC [161]. In addition,
IL-25 has been demonstrated to activate PYK2 and induce EGFRi resistance in TNBC
cells [347] (See Section 3.4.10. Induction of Autophagy).

The combination of the FAK1 inhibitor (FAK1i) PF573228 [409] or the PYK2 inhibitor
(PYK2i) PF431396 [411] with gefitinib or erlotinib synergistically reduced TNBC cell pro-
liferation in vitro and tumor growth in vivo [161]. This synergism was also confirmed
by shRNA-based knockdown of FAK1 or PYT2. The FAK1i/PYK2i and EGFRi combina-
tion inhibited the activation of the AKT/S6K, STAT3, and ERK1/2 pathways (Table 3).
Furthermore, PYK2 blocking reduced EGFRi-induced HER3 upregulation through N-
myc downstream-regulated gene 1 (NDRG1)-mediated proteasomal degradation. Mech-
anistically, PYK2 blocking upregulated NDRG1 expression, leading to enhanced inter-
actions of HER3 with its E3 ubiquitin ligase, NEDD4. NDRG1 is a metastasis suppres-
sor in human cancers such as breast, colon, and prostate cancers [510]. Of importance,
NRDG1 interacts with multiple signaling pathways, including the PI3K/AKT/mTORC1,
RAS/RAF/MEK/ERK, and IKK/NF-κB pathways. However, the mechanism of EGFRi-
induced NRDG1 expression remains to be determined. Co-targeting of PYK2 by PF431396
has also been reported to suppress the gefitinib-induced rebound of p-ERK1/2 (T202/Y204)
and p-STAT3 (Y705) in MDA-MB-468 cells [424].

4.1.11. Combination with Rho-Associated, Coiled-Coil-Containing Protein Kinase
(ROCK) Inhibitors

Two in vivo and in vitro knockdown screenings have identified ROCK1 as a therapeu-
tic target for TNBC [405]. Co-treatment with gefitinib and the ROCK inhibitor (ROCKi)



Pharmaceuticals 2021, 14, 589 32 of 76

GSK269962A reduced colony formation of a panel of TNBC cell lines, such as BT549,
CAL-20, CAL-51, HCC38, HCC1806, HS578T, LM2, and MDA-MB-231 cells, compared
with single-drug treatments. The combination inhibited the S phase and increased G2 cell
cycle arrest. Cell cycle progression proteins, including cyclin A, CDK2, and p27, were
consistently reduced, and the level of p-RB (S807/811) was also reduced in MDA-MB-231
cells treated with the combination, whereas little or no change in the levels of these proteins
were observed in MDA-MB-231 cells treated with a single agent. In an orthotopic xenograft
model with HCC1806 cells, tumor growth was reduced by the gefitinib and GSK269962A
combination compared with the control or single agent treatment. Interestingly, the effect
of the ROCKi alone in vivo was superior to that of gefitinib and not statistically different
from that of the combination [405]. A subsequent study provided a more in-depth under-
standing of the mechanism of action of the gefitinib and GSK269962A combination [339].
Proteomic profiling of TNBC cell lines treated with the combination was compared to that
of cells treated with a single drug alone; gefitinib was found to induce autophagy in TNBC
cells, while the addition of the ROCKi blocked EGFRi-induced autophagy, leading to an
anticancer effect in TNBC cells. In addition, the fact that another EGFRi afatinib [94,95]
and ROCKi fasudil [511] resulted in similar anti-colony formation effects in TNBC cells
suggests that the effect is a target-specific but not compound-specific [405]. Notably, fasudil
has been approved in Japan and China, but not by the US FDA or the European Medicines
Agency (EMA) [512].

4.1.12. Triple Combination of PKIs

Triple combinations have been applied to suppress rewired signaling pathways by
single or dual inhibition [22]. In cancer cells, blocking two pathways with a combination
may induce rewiring of a signaling pathway(s) to circumvent the inhibition of survival
signals [102,103]. Additional blocking of these rewired signaling pathways might provide
another opportunity. For example, dasatinib attenuates SRC signaling induced by the
poly(ADP-ribose)polymerase inhibitor (PARPi) veliparib and the DNA damaging agent
carboplatin in TNBC [513]. Dasatinib is an ATP-competitive kinase inhibitor of ABL1,
SRC, KIT, and CSK [374,375,502]. SRC is a member of the SFKs, and its overexpression
has been associated with aggressiveness of tumors, including TNBC [514–517]. SFKs
are key components in cell signaling regulation (see Section 4.1.8. Combination with
SFK Inhibitors).

An earlier study demonstrated that a triple combination of cetuximab, dasatinib, and
cisplatin induced apoptosis synergistically in various TNBC cell lines [376]. In addition,
the triple combination attenuated the cell growth and migration of TNBC cells. Single
(cetuximab or cisplatin) or dual (cetuximab + cisplatin) treatment induced p-EGFR, p-
AKT, and p-ERK in a TNBC cell line-dependent manner, while the addition of dasatinib
attenuated this activations [376]. Dasatinib may further contribute to the inhibition of
EGFR through blocking of SRC-induced EGFR phosphorylation [376] and direct EGFR
binding [518], and by inducing its lysomomal degradation [519]. Interestingly, dasatinib has
been shown to reduce the expression of ALDH1A1, leading to potentiation of gemcitabine in
a gemcitabine-resistant pancreatic cancer cell line [520]. The ALDH family members consist
of 19 isoforms, which have been proposed as hallmarks of drug resistance in CSCs [521].
The expression of ALDH1A1 and ALDH3A1 has also been linked to NRF2 in pancreatic
cancer cells. NRF2-KD abolished the expression of ALDH1A1 and ALDH3A1, leading to
sensitization of pancreatic cancer cells to 5-fluorouracil (5-FU) [480].

A combination screening of 33 FDA-approved PKIs identified a triple combination
of afatinib, dasatinib, and trametinib as an effective strategy for TNBC treatment [444].
The drug combination discovery approach was designed to use a single-mixture solution
of 33 PKIs at the start and then to use dropout solutions in the TNBC cell line HCC1143.
The dropout solutions were made by exclusion of a group of kinase inhibitors that were
classified according to their primary targets from the 33X mixture solution. The triple
combination displayed antiproliferative activity in two TNBC cell lines, HCC1143 and
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MDA-MB-468. Although the mechanism of action remains to be investigated, the results
suggest that simultaneous inhibition of the PI3K/AKT and MEK/ERK pathways is a
promising approach to potentiate EGFRis in TNBC [444].

Very recently, the combination of gefitinib with the AKT inhibitor, AT7867, has been
shown to induce activation of the MEK/ERK pathway in TNBC cell lines [22]. The addition
of the MEK inhibitor PD-0325901 to the gefitinib and AT7867 combination resulted in the
synergistic reduction of cell proliferation and colony formation of HS578T and MDA-MB-
231 cells. Apoptotic cell death, evident with the increased subG1 phase, was only observed
with the triple combination, with a concordant reduction in XIAP and increase in cleaved
caspase-3. Interestingly, a reduction in the total RPS6 was observed in TNBC cells treated
with the triple combination [22]. The importance of the total RPS6 in TNBC cell proliferation
was previously demonstrated by RPS6-KD [15] (see Section 4.1.2. Combination with MET
Inhibitors (METis)); thus, it is important to investigate the mechanisms of action of both
intrinsic and acquired resistance to enrich our strategies to fight cancers.

Cumulative evidence supports the potential for enhancing EGFRi-mediated anticancer
efficacy in TNBC by using combination strategies targeting EGFR and related signaling
pathways in TNBC cells (Figure 2). As mentioned earlier, crosstalk and rewiring of signal
transduction pathways contribute to either intrinsic or acquired EGFRi resistance in TNBC.
Continuous efforts will provide a comprehensive understanding of the molecular mecha-
nisms of EGFRi resistance and rationale for circumventing the limited efficacy of EGFRi in
TNBC. The availability of small-molecule inhibitors for enzymes other than protein kinases
will also facilitate future studies (see the following sections).

4.2. Combination with Other Targeted Therapeutics
4.2.1. Combination with PARP Inhibitors (PARPis)

PARP1 is the first therapeutic target of FDA-approved small-molecule inhibitors for
TNBC treatment. Olaparib (Lynparza®) and talazoparib (Talzenna®) have been approved
for germline BRCA-mutated metastatic breast cancer and germline BRCA-mutated, HER2-
negative, locally advanced or metastatic breast cancer, respectively; however, their efficacy
is extending beyond tumors based on BRCA mutation status [522,523].

An earlier study demonstrated that the combination of lapatinib and the PARPi veli-
parib resulted in synergistic anti-clonogenic activity in the TNBC cell lines MDA-MB-231,
MDA-MB-453, and MDA-MB-468 [372]. Of interest, these TNBC cell lines lack BRCA1 mu-
tations [524]. This combination also induced intrinsic apoptosis, as evidenced by activation
of caspase-3 and caspase-9. This synthetic lethal interaction between lapatinib and veliparib
is due to lapatinib-mediated homologous recombination repair deficiency, which mimics
the BRCA1 mutation. Furthermore, lapatinib induced the translocation of BRCA1 and
EGFR to the cytoplasm, preventing DNA repair in the nucleus, with a consistent increase
in the DNA damage marker γ-H2AX. In addition, lapatinib disrupted the BRCA1-EGFR
interaction. This combination attenuated MDA-MB-231 xenograft tumors [372]. Recently,
negative regulation of EGFR expression by BRCA1 through transcriptional activation of
miR-146a that targets the 3′-untranslated region (3′-UTR) of EGFR has been reported [525].
Mutations of BRCA1 have been linked to the TNBC phenotype [19,20].

Very recently, PARPi-resistant, BRCA1-mutated SUM149PT TNBC cell lines were de-
veloped, which demonstrate high levels of p-MET (Y1234/1235) and p-EGFR (Y1086) [436].
Knockdown of MET reversed PARPi resistance, while the triple combination of an EGFRi
(gefitinib), a METi (crizotinib), and a PARPi (talazoparib) further reduced cell viability [436].
BEZ235, an inhibitor of PI3K, mTOR, ATM, ATR, and DNA-PK, has been identified as a
potentiator of the PARPi olaparib in reducing colony formation of two BRCA1-mutated
TNBC cell lines, MDA-MB-436 and SUM149PT, with reductions in olaparib-induced 53BP1
foci in SUM149PT cells [526]. Further studies on the interactions between EGFRis and
PARPis will extend our understanding of TNBC biology and therapy.
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Figure 2. Schematic diagram of the putative EGFR and related signaling pathways in TNBC cells. Abbreviations: ABL1,
Abelson murine leukemia viral oncogene homolog 1; ACC1/2, acetyl-CoA carboxylase 1/2; AKT, v-akt oncogene homolog;
ALK, anaplastic lymphoma kinase; AMPK, 5′ adenosine monophosphate (AMP)-activated protein kinase; AP-1 activator pro-
tein 1; AXL, Anexelekto receptor tyrosine kinase; BCL2, B-cell lymphoma 2; BCL-xL, B-cell lymphoma-extra-large; BRCA1,
breast cancer type 1 susceptibility protein; β-TrCP, beta-transducin repeat-containing protein; CDK5, cyclin-dependent-like
kinase 5; MYC, cellular myelocytomatosis; DAPK, death-associated protein kinase; DNAPK, DNA-dependent protein
kinase; DNMT1, DNA (cytosine-5)-methyltransferase 1; eEF2, eukaryotic elongation factor 2; eEF2K, eukaryotic elongation
factor 2 kinase; EGFR, epidermal growth factor receptor; eIF4E, eukaryotic translation initiation factor 4E; ERK, extracellular-
signal-regulated kinase; FBW7, F-box and WD repeat domain-containing 7; FGFR, fibroblast growth factor receptor; GSK3β,
glycogen synthase kinase-3 beta; HER2, human epidermal growth factor receptor 2; IGF1R, insulin-like growth factor 1
receptor; IκB, nuclear factor of kappa light polypeptide gene enhance in B-cells inhibitor; IKK, IκB kinase; JAK1, Janus
kinase 1; JNKs, c-Jun N-terminal kinases; KIT, v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homology; LKB1,
liver kinase B1; MCL1, myeloid-cell leukemia 1; MEK, MAPK/ERK kinase; MEKK1, mitogen-activated protein kinase
kinase kinase 1; MET, mesenchymal–epithelial transition factor; MKK4/7, mitogen-activated protein kinase kinase 4;
mTORC1/2, mammalian target of rapamycin complex 1/2; mtp53, mutant p53; NF-κB, nuclear factor of kappa light
polypeptide gene enhanced in B-cells; PAK1, p21-activated kinase 1; PDLIM4, PDZ and LI domain 4; PHLPP, PH domain
and leucine-rich repeat protein phosphatase; PI3K, phosphoinositide 3-kinase; PDK1, phosphoinositide-dependent kinase-1;
PLC, phospholipase C; PKA, protein kinase A; PKC, protein kinase C; PTEN, phosphatase and tensin homolog; PUMA,
p53-upregulated modulator of apoptosis; RAD51, RAD51 (S. cerevisiae) homolog; RAF, rapidly accelerated fibrosarcoma
kinase; RAS, rat sarcoma; RPS6, ribosomal protein S6; RSK, ribosomal S6 kinase; S6K, S6 kinase; SIRT1, NAD-dependent
deacetylase sirtuin-1; SRC, v-src avian sarcoma (Schmidt–Ruppin A2) viral oncogene homolog; STAT3, signal transducer
and activator of transcription 3; TAK1, transforming growth factor beta-activated kinase 1; TNFR, tumor necrosis factor
receptor; TSC1/2, tuberous sclerosis complex 1/2; ULK1, Unc-51-like autophagy-activating kinase 1; VEGFR, vascular
endothelial growth factor receptor; VHL, Von Hippel–Lindau tumor suppressor; XIAP, X-linked inhibitor of apoptosis.

4.2.2. Combination with Inhibitors of Anti-Apoptotic Proteins

ABT-806 is a humanized, tumor-specific anti-EGFR IgG1 monoclonal antibody [527].
The antibody–drug conjugates (ADCs) ABT-414 (depatuxizumab mafodotin) [528] and
ABBV-321 (serclutamab talirine) [529] are composed of the antibody ABT-806 conjugated to
the cytotoxic monomethyl auristatin F (MMAF) and the affinity-maturated version of ABT-
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806 conjugated to an ultrapotent pyrrolobenzodiazepine dimer, respectively. Navitoclax
(ABT-263) is a small-molecule inhibitor of BCL-xL, BCL2, and BCL2L2 with anticancer
activity [433]. The combination of navitoclax with these ADCs has been identified as an
effective strategy in multiple PDX models of TNBC [258]. After fourteen days of daily
navitoclax treatment with ABT-414 once per week, five of seven PDX models showed
reduced tumor growth and three of seven models showed tumor regression compared
with the vehicle control. A further study involving daily navitoclax treatment for 5 days
per week and MMAF-loaded ADC (ABT-414 or AB095-MMAF, a non-tumor-targeted ADC)
treatment once per week including single-agent controls was performed. Interestingly,
treatment with ABT-414 alone showed no effect, while treatment with navitoclax alone
reduced the tumor volume by approximately 20%. The ABT-414 and navitoclax treatment
further induced tumor regression by approximately 40% [258]. The combination effect
was EGFR-mediated, since the non-tumor (tetanus toxoid)-targeted ADC had little or no
synergistic effect with navitoclax. The combination effect of an alternative ADC, ABBV-321,
with navitoclax further supports EGFR dependency.

A screening of 1363 drugs in vitro in ten patient-derived TNBC cell lines identified that
the combination of afatinib and YM155, an inhibitor of baculoviral IAP repeat-containing
protein 5 (BIRC5; gene encoding survivin) expression [448], reduced the growth of patient-
derived TNBC cells in vitro and the PDX mammary tumors in vivo [449]. However, the
effect of the combination did not reach statistical significance compared with treatment with
YM155 alone. This dominant effect of YM155 might be due to its ability to reduce EGFR
expression in TNBC cells through an unknown mechanism. Clinically, high expression
levels of EGFR and survivin are associated with metastasis-free survival [449].

As mentioned earlier (see Section 3.4.2. Overexpression of Anti-apoptotic Proteins),
MCL1 has been reported to confer EGFRi resistance in an ELP complex-dependent man-
ner [260]. In addition, co-treatment of the MCL1 inhibitor S63845 synergistically induced
erlotinib sensitivity in TNBC cells. Further studies on the underlying mechanism of
ELP-complex-dependent MCL1 expression will be of interest in understanding the newly
identified oncogene addition in TNBC [260].

4.2.3. Combination with Sphingosine Kinase (SPHK) Inhibitors

SPHK1 has been linked to acquired drug resistance of various cancers to chemothera-
peutics and receptor inhibitors [530–538]. A high level of SPHK1 has also been associated
with poor OS and PFS among patients with TNBC [539]. One study demonstrated that the
combination of the SPHK inhibitor SKI II with gefitinib reduced the growth of MDA-MB-
468 xenograft tumors [389]. SPHK1 converts sphingosine to sphingosine 1-phosphate (S1P),
which provokes a variety of signaling pathways via binding to S1P receptors 1–5 (S1PR1-5).
SPHK1 has been established as an oncogene, and its overexpression is associated with a
poor clinical prognosis in most cancers [538,540]. More interestingly, a higher expression of
SPHK1 has been found in TNBC than in ER-positive breast cancer and is associated with a
poorer DFS [541]. In TNBC cells, pharmacological inhibition or siRNA-based knockdown
of SPHK1 inhibits insulin-like growth factor-binding protein-3 (IGFBP3)-enhanced EGFR
activation. Although the underlying molecular mechanism is still largely unknown, the
combination of an SPHK1 inhibitor and gefitinib significantly reduced tumor growth in an
MDA-MB-468 xenograft model [389].

Another SPHK1 pathway inhibitor, fingolimod (FTY720) [412,542], which is a clinically
approved S1PR1 antagonist [543], has also been demonstrated as a potentiator of gefitinib
in TNBC cells, especially in BL subtype cells, in vitro and in vivo [413]. The gefitinib and
fingolimod combination is also antiproliferative in HCC70 (a BL2 subtype), MDA-MB-231
(an MSL subtype), and BT549 (an M subtype) cells. The shRNA-based knockdown of
IGFBP3 abolished the synergism induced by the gefitinib and fingolimod combination.
CD44 has been reported to be upregulated by both EGFR [544] and SPHK1 [545] and to
be associated with a poor prognosis of TNBC [546] (see Section 3.4.8 for CD44 in EGFRi
resistance). In addition to CD44 downregulation by gefitinib alone, further downregulation
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occurs with the addition of fingolimod to gefitinib in TNBC cell lines [413]. Furthermore,
the gefitinib and fingolimod combination extended the survival of TNBC xenograft nude
and syngeneic immune-competent mice. The DNA-damaging agent induced direct bind-
ing and nuclear co-localization of IGFBP3 to EGFR in TNBC cells [547]. In HCC1806 and
MDA-MB-468 xenograft tumors, nuclear IGFBP3 was reduced in response to each drug
and further reduced by the combination [413]. However, the mechanism of action of this
combination remains to be investigated. Notably, a recent study demonstrated that the in-
hibition of SPHK1 activity either by siRNA or by PF-543, a sphingosine-competitive SPHK1
inhibitor [548], led to suppression of the Notch pathway, with reductions in migration and
invasion of TNBC cells in vitro and in vivo [539]. In addition, blocking SPHK1 activity also
enhanced the sensitivity of TNBC cells to 5-FU and doxorubicin.

4.2.4. Combination with ARF Exchange Activity Inhibitors (ARFis)

The ARFi brefeldin A (BFA) [549] has been demonstrated to sensitize MDA-MB-231
cells to gefitinib, leading to a synergistic increase of apoptosis [288]. In addition, BFA
potentiates the PI3K inhibitor LY294002 and the SFK inhibitor PP2 but not the MEKi
PD0325901. BFA increases cytotoxicity induced by the gefitinib and PP2 combination but
not the gefitinib and LY294002 combination or the gefitinib and PD0325901 combination.
The gefitinib + BFA + PP2 combination further reduced the levels of p-AKT, p-ERK1/2, and
p-SRC in MDA-MB-231 cells. Results from siRNA-based knockdown and overexpression
of ARF1 further support that the targeting ARF1 synergistically induced the gefitinib-
mediated apoptosis in MDA-MB-231 cells [288].

4.2.5. Combination with Protein–Protein Interaction Inhibitors (PPIis)

Targeting of the protein–protein interaction (PPI) to control disease has been the
most challenging task. However, recent advances have resulted in approval of PPIis
for marketing [550]. Disrupting the BAG3-HSP70 interaction has been demonstrated
to sensitize TNBC cells to EGFRis [419]. BCL2-associated athanogene 3 (BAG3) is a co-
chaperone for heat shock protein 70 (HSP70) and heat shock cognate 71 kDa (HSC70)
chaperone proteins [551,552]. High expression levels of BAG3 mRNA and protein have
been identified in approximately 50% of TNBC cell lines and clinical samples, and high
mRNA levels are correlated with a poor DFS [419]. A small-molecule inhibitor of the
BAG3-HSP70 interaction, YM-1 [418], enhanced the cetuximab-induced reduction of the
cell viability in two TNBC cell lines, BT549 and MDA-MB-468 [419]. Similarly, knockdown
of BAG3 also sensitized these cells to cetuximab. Both YM-1 and BAG3-KD targeted p-AKT
(S473) and p-FAK (Y397). BAG3-KD also reduced TNBC cell proliferation, migration, and
invasion in vitro [419]. These results further suggest the importance of the PI3K/AKT
and FAK pathways in regulating EGFRi resistance and a novel alternative strategy to
overcome this issue. Exploring novel PPIis may expand the potential therapeutic options
for TNBC treatment.

4.3. Combination with Conventional Chemotherapeutics

Conventional chemotherapeutics induce non-selective tumor cell killing and include
microtubule stabilizers (vinblastine, paclitaxel, and docetaxel), DNA alkylators (cisplatin
and carboplatin), anthracyclines, nucleoside analogues and nuclobases, topoisomerase
inhibitors (camptothecin), and metabolic inhibitors (5-FU and methotrexate) [553].

4.3.1. Combination with Microtubule Stabilizers

Epothilones, which are similar to taxanes, stabilize tubulin to prevent cancer cell divi-
sion [554]. Ixabepilone, a semisynthetic analog of epothiolone B [555], has been combined
with gefitinib to treat TNBC cells both in vivo and in vitro. The gefitinib and ixabepi-
lone combination reduced the growth of SUM159PT xenograft tumors compared with
single treatment with both drugs [406]. Although statistical significance was not achieved,
the combination also further reduced the growth of MDA-MB-231 tumors. In vitro, the
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gefitinib and ixabepilone combination reduced the autophagy markers p62 and LC3B
(microtubule-associated proteins 1A/1B light chain 3B) in both TNBC cells. The effect of
this combination on the mammosphere formation efficiency, both in vitro and in vivo, also
did not reach statistical significance. To date, the clinical results of the combination of
EGFRis and ixabepilone have shown limited efficacy (see Section 5. Clinical Studies).

4.3.2. Combination with DNA-Damaging Agents

DNA-damaging agents include a broad range of compounds that demonstrate anti-
cancer activity through either covalent or non-covalent DNA binding [556].

Cisplatin (cis-diamminedichloroplatinum 2, CDDP) interacts with DNA and forms
DNA adducts [557]. Cisplatin inhibits the proliferation of various cancer cells and activates
DNA damage responses. The combination of cisplatin with cetuximab induced apoptotic
cell death and antiproliferative effects in MDA-MB-468 cells, while cetuximab alone failed
to induce apoptotic cell death [365]. This synergism demonstrated no dose response of
cetuximab. In addition, the cetuximab and cisplatin treatment induced an increase in
BRCA1 and a decrease in EGFR [365]. Consistent with this finding, BRCA1 has been
demonstrated to downregulate EGFR by targeting its 3′-UTR by miR-146a [525]. BRCA1
transactivates miR-146a by binding to its promoter.

Anthracyclines, such as daunorubicin, doxorubicin, epirubicin, and idarubicin, are
chemotherapeutics extracted from Streptomyces species [558]. The combination of cetuximab
or panitumumab with cisplatin or epirubicin showed synergistic effect in decreasing cell
proliferation of the BRCA1-mutated TNBC cell line SUM1315MO2, which has a wild-type
KRAS and PTEN background, whereas no effect was found in another BRCA1-mutated
TNBC cell line, HCC9137, with PTEN deficiency [407]. The TNBC cell lines with wtBRCA1,
MDA-MB-231 (KRAS-mutated), and MDA-MB-468 (PTEN-null) also were not affected by
this combination. Of interest, restoration of wtBRCA1 abolished this synergism. Anti-EGFR
antibodies as a monotherapy did not affect the cell cycle distribution but DNA-damaging
agents alone induced marked G2 cell cycle arrest. The combination of anti-EGFR antibodies
and DNA-damaging agents redistributes the cell cycle by reducing G2 and increasing G1
cell cycle arrest. No additional increase in DNA-damaging, agent-induced apoptosis was
observed [407]. One plausible explanation for the differential effects of the combination
found in SUM1315MO2 and HCC1937 cells is activation of the PI3K/AKT pathway, since
PTEN-deficiency may cause activation of PI3K/AKT signaling in HCC1937 cells [559].
Further studies are needed to elucidate the mechanism of action for this combination.

4.3.3. Combination with Nucleoside Analogues and Nucleobases

Cytotoxic nucleoside analogues and nucleobases are antimetabolites that inhibit DNA
or RNA synthesis through incorporation into growing DNA or RNA strands and termina-
tion of their extension [560]. These agents are used as antiviral or anticancer chemother-
apeutics. These drugs include (1) the purine analogues fludarabine and cladribine, (2)
the pyrimidine analogues cytarabine and gemcitabine; and (3) the fluoropyrimidines
fluorouracil and capecitabine [560].

Gemcitabine is a cytidine analogue that is widely used to treat cancers such as bladder
cancer [561], breast cancer [562], NSCLC [563], ovarian cancer [564,565], and metastatic
pancreatic cancer [566] as a single agent or in combination with other chemotherapeu-
tics. After entering cells, gemcitabine is converted into various nucleotides, including
difluorodeoxycytidine triphosphate (dFdCTP), difluorodeoxycytidine diphosphate (dFd-
CDP), and difluorodeoxyuridine monophosphate (dFdUMP) [567]. These metabolites
inhibit DNA polymerase (dFdCTP) [568], ribonucleotide reductase (dFdCDP) [569,570],
and thymidylate synthase (dFdUMP) [571].

Gemcitabine has been reported to overcome erlotinib resistance in erlotinib-resistant,
EGFR-overexpressing A431 cells by downregulating p-AKT levels [11]. Similar to this squa-
mous carcinoma cell line, gemcitabine also reduced p-AKT in the TNBC cell lines BT549
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and MDA-MB-468 and synergistically reduced the viability of TNBC cells in combination
with erlotinib [11].

4.3.4. Combination with Multiple Chemotherapeutics

Similar to PKIs, the anticancer effects of EGFRis in combination with multiple chemother-
apeutics have been investigated. A triple combination of gefitinib, carboplatin, and doc-
etaxel showed synergism in antiproliferation assays [366]. This triple combination was
superior to gefitinib and carboplatin or gefitinib and docetaxel in antiproliferation assays.
Furthermore, this triple combination induced a similar level of G2/M cell cycle arrest
compared with the combination of carboplatin and docetaxel [366].

4.4. Other Combination Strategies
4.4.1. Combination of Anti-EGFR Antibodies

A strategy using combinations of non-competitive anti-EGFR antibodies has been
suggested to achieve robust degradation of EGFR, leading to tumor inhibition [381]. Ad-
ministration of a mixture of monoclonal antibodies (mAbs) may have resulted in synergistic
effects because individual mAbs have partial antitumor effects based on diverse neutral-
izing effects, such as inhibition of ligand binding, prevention of receptor dimerization,
and induction of receptor internalization. The combination of panitumumab and mAb111
reduced surface EGFR proteins by enhancing their internalization and degradation. Dimin-
ished surface EGFR led to reduction of TNBC cell invasion and colony formation in vitro
and tumor growth in vivo [381].

A mixture of six monoclonal antibodies against EGFR, HER2, and HER3 was reported
to reduce the growth of fifteen TNBC PDX tumors in vivo [446]. Treatment with this
Pan–HER antibody mixture reduced the levels of p-EGFR (Y1068) and p-HER3 (Y1289)
and their total protein levels, with consistent reductions in their downstream effectors
p-AKT (T308), p-ERK1/2, and p-FAK (Y397) in PDX tumors in vivo. The RT-PCR-based
expression analysis of 88 EGFR-associated genes demonstrated the downregulation of
genes such as RAS, RAF, MEK, ERK, JNK, c-Jun, c-Fox, JAK, STAT3, IKK, NF-κB p52, and
p65/RelA [446]. These results are consistent with the EGFR-NF-κB crosstalk previously
reported (see Section 3.3.3. Activation of the NF-κB Pathway).

4.4.2. Combination in a Single Molecule: Bispecific Antibody

A single-chain diabody is a recombinant multivalent and bispecific single-chain an-
tibody fragment [572]. Recently, a tetravalent, bispecific single-chain diabody-Fc fusion
protein targeting EGFR and HER3 was developed, and its anticancer efficacy in TNBC cells
both in vitro and in vivo was demonstrated [445]. Since the kinase activity of HER3 is very
low (see Section 3.2. Activation of Bypass Signaling Pathways), functional blocking of HER3
is achievable through antibodies binding to its ectodomain, but not with small-molecule
TKIs [445]. The diabody, composed of the antigen-binding sites of a humanized cetuximab
(IgG hu225) and IgG 3-43, which target EGFR and HER3, respectively, has been reported to
downregulate p-EGFR (Y1068) and p-HER3 (Y1289), as well as their downstream effectors
p-AKT (T308) and p-ERK (T202/Y204), in FaDu, a hypopharyngeal carcinoma cell line.
The diabody was further demonstrated to reduce TNBC CSC (ALDHHigh) populations
both in vitro and in vivo and consistently reduced TNBC tumor regrowth in vivo more
efficiently than the parental antibodies alone or a combination of them [445].

4.4.3. Combination with Autophagy Inhibitors

As mentioned earlier, autophagy has been established as a novel mechanism and
therapeutic target to overcome anticancer drug resistance [331–333]. EGFR TKIs have been
reported to activate autophagy as a cytoprotective response in various cancer cell lines,
including breast cancer [333], lung cancer [573,574], squamous cell carcinoma, and tran-
sitional cell carcinoma [337]. Gefitinib-induced autophagy in two TNBC cell lines, MDA-
MB-231 and MDA-MB-468, is inhibited by either 3-methyladenine (3-MA) or bafilomycin
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A1 (Baf-A1) [415]. Blocking the gefitinib-induced autophagy resulted in synergistic aug-
mentation of cytotoxicity in TNBC cells in vitro and anticancer effects on TNBC tumors
in vivo. The combination of gefitinib with autophagy inhibitors induced G0/G1 cell cycle
arrest and accumulation of DNA damages as demonstrated by increases in the levels of
phosphorylation of ataxia telangiectasia mutated (ATM), CHEK1, CHEK2, and γ-H2AX, a
hallmark of DNA double-strand breaks [575]. The combination further induced apoptosis
with induction of BCL2-associated X (BAX), cleaved caspase-3, and cytochrome C release,
and a reduction in the anti-apoptotic protein BCL2 [415].

The combination of osimertinib and chloroquine (CHQ), an autophagy and lysosome
inhibitor [576], has been reported to show anticancer effects, namely a reduction in cell
viability in MDA-MB-231 cells [426]. Concordantly, LC3B-II, an autophagic marker that
is tightly associated with autophagosomal membranes [577], was upregulated by this
combination. Furthermore, the proapoptotic proteins, BCL2-associated agonist of cell death
(BAD) [578] and active caspase-3, were increased by this combination. These results suggest
that the osimertinib and CHQ combination exerts anticancer effects through autophagy–
apoptosis crosstalk, but further details remain to be determined [426].

Interestingly, a recent study demonstrated that blocking autophagosome clearance
with the combination of gefitinib and ROCKi (GSK269962A) might induce antitumor
activity in TNBC [339] (see Section 4.1.11. Combination with Rho-Associated, Coiled-Coil-
Containing Protein Kinase (ROCK) Inhibitors).

4.4.4. Combination with Antioxidants

Inhibiting ROS is a potential approach to overcome EGFRi resistance. Previously,
co-treatment of genetically engineered catalase sensitized the TNBC cell line MDA-MB-
468 to gefitinib [373,417]. In MDA-MB-468 cells, a high level of ROS induced tyrosine
phosphorylation of EGFR [373]. Transduction of genetically engineered catalase (CAT-SKL)
reduced ROS-mediated EGFR phosphorylation and enhanced gefitinib cytotoxicity in two
TNBC cell lines, MDA-MB-468 and SUM149PT [373]. A subsequent study demonstrated
that CAT-SKL inhibits CSCs and erlotinib inhibits non-CSCs in a subset of TNBC cell
lines, such as HCC70 and MDA-MB-468 cells [417]. CAT-SKL reduced the expression of
methyl-CpG binding domain 2 isoform c (MBD2c), leading to a reduction of mammosphere
formation. Overexpression of MBD2c in MDA-MB-468 cells increased the number and
size of mammospheres. Co-treatment with the antioxidant (−) epicatechin with erlotinib
confirmed the use of the CAT-SKL and erlotinib combination [417]. These results imply the
importance of targeting subpopulations of heterogenous tumor cells. Further studies on
the role of MBD2c in CSCs may provide new insights for TNBC therapeutics.

4.4.5. Combination with Natural Products

Icaritin is a natural compound from the Epimedium genus with anticancer activity [579].
The combination of cetuximab with icaritin reduced cell viability and induced apoptosis
in the TNBC cell lines MDA-MB-231 and MDA-MB-436 [450]. This combination further
resulted in a reduction of MDA-MB-231 and MDA-MB-436 xenograft tumor growth in vivo.
Icaritin has been demonstrated to decrease both EGFR and ERα36 expression in TNBC
cells [580]. The expression of ERα36 is associated with stemness and metastasis of breast
cancer and chemoresistance in ER-negative breast cancer (see Section 3.4.5. Overexpression
of the Estrogen Receptor Alpha (Erα) Variant).

4.4.6. Combination with Gene Therapy

As mentioned earlier, p53 mutations are commonly found in TNBC [120,192]. Since
p53 mutations result in gain-of-function as an oncogene as well as loss-of-function in
terms of tumor suppressor function, targeting mtp53 or restoring wild-type p53 (wtp53)
is a promising therapeutic option [239]. Notably, adenoviral-vector-expressing wtp53
(Ad-wtp53) was approved as the world’s first commercial gene therapy product by the
Chinese regulatory authority [581]. Ad-wtp53 decreased the growth of MDA-MB-468
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xenograft tumors in combination with gefitinib [398]. Combined treatment with Ad-wtp53
and gefitinib induced G2/M cell cycle arrest and apoptosis and reduced activation of
the PI3K/AKT/mTORC1 pathway. It would be an interesting research topic to evaluate
whether small-molecule inhibitors of mtp53, such as the SIRT1 activator YK-3-237 [240],
augment EGFRi effects in TNBC cells.

The combination of cetuximab with an miR-155-5p antagomir has been demonstrated
to enhance the anticancer effects of cetuximab in MDA-MB-468 cells through promot-
ing apoptosis and pyroptosis, both in vitro and in vivo [453]. Pyroptosis is caspase-1-
dependent programmed cell death and is proinflammatory in nature [582]. The common
features of this combination effect in vitro and in vivo are the downregulation of p-EGFR
and upregulation of gasdermin-E (GSDME). MiR-155-5p directly targets the 3′-UTR of
GSDME mRNA [453]. Of importance, GSDME is a precursor protein of the pore-forming
N-terminus of GSDME (GSDME-N) that converts apoptosis to pyroptosis [583,584]. Upon
cleavage by caspase-3, GSDME-N binds to and perforates the plasma membrane to trigger
inflammatory pyroptosis [584]. These results suggest the potential importance of pyroptosis
as a novel mechanism of EGFRi potentiation by drug combination.

4.5. Immuno-Oncological Approaches

Since TNBCs have been identified as an immunogenic malignance [585–588], immuno-
oncological approaches may be promising alternatives for TNBC treatment. The immuno-
oncological approaches described in the following sections have not been fully explored
yet in combination with EGFRis; the future studies on EGFR targeting in TNBC will be
expected to include these new modalities.

4.5.1. ADCC

Although cetuximab alone did not induce antiproliferative effects or apoptosis in
TNBC cells in vitro, it did induce the NK-cell-dependent ADCC in vitro in EGFR-expressing
TNBC cells [369]. This ADCC was further enhanced in vitro, ex vivo, and in vivo by inter-
leukin (IL)-2 or IL-15, which stimulates NK cells to produce interferon (IFN)-γ [369,370].
The ADCC induced by the cetuximab and IL-2 or IL-15 combination was more evident,
since the combination reduced the xenograft tumor volume with an increase in infiltrating
NK cells, whereas no significant induction of direct antiproliferative effects on the tumor
was observed [370]. A subsequent study reported that the combination of cetuximab
and IL-15 further activated tumor killing by NK cells and stimulated the maturation of
dendritic cells (DCs) in a co-culture experiment with the TNBC cell line IIB-BR-G [439].
Taken together, the combination of anti-EGFR antibodies and interleukin may enhance
ADCC in the tumor microenvironment, even in the absence of a direct antitumor effect by
anti-EGFR antibodies.

Recently, sacituzumab govitecan (Trodelvy®) received accelerated FDA approval for
the treatment of patients with metastatic TNBC [589]. Sacituzumab govitecan is an antibody
drug conjugate (ADC) composed of a humanized monoclonal antibody for trophoblast cell
surface antigen 2 (Trop-2) and topoisomerase inhibitor SN-38 [590]. Sacituzumab govitecan
was granted regular approval by the US FDA for TNBC on 7 April 2021 [591]. As for IL-2
and IL-15, it is of interest whether the combination of EGFRis and sacituzumab govitecan
is effective for TNBC or not.

4.5.2. Chimeric Antigen Receptor (CAR)-Engineered Cell Therapies

CAR-engineered immune cell therapy has been established as a promising immuno-
oncologic strategy for cancer therapy. After the great success of CAR-engineered T (CAR-
T) cell therapy [592], CAR-engineered NK (CAR-NK) cells [593] and CAR-engineered
macrophages (CAR-M) [594] have been developed to reinforce the treatment of multiple
cancers. The major challenge of CAT-T is that the clinical benefit is limited in hematologic
cancers but not in solid tumors [595,596].
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Cell surface antigens, including RTKs (e.g., AXL, EGFR, MET, ROR, etc.), which are
overexpressed in TNBCs, are promising targets for CAR-T cell therapy [597]. Since in vitro
and in vivo studies have demonstrated the efficacy of CAR-T cell therapy against TNBC
cells, combination approaches may further expand the therapeutic opportunities in the
future. In fact, CD32A131R–chimeric receptor (CR) T cells in combination with cetuximab or
panitumumab resulted in in vitro anticancer activity in TNBC cells [447]. Cetuximab (IgG1)
can induce ADCC- of EGFR-positive cells, whereas panitumumab (IgG2) cannot be due to
distinct binding to the different Fc gamma receptors (FcγRs) CD16 and CD32A; IgG2 has
low affinity for CD16, while IgG1 and IgG2 bind to CD32A with different affinities [598,599].
The CD32A131R-CR T cells were superior to CD16158F-CR T cells in their antitumor activity
against the EGFR-positive TNBC cell line MDA-MB-468 [447]. The antitumor effects of
CD32A131-CR T cells in combination with anti-EGFR antibodies were dependent on the
level of cell surface EGFR, since this combination does not induce cytotoxicity of MDA-
MB-231 cells. The level of EGFR was approximately 2.1-fold higher in MDA-MB-468 cells
than in MDA-MB-231 cells [447]. Notably, recently the combination of small-molecule
inhibitors and CAR-T cell therapies has been extensively studied in both preclinical and
clinical settings [600–603].

4.5.3. Immune Checkpoint Inhibitors (ICIs)

An immune checkpoint refers to molecules acting as gatekeepers of immune re-
sponses [604]. Blocking an immune checkpoint is a promising approach to enhance anti-
tumor immunity. Programmed cell death ligand 1 (PD-L1; also named CD127 or B7-H1)
is a ligand for the PD-1 immune checkpoint receptor that inhibits the T-cell effector func-
tion in the tumor microenvironment, leading to escape of tumor immunity [605]. PD-L1
expression has been found in 20% of TNBCs and is positively regulated by the PI3K/AKT
pathway [606]. The ICI atezolizumab, which is an anti-PD-L1 antibody, in combination with
nab–paclitaxel has been approved by the FDA for TNBC treatment [607]. More recently, a
pembrolizumab (KEYTRUDA) and chemotherapy (paclitaxel protein-bound, paclitaxel,
or gemcitabine plus carboplatin) combination was approved by the US FDA for locally
recurrent unresectable or metastatic TNBC [608]. Future studies on the combination of
EGFRis and ICIs will be of interest.

4.6. Use of EGFR as a Docking Protein for Targeted Drug Delivery

Membrane receptor proteins that are highly expressed in tumors are also potential
candidates for therapeutic targeting, imaging, and docking proteins for receptor-targeted
delivery systems [609,610]. Drugs can be directly conjugated to the targeting ligand against
receptor proteins or encapsulated into receptor-targeted nanocarriers [610]. Due to its high
level expression on the surface of various cancers, EGFR has been established as a docking
protein for enhanced delivery of therapeutic and diagnostic agents to the tumor stroma
with EGFR-overexpressing cancers [248,610–615]. For example, approximately 8–80-fold
higher expression of EGFR (0.16–1.5× 106 vs. 1.9× 104 per cell) has been reported in breast
and head and neck cancer cells compared to the normal human milk-derived cells [616,617].

4.6.1. Direct Drug Conjugates

ADCs are composed of monoclonal antibodies directly linked to cytotoxic drugs
(payloads) [618,619]. As a fast growing drug classes, currently nine ADCs are approved by
the US FDA for cancer treatment [618]. As mentioned earlier, sacituzumab govitecan has
been granted accelerated approval for patients with metastatic TNBC [602]. EGFR-targeting
ADCs are also being developed (see the recent review [620]). In addition, beyond cytotoxic
drugs, various payloads have been conjugated to EGFR-targeting molecules to make ADCs
with novel mechanisms, which include photoimmunotheranostics, immunotoxins, cytolytic
proteins, and immune modulating drugs (reviewed in [620]). Growing knowledge on the
chemistry of the antibodies, linkers, and payloads and their impacts on clinical efficacy can
provide further developments of this new modality [618,620].
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4.6.2. EGFR-Targeting Nanocarriers

Nanocarriers are nano-sized (10–400 nm) particles that are able to encapsulate ther-
apeutic or diagnostic molecules, which include lipid nanoparticles (liposomes), biocom-
patible polymers, surfactants, protein particles, RNA nanoparticles, and extracellular
vesicles [248,610–615,621,622]. A variety of EGFR-targeting molecules have been utilized
to effectively and selectively deliver nanocarriers to tumor stroma, including monoclonal
antibodies, single-chain antibodies, nanobodies, affimers, affinity peptides, and oligonu-
cleotide aptamers [623–630]. EGFR-targeting nanocarriers can deliver encapsulated drugs
more efficiently via receptor-mediated endocytosis; however, escaping lysosomal degrada-
tion is a challenging issue that needs to be resolved [631–633]. Since nanocarriers are able
to encapsulate and deliver insoluble small molecules, antibodies, and nucleic acids such
as miRNA and mRNA, EGFR-targeting nanocarriers can provide alternative therapeutic
opportunities for patients with TNBC and other EGFR-overexpressing cancers.

5. Clinical Studies

A relatively small number of clinical trials have been conducted on the combination
of anti-EGFR therapeutics with other drugs. Interestingly, most of the clinical studies of
the combinatorial approach have been performed with anti-EGFR antibodies (Table 5), in
contrast to preclinical studies (Table 3). Among the 13 studies reported, 10 studies utilized
anti-EGFR antibody therapeutics. As mentioned earlier, one disadvantage of anti-EGFR
antibodies is that they are slowly infused intravenously over a recommended time period to
avoid side effects [38,39]. In contrast, similar to other small-molecule PKIs, EGFR TKIs are
orally bioavailable [52]. This advantage of EGFR TKIs provides convenience in designing
and dosing in clinical studies and in medicating patients on a daily basis. In addition,
multigeneration EGFR TKIs provide wide opportunities considering TNBC genetics or
resistance to anticancer drugs.

5.1. Anti-EGFR Antibodies in Combination Therapy in Clinical Studies of TNBC

The benefit for patients with TNBC with the combination of cetuximab and paclitaxel
was reported in a case report as early as 2007 [634]. A 62-year-old woman was diagnosed
with skin metastasis of TNBC after mastectomy followed by adjuvant anthracycline-based
chemotherapy and radiotherapy. Various chemotherapies with miltefosine, docetaxel, and
vinorelbin + FU failed to treat the metastasized tumor. Surprisingly, a six-course treatment
of paclitaxel + cetuximab improved the infiltrating skin metastases [634]. However, the
follow-up study failed due to the patient’s return to her country.

Combination treatment with cetuximab and carboplatin for patients with TNBC
showed limited outcomes in a phase 2 clinical trial [635]. Compared to the cetuximab
monotherapy, cetuximab + carboplatin failed to improve the time to progression (TPP) or
OS, with an overall response rate (ORR) < 20% (Table 5)

In addition, unlike the in vitro study [365], a phase 2 clinical study of cetuximab + cisplatin
versus cisplatin for patients with TNBC did not meet the primary end point, which was an
ORR > 20% [636]. However, cetuximab + cisplatin resulted in a longer PFS and OS (Table 5).

A pilot phase 2 study of a cetuximab and docetaxel combination as a neoadjuvant
therapy in stage 2 TNBC showed modest efficacy with manageable toxicity [637]. The
pathologic complete response (pCR) rate was 24% and the complete clinical response (cCR)
rate was 22% from 25 assessable patients.

In a randomized phase 2 clinical study, an antimicrotubule agent ixabepilone and the
combination of ixabepilone and cetuximab resulted in similar clinical activities in the first-
line treatment of patients with advanced TNBC [638]. These results did not confirm those
of a preclinical study that showed the antitumor efficacy of the gefitinib and ixabepilone
combination in the SUM159PT xenografts [406].

Another phase 2 clinical trial involved single-arm treatment with the combination of
cetuximab and irinotecan [639]. Among 19 patients, 58% had TNBC. The response rate (RR)
of TNBC was 18%, whereas that of non-TNBC was 0%. Although the study was terminated
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early due to the low RR and rapid disease progression, potentially promising results were
noted in patients with TNBC.

Another single-arm study involved the combination of panitumumab with 5-FU
+ epidoxorubicin + cyclophosphamide (FEC) followed by the combination of panitumumab
with docetaxel [640]. The results showed that the treatment was efficacious, with acceptable
toxicity. Among 47 assessable patients, the CR was 59.6% (28). A high CD8+ tumor-
infiltrating lymphocyte (TIL) count was found to be the strongest predictor for pCR in
this study.

A single-arm phase 2 clinical study evaluated a triple combination of the anti-EGFR
antibody panitumumab with paclitaxel and carboplatin and showed limited efficacy due
to side effects, including neutropenia and thrombocytopenia [641]. Among 14 assessable
patients, the ORR was 46% and 2 patients achieved CR after 6 and 9 cycles of therapy.
Prolonged neutropenia and thrombocytopenia limited the intended dosing. Similar dose-
limiting toxicities have been identified with other EGFRis and platinum-based chemother-
apy combinations in patients with NSCLC and metastatic breast cancer [642–644].

A single-arm phase 2 study of the combination of panitumumab and neoadjuvant
chemotherapy showed the highest pCR rate ever reported in patients with TNBC; however,
10 patients were hospitalized due to treatment-related toxic effects, such as neutropenia,
diarrhea, pulmonary embolism, bleeding from the rectum, fever without neutropenia, and
confusion of unknown origin [645]. The treatment scheme was relatively complex (Table 5).
The expression of p-EGFR and cyclooxygenase-2 (COX2) was correlated with pCR, while
no correlations were observed in the expressions of EGFR, E-cadherin, vimentin, and
nodal. RNA sequencing analysis revealed the 2 downregulated (POU3F3 and EGF1) and
4 upregulated (BBOX1, GLYATL2, MUCL1, and LCN2) genes in samples from patients with
TNBC after the first dose of panitumumab treatment. A randomized phase 2 clinical trial
(NCT02876107) of the same chemotherapy with and without panitumumab in patients
with TNBC is currently under way.

A single-arm phase 2 trial of the combination of panitumumab, gemcitabine, and
carboplatin showed no beneficial effect in patients with TNBC [646]. The primary endpoint
of median PFS (4.4 months) did not reach the prespecified PFS (5.5 months). No correlation
between EGFR amplification, aberrant PI3K pathway activation, or p53 expression and
response to this combination has been found.

5.2. EGFR TKIs in Combination Therapy in Clinical Studies of TNBC

A randomized phase 2 clinical study of gefitinib with neoadjuvant epirubicin and
cyclophosphamide (EC) in estrogen-negative breast cancer was not successful. However,
post hoc analysis revealed that a significantly higher pCR rate was observed in the TNBC
(7/41, 17%) than in the non-TNBC (1/48, 2%) subgroups, but no significant difference was
observed between combination therapy (7/41) and EC (5/41) [647].

A phase 1 study of the erlotinib and metformin combination was conducted in 8 pa-
tients with TNBC [649]. with a fixed dose of erlotinib of 150 mg daily, a 3 + 3 design of
metformin dose escalation was evaluated to determine the dose-limiting toxicities (DLTs).
Although no DLTs were observed, no efficacy was demonstrated.

An open-label pilot study of the lapatinib and veliparib combination demonstrated the
potential antitumor activity of this combination in patients with advanced TNBC without
DLTs [648]. Gene expression analysis revealed an increase in the expression of genes
involved in antigen presentation, immune cell infiltration, and cytokine and chemokine
signaling. As expected, a reduction was observed in the DNA damage repair genes, such
as BRCA1, CRYAB, and CKB. Interestingly, the lapatinib and veliparib combination was
reported to have synergistic efficacy in reducing colony formation of TNBC cell lines
in vitro [372].
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Table 5. Clinical trials of EGFR combination therapy for patients with TNBC.

NCT Number
(Publication Year)

EGFRi Comb Drug Phase

Clinical Outcomes RefTreatment

Enrolled

Status

Sponsor

NCT00232505(2012)

Cetuximab Carboplatin Phase 2 Combo
(n = 71)

Cetuximab
(n = 31)

[635]

QW 1, IV 2,
first: 400 mg/m2; subsequently, 250 mg/m2

AUC 3 of 2 IVs on days 1, 8,
and 15 of each 28-day cycle

102

Competed CR 4 1 (1%) 0 (0%)

Bristol–Myers
Squibb

PR 5 11 (16%) 2 (6%)

SD 6 15 (21%) 3 (10%)

PD 7 38 (54%) 26 (84%)

NE 8 6 (8%) 0 (0%)

TTP 9 2.1 months 1.4 months

Median OS 10 10.4 months 7.5 months

NCT00463788
(2013)

Cetuximab Cisplatin Phase 2 Combo
(n = 115)

Cisplatin
(n = 58)

[636]

QW, IV,
first: 400 mg/m2; subsequently, 250 mg/m2

Q3W 11, IV,
75 mg/m2 on day 1, 6 cycles

173

Completed CR 2 (2%) 1 (2%)

Merck KgaA PR 21 (18%) 5 (9%)

SD 48 (42%) 18 (31%)

PD 34 (30%) 31(53%)

NE 10 (9%) 3 (5%))

Median PFS 12 3.7 months 1.5 months

Median OS 12.9 months 9.4 months
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Table 5. Cont.

NCT Number
(Publication Year)

EGFRi Comb Drug Phase

Clinical Outcomes RefTreatment

Enrolled

Status

Sponsor

NCT00600249
(2016)

Cetuximab Docetaxel
Phase 2 Combo

(n = 25)

[637]
QW, 18 IVs,

first: 400 mg/m2;
subsequently:
250 mg/m2

Q3W, (100 mg/m2) on day 1, 6 cycles
25

Completed pCR 6 (24%)

Merch Serono and
Sanofi-Aventis

cCR 13 22%

NCT00633464
(2015)

Cetuximab Ixabepilone Phase 2 Combo
(n = 39)

Ixabepilone
(n = 40)

[638]

QW, IV,
first: 400 mg/m2;

subsequently,
250 mg/m2

Q3W, IV, 400 mg/m2

79

Completed CR 0 3 (7.5%)

Bristol–Myers
Squibb

PR 14 (35.9%) 9 (22.5%)

SD 12 (30.8%) 17 (42.5%)

PD 10 (25.6%) 9 (22.5%)

NE 1 (2.6%) 2 (5.0%)

ORR 14 (35.95) 12 (30.0%)

Median PFS 4.1 months 4.1 months
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Table 5. Cont.

NCT Number
(Publication Year)

EGFRi Comb Drug Phase

Clinical Outcomes RefTreatment

Enrolled

Status

Sponsor

NCT00275041
(2016)

Cetuximab Irinotecan
Phase 2 Combo

(n = 19)

[639]

QW, IV,
first: 400 mg/m2;

subsequently
250 mg/m2

IV, 80 mg/m2 on days 1 and 8 of a 21-day cycle.
19

Completed CR 1

NCI and Alliance
for Clinical Trials

in Oncology

PR 1

ORR 11%

RR TNBC, 18% vs. non-TNBC,
0%

Median OS 9.4 months

Median TTP 1.4 months

NCT00933517
(2014)

Panitumumab
FEC 14 and
docetaxel

Phase 2 Combo
(n = 47)

[640]

62

Q3W, IV,
9 mg/kg, 8 cycles

Q3W, IV, FEC:
500/100/500 mg/m2, 4 cycles

followed by Q3W, IV
docetaxel: 100 mg/m2,

4 cycles

Completed CR 28 (59.6%)

Centre Jean Perrin
PR 3 (6.4%)

SD 3 (6.4%)

Progression 2 (4.3)

NE 11 (23.4)



Pharmaceuticals 2021, 14, 589 47 of 76

Table 5. Cont.

NCT Number
(Publication Year)

EGFRi Comb Drug Phase

Clinical Outcomes RefTreatment

Enrolled

Status

Sponsor

NCT01009983
(2015)

Panitumumab Paclitaxel
Carboplatin Phase 2 Combo

(n = 14)

[641]6 mg/kg on days 1 and 15
80 mg/m2 paclitaxel and

carboplatin AUC of 2 on days
1, 8, 15

14 CR 2 (14.3%)

Terminated PR 4 (28.6%)

Wake Forest Univ
Health Sci

SD 3 (21.4%)

PD 4 (28.6%)

NE 1 (7.1%)

28-day cycle

NCT01036087
(2018)

Panitumumab Nab-paclitaxel + carboplatin Phase 2 TNBC
n = 19

HR(+)/HER2(−)
n = 21

[645]1 dose of panitumumab (2.5 mg/kg), then QW, panitumumab (2.5 mg/kg) +
nab-paclitaxel (100 mg/m2) + carboplatin, 4 cycle followed by Q3W, FU

(500 mg/m2) + epirubicin (100 mg/m2) + cyclophosphamide (500 mg/m2),
4 cycles

40 pCR 8 (42.1%) 3 (14.2%)

Completed

Celgene Corp and
Amgen

NCT00894504
(2016)

Panitumumab Gemcitabine + Carboplatin Phase 2 Combo
(n = 71)

[646]Q2W 15, IV,
6 mg/kg, 3 cycles

Q2W, IV, Gemcitabine, 1500
mg/m2 + Carboplatin, AUC

= 2.5 IV, 3 cycles

71 Median PFS 4.4 months

Completed ORR 42%

SCRI 16, Amgen
and Eli Lilly
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Table 5. Cont.

NCT Number
(Publication Year)

EGFRi Comb Drug Phase

Clinical Outcomes RefTreatment

Enrolled

Status

Sponsor

NCT00239343
(2011)

Gefitinib
Epirubicin +

Cyclophosphamide
Phase 2

Combo
(n = 71)

Epirubicin +
Cyclophosphamide(n

= 73)

[647]

144

250 mg, daily, 12 weeks

Q3W,
epirubicin 90 mg/m2 +
cyclophosphamide 600

mg/m2, 4 cycles

Completed

AstraZeneca pCR 12 (17%) 9 (12%)

CR 7 (10%) 7 (10%)

PR 41 (58%) 38 (52%)

SD 17 (24%) 26 (43%)

PD 5 (7%) 2 (2.7%)

NE 1 (1.4%) 0 (0%)

NCT02158507
(2021)

Lapatinib Veliparib NA Combo
(n = 17)

[648]

1250 mg, daily, 28 days, starting at cycle 1 day 1

200 mg, every
12 h for
28 days,

starting at
cycle 1 day 2

23 PR 4 (23.5%)

Completed SD 2 (11.8%)

GSK and AbbVie
PD 11 (64.7%)

>2 cycles
1 QW, once weekly; 2 IV, intravenous; 3 AUC, area under the curve; 4 CR, complete response; 5 PR, partial response; 6 SD, stable disease; 7 PD, progressive disease; 8 NE, non-evaluable; 9 TTP, time to progress;
10 OS, overall survival; 11 Q3W, once every three weeks; 12 PFS, progression-free survival; 13 cCR, complete clinical response rate; 14 FEC, 5-FU + epidoxorubicin + cyclophosphamide; 15 Q2W, once every 2 weeks;
16 SCRI, SCRI (Sarah Cannon Research Institute) Development Innovations, LLC.
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6. Conclusions

A wide variety of EGFRi combinations have been successfully applied in TNBC
cells preclinically, both in vitro and in vivo (Table 3); however, most of them have not
been evaluated clinically yet. To date, no appreciable success of EGFRi combinations
has been found in clinical trials (Table 5). Further investigation of the potential of EGFRi
combinations should be performed to develop better therapeutics for TNBC in the future.
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