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Evaluation of Direct Haptic 4D 
Volume Rendering of Partially 
Segmented Data for Liver Puncture 
Simulation
Andre Mastmeyer, Dirk Fortmeier & Heinz Handels

This work presents an evaluation study using a force feedback evaluation framework for a novel 
direct needle force volume rendering concept in the context of liver puncture simulation. PTC/PTCD 
puncture interventions targeting the bile ducts have been selected to illustrate this concept. The haptic 
algorithms of the simulator system are based on (1) partially segmented patient image data and (2) a 
non-linear spring model effective at organ borders. The primary aim is to quantitatively evaluate force 
errors caused by our patient modeling approach, in comparison to haptic force output obtained from 
using gold-standard, completely manually-segmented data. The evaluation of the force algorithms 
compared to a force output from fully manually segmented gold-standard patient models, yields a low 
mean of 0.12 N root mean squared force error and up to 1.6 N for systematic maximum absolute errors. 
Force errors were evaluated on 31,222 preplanned test paths from 10 patients. Only twelve percent of 
the emitted forces along these paths were affected by errors. This is the first study evaluating haptic 
algorithms with deformable virtual patients in silico. We prove haptic rendering plausibility on a very 
high number of test paths. Important errors are below just noticeable differences for the hand-arm 
system.

Virtual reality (VR) surgery simulation with needle insertion into blood vessels1, 2 or for liver biopsy3, 4 is a current 
field of research, which deals with the topics of visual and haptic rendering (visuo-haptics) as well as the genera-
tion of virtual patient models. A major part of such simulation systems, namely the force feedback during needle 
insertion, has been surveyed5, 6. The downside of most systems is their inability to easily simulate an intervention 
on new patient data (patient-specific) with little manual segmentation preparation time and effort, for which an 
overview was recently given by ref. 7. Typical FEM-based simulators often need suitable volumetric meshing 
and on-line locally-adaptive remeshing of the organ models8. In addition, these simulators usually require a fully 
segmented 3D patient, which leads to high segmentation efforts and avoids the use of VR simulators in a clinical 
setting. This fact and missing patient motion dynamics are the major drawback of state of the art simulators. Our 
works using 3D and 4D CT image data9, 10 remedy this situation.

In ref. 11, a 4D simulator for percutaneous transhepatic cholangiography (PTC) is presented. There, surface 
mesh models have to be created and following this paradigm neither direct haptic nor visual rendering of patient 
image data is used. A similar procedure, percutaneous transhepatic-cholangiodrainage (PTCD), is a needle inser-
tion intervention in which dilated bile ducts, caused by cholestasis, are punctured, (see Fig. 1) to relieve the 
patient by drainage via 17 G catheters12. Cholestasis can be caused by i.e. gallstones or tumors in the common 
bile duct (CHD). To reach the target (right hepatic bile duct, RHD), the needle has to be inserted between the 
ribs (intercostal spaces) and into the liver. Modern intervention techniques use an ultrasound (US) probe with 
an attached needle guide (Fig. 2) that helps to keep the needle on paths inside the US image plane. For improved 
planning, a CT volume image can be acquired before performing the intervention.

Previously, we have presented the predecessor AcusVR-3D13 featuring fully manually-segmented patient 
models and our new simulator AcusVR-4D9 with simulated US imaging needle guidance as a valuable training 
and planning tool. The old system consisted of a Geomagic Phantom Premium 1.5 6DOF haptic device with a 
combination of shutter glasses and a CRT monitor for VR immersion. This 3D VR simulator was mainly aimed 
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at the training of lumbar punctures. A user study was conducted and training has been shown to be effective13. 
However, AcusVR-3D and other state of the art systems rely on time-consuming complete manual segmentations. 
Depending on the anatomical site, standard technique manual segmentations can take more than 40 hours14 for 
a single patient data set.

Regarding haptics, needle insertion procedure simulations must mimic stiffness, cutting and friction forces at 
the needle tip and shaft5, 6, 15. Phases during needle insertion to be modeled are: pre-puncture pullback, puncture 
incident, penetration phase and tissue exit. In this paper, we focus on needle insertion and the axial force compo-
nents. Typically, the retraction of the needle emits the same shaft forces as encountered during insertion without 
the cuts from the needle tip. Needle deflection (bending), tissue deformation and non-axial forces10, 16 are also 
relevant for realistic, real-time, visuo-haptic simulations. However, these topics are beyond the scope of this work.

Currently, haptic rendering in these visuo-haptic simulations raises the need for evaluation methods and 
detailed studies of the force output at the handle regarding needle insertion (Fig. 2). A preliminary study using 
one static 3D patient was presented in ref. 17. In this paper, we focus the quantitative haptic evaluation of the axial 
force output of our new simulator AcusVR-4D and generate a high number of test paths from ten test patients for 
the simulation of PTCD. Along these test paths, forces from reference and new haptic algorithms are calculated 
and compared. In the absence of in vitro/vivo gold-standard force measurements, we use reference forces based on 
previously evaluated fully segmented patient data (in silico)9, 13. Qualitatively, the haptic parameters determining 
the force output using our new system regarding liver structures, were tuned by two medical experts experienced 
in PTCD liver punctures9. Here, we present the quantitative haptics evaluation counterpart. We think the design 
of the presented evaluation experiment is a practicable way to bridge the gap between qualitative and still missing 
quantitative evaluations of virtual haptic simulations.

The aim of this study is to compare axial force errors of simulated needle insertion force feedback of a full 
patient segmentation, against a partial segmentation based force calculation algorithm. We also characterize the 

Figure 1.  Schematic overview of needle insertion into the right hepatic duct (RHD): A tumor closes the 
common hepatic duct (CHD) and cholestasis results.

Figure 2.  Schematic overview of ultrasound (US) guided needle insertion into the right hepatic duct (RHD): A 
US probe is put on the skin and captures a dilated hepatic duct (target structure). The needle is guided on a rail 
at the side of the probe. Puncturing of risk structures such as blood vessels should be avoided.
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differences in terms of the magnitude and location of the errors found. The errors observed here are the quantita-
tive marks of our virtual training simulator based on our virtual patient modeling approach, where only certain 
key structures need reviewed segmentations.

The article is organized as follows: First, quantitative results using the evaluation methods on page 12 of our 
haptic sub-system for PTC(D) are given in section “Results” on the current page and discussed on the following 
page. The methods on page 6 start with an overview of AcusVR-4D and its hardware and software components. 
Then, the concept of our virtual patient modeling is summarized on page 7. Details of our method for the haptic 
simulation of axial forces during needle insertion, are presented in the following section dealing with haptic ren-
dering on page 9. The evaluation methods section on page 12, shows our general framework for evaluation and 
interpretation of our direct needle force rendering quality.

Results
We applied our methods to 10 patient (#1-#10) clinical CT data sets and compared the new haptics method using 
“partial segmentation masks augmented by our patient-specific transfer functions,” against the haptic algorithm 
based on gold-standard fully manually-segmented data.

The benefit of our patient modeling18 vs. manually driven full volume segmentation, is the significantly shorter 
time frame (<10x) needed to provide a virtual patient model. This is to a large extent achieved by using the 
threshold-based (t0 … t2) transfer functions dependent on the voxel position18, 19. The transfer functions cover 
the voluminous, but less relevant and easily segmentable tissues, such as skin, fat, bone and air cavities inside the 
body. In this study, we introduce and report (1) segmentation errors using new local metrics, i.e. well-known 
measures are evaluated only on the planned puncture paths, rather than the full volume; (2) we show the axial 
force errors caused by these segmentation errors.

Regarding haptics, this is the first study in which a direct haptic volume rendering method is tested on 10 
patients and 31,222 test paths (i.e. ca. 3000 paths per patient). Exemplary test path planning results can be seen in 
Fig. 3. High quality paths are colored in green.

We report the segmentation results, shown in Figs 4 and 5, in terms of mean surface distance (MSD) and 
Hausdorff distances (HSD), evaluated on the individual test paths. Using semi-automatic segmentation methods 
described in refs 18, 20, 21, the depth difference errors, which correspond on average to mean surface distances 
(MSD), are lower than the acceptable 2 mm (Fig. 4). Regarding HSD to characterize outliers, we encounter errors 
exeeding 3 mm for the liver and 2 mm for the soft tissue (Fig. 5). The important target structures, bile ducts, fall 
below the lower bound in both metrics.

In Figs 6 and 7, the force errors are shown as box plots, with root mean squared or maximum absolute errors 
(RMSE, MAE) in the left or right column. In Fig. 6, we can observe RMS errors lower than max. 0.25 N and MAE 
errors less than 1.0 N, except for some displaced outliers around 1.5 N. Systematic maximal force error medians 
of 0.7 N and rare sporadic peak errors, around 1.4 N occur in some patients (Fig. 7). All systematic median MA 
errors are less than or equal to 0.7 N and 88% of the occuring forces are, on average, identical (Fig. 8). The total 
average over 31,222 paths from ten patients shows RMSE or MAE of 0.12 ± 04 N with 0.05% number of top outli-
ers - or 0.65 ± 0.18 N with 3.73% top outliers.

Figure 3.  Reference paths (colored), bile ducts (brown) and bone (white). On our paths reaching the bile 
ducts scoring reveals best paths in the central green area mainly between the 6th and 7th rib. Path coloring 
corresponds to the quality of the path deduced from the soft constraints.



www.nature.com/scientificreports/

4Scientific Reports | 7: 671  | DOI:10.1038/s41598-017-00746-z

Mean force errors are, for the most part, below the just noticeable difference (JND) force threshold, elaborated 
on page 13, of 0.145 N (Fig. 6).

To sum up, the spatial distance errors (MSD) are below just noticeable thresholds, except for some (HSD) 
outliers of the liver. While small, almost imperceptible, RMS force errors occur, a systematic bias of about 0.7 N on 
average, can be observed in terms of MAE. These and the outliers of ca. 1.4 N prominent in some patients for the 

Figure 4.  Mean and standard deviations of per path mean surface distances (MSD). Skin tissue depth lags are 
best. A depth lag of 2 mm (dashed green line) is considered a low just noticeable spatial error for salient needle 
force events to occur.

Figure 5.  Mean and standard deviations of per path Hausdorff surface distances (HSD). Skin tissue depth lags 
are best. A depth lag of 3 mm (dashed red line) is considered a just noticeable spatial error for salient needle 
force events to occur.

Figure 6.  Change of segmentation model: Force metric RMSE per path.
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change of segmentation experiment, are clarified in the discussion. In total, we achieve on average 88% of exactly 
identical emitted forces (Fig. 8), i.e. only 12% of forces are affected by errors of any magnitude.

Discussion
Our qualitatively accepted VR system, AcusVR-4D9 for needle insertion simulation, has been evaluated quantita-
tively in terms of haptic rendering plausibility, with positive results for the influence of usual segmentation errors. 
The conducted “change of segmentation model” experiment (Figs 6 and 7) validates force output from the use 
of semi-automatic segmentation masks augmented by the transfer function classifier9, 18, with promising results. 
Our haptic evaluation framework, study design and interpretation guide-lines, using state of the art spatial and 
force JNDs, could be readily applicable to other simulators. However, the evaluation framework and the presented 
results are simulation-software-based (in silico) in absence of in vivo and in vitro reference measurement data, 
which are also difficult to supply. Needle steering can not be assessed by axial forces and deformations22–24 alone, 
and non-axial needle-tissue interaction forces are found along the entire embedded needle length. However, in 
our situation (axial punctures) the forces from breathing motion are mainly directed orthogonally to the needle 
insertion direction, so that they do not contribute saliently during needle advance. Thus, regarding axial force 
we evaluate the relevant haptic aspect of the simulation compared to gold-standard virtual patients and reference 
force output approved by medical experts.

With regards to skin, soft-tissue and bile segmentation, the spatial errors (MSD, HSD) are small. We often 
observed that the manual skin segmentation is detected slightly later on a needle path than the skin found by the 
threshold. The resulting systematic maximum force error of 0.7 N at the skin surface is not severe in our context, 
as the needle enters the body through a small ski n incision made by the surgeon.

In terms of quantitative force comparison, the errors are marginal and the number of outliers is small. Their 
values are negligible in the RMS metric. Maximal errors of 1.6 N in the MAE metric can be located, explained 
and well justified by the following: (1) at the skin a maximum 0.7 N difference is calculated and (2) immediately 
above the fascial layer, a somewhat differently classified voxel (group) can cause phase 1 (Pre-X) to begin from a 
different force level resulting in misaligned puncture peaks (cf. Sec. on page 9). This results in ca. 1.6 N maximal 
error. Thus, for the change of the segmentation model, errors are caused by slight differences in the manual expert 
segmentations and the segmentations resulting from our patient modeling approach. As long as the sequence of 
events is guaranteed to be the same, these outliers are haptically irrelevant. The slight spatial difference of haptic 
events can hardly be felt by the user comparing two independent puncture attempts along the same path. For 

Figure 7.  Change of segmentation model: Force metric MAE per path.

Figure 8.  Change of segmentation model: Error bars comparing the percentage of exactly identical force 
outputs per path for each patient.
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example, the slightly displaced detection of the skin or differently detected tissues around the fascial layer, causes 
out of sync force emission with potentially high MAE errors (max. 1.6 N) in the pre-puncture phase of the haptic 
algorithm near to the fascial layer (p. 10). The segmentation of the surrounding tissue of the fascial layers can 
be slightly different, causing misaligned force incline start levels of the pre-puncture phase on the needle trajec-
tory. Again, more important is the correct sequence of events and accurately reaching the puncture goal. This is 
guaranteed by low segmentation errors and operator reviewed segmentation of the structures, i.e. especially the 
bile ducts. This argument is supported by currently published, experimentally determined, spatial JNDs for the 
hand-arm system25, 26. The elaborated JND thresholds are undercut despite some outliers at the liver fringe in 
the outlier HSD metric (Fig. 5). First, the liver is encountered directly after the very salient fascia puncture event 
with 2.7 N. Second, as seen from Table 1, the emitted forces in the case of the liver fringe are not exceptionally 
salient. This is especially true of the surface penetration threshold TN of the liver, which is the lowest of all tissues. 
Therefore, we can accept force errors stemming from seldom spatial liver fringe mismatches at this juncture.

We use easily implementable objective force signal metrics and relate them to the currently published spatial 
and force JNDs25, 27 of the hand-arm system for haptic device usage. The JNDs are subject to ongoing research and 
therefore may change. The used metrics ensure that our results can still be related to new JNDs published in the 
future. In light of the currently available JNDs for the hand-arm system from refs 25, 27, of 15–26% (0.12–0.21 N) 
and 11% (3 mm) for the force and distance magnitudes respectively, our mean errors are small (Figs 4 and 6). Also 
the high percentage of absolutely correctly rendered forces (88% of positions) underlines this statement, only 12% 
of all path positions are affected by errors.

Our algorithm for axial force rendering and the haptic parameters for deformable virtual patients, have not 
been published in this level of detail and in this scale of a study with a high number of test paths from 10 test 
patients before. In addition, our evaluation methodology has been clearly refined, e.g. using new per test path 
spatial error metrics and the incorporation of spatial and force JNDs. We thoroughly show in this study set-up, 
using 31,222 test paths, that the generated force output using the partially segmented patient image data is robust. 
It is shown by example that the force evaluation framework is a valid means to prove force output of haptic needle 
insertion simulations, without ethics approval and the experimental hassle of specimen to image registration 
during needle insertion. We completely circumvent in vivo (animal) or in vitro (cadaver) experiments. For our 
haptics research, we only use already available CT images acquired from routine clinical data. We are grateful for 
the guiding work of other groups producing axial force measurements with real tissues15, 28.

Finally, with regards to the potential time savings in patient modeling important in clinical settings, we can 
fully support the use the of partially segmented data combined with the non-linear spring force output. This 
method offers faster patient preparation by a factor of 1218 and better force rendering as we propose a non-linear 
incline at tissue borders (Pre-X). Other proxy-based methods use linear force inclines for direct haptic volume 
rendering29–31.

The system setup, experimental design, observed haptic errors and interpretation lines could be helpful for 
other haptic algorithm developers9. The simulation concept could easily be transfered to other liver site interven-
tion fields in addition to PTC or PTCD, simply by replacing the target structures (with e.g. tumors).

Conclusion.  Our extended framework and study showed, that our methods, i.e. the use of partially segmented 
patient image data and haptic rendering techniques featuring a non-linear spring model, are usable for virtual 
needle insertion simulation. The evaluated system allows the user to experience and become familiar with the 
visual presentation and needle insertion forces during liver needle punctures.

Furthermore, our evaluation of surgical needle insertion simulator haptics identifies, quantifies, and interprets 
errors, which is important for algorithm development.

In summary, the force errors of the presented force rendering algorithms using partially segmented patient 
data are small. In 12% of the path positions the detected errors are haptically irrelevant for the user experience. 
This is due to the fact that the puncture incident mismatch is mostly below JND-thresholds in terms of insertion 

Tissue

Tissue Reference Modeling New
Lower 
Interval Haptic Params.

Type Repres. Method Repres.
Thresh. 
[HU] TN[N] R[N] k[N/mm]

Air Pass/Risk* Mask HMTF Interval −1024 0 0 0

Skin Pass Mask HMTF Interval t0 0.7 0.7 0.8

Fat/soft t. Pass Mask HMTF Interval t1 0.7 0.7 1.0

Bone (sensitive) Risk Mask HMTF Interval −t x( )2 * ∞ 3.0 2.0

Bone (specific) Risk Mask HMTF Interval +t x( )2 * ∞ 3.0 2.0

Fascia Pass Mask 3DS Mask N/A 2.5 1.0 1.0

Liver Pass Mask MAS Mask N/A 0.3 0.9 1.2

Hep. blood Risk Mask VF Mask N/A 1.05 0.75 1.1

Hep. bile Target Mask VF Mask N/A 1.2 0.5 1.0

Table 1.  Model representation and haptic parameters used for the main tissues. Acronyms: HMTF = Histogram 
Matched Transfer Function, 3DS = 3D-Spline-Surface, MAS = Multi-Atlas Segmentation, VF = Vesselness 
Filtering. *Needle tip location x dependent. Note, new patient image data must be adapted to these thresholds 
which are dependent on the chosen reference patient18.
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depth25, 26 and very similar in force amplitude to the puncture event using gold-standard label data. The force 
errors are also below the force JND threshold adapted to our context27. Bone is rendered impenetrable and would 
cause our high force haptic device to exert 22 N. The encountered MAE force outliers in this study are clearly 
unrelated to puncturing false-positive bone voxels, in which case we would see 22 N MAE errors. Our customiza-
ble non-linear spring model gives the user a more elastic feeling of tissue borders and thus is more realistic. It can 
be easily adapted to in vivo/vitro measured realistic force curves6 by model fitting.

From a developer perspective, our evaluation framework and interpretation cues help to sort out very sensi-
tively noticeable errors, to improve virtual patient models and haptic algorithms.

Future Work.  Our work on force output modeling is guided by comprehensive surveys featuring in vivo force 
measurements5, 6, 15. In future studies, regarding axial force curve shape, we would like to investigate refined force 
feedback algorithms, taking into account real force measurement curves and puncture events due to different 
bevel tips. This way, our first haptic rendering phase could be sub-divided in two subphases: (a) initial puncture 
and (b) transition from tip bevel front to shaft. In reality, there are more haptic micro-events overlayed to our 
4-phase curve to be included. These effects could be modeled as superposed micro processes as well. For a more 
granular feeling of the tissue, the CT values could be used to infer material characteristics for micro processes. 
The currently constant phase 3 would be more realistically modelled by a flat, non-linear incline depending on 
the insertion depth.

Further work will be in dynamic patient effects. More complex surgical instruments and irregular respiratory 
motion are currently included into the haptic simulation10, 22, 32, work for which haptics have to be continued and 
evaluated accordingly. Dealing with new patient image data could be improved by researching new real-time 
voxel classification methods at the needle tip that for example, reliably detect the liver and its vessels. In this case, 
some currently necessary semi-automatic segmentation steps could become obsolete18. This could be achieved 
using high dimensional feature spaces and random forest classification19.

Methods
Simulator and Virtual Patient Modeling Review and Haptics Context.  In comparison, our new 
VR system AcusVR-4D9 (Fig. 9) fixes many of the short-comings of other simulators regarding the tedious and 
time-consuming patient-modeling (segmentation) process1–4, 7, 11, 13. Mainly, our system only needs a minimal 
subset of explicitly segmented key structures for visualization and force output. With these key structures, the 
system visualizes dynamic effects without the need of meshed organ models.

Simulator and Haptics Context.  Our VR simulator features five virtual tools using proxy-based force rendering. 
They are controlled via the haptic device for the trainee to use in the core liver puncture workflow, i.e. virtual:

	 1.	 Palpation with a finger tool to search for an intercostal location for needle insertion between the 6th and 
7th rib on the right side of the patient32.

	 2.	 Inspection of the internal patient anatomy and optimization of a trajectory using the US tool with attached 
needle guide and needle line projection in the US image (Fig. 2, dashed line)32, 33.

	 3.	 Placement of a small incision at the needle insertion point on the skin using the scalpel tool32.
	 4.	 Snap-in of the needle into the needle guide tool at the US-device (Fig. 2).
	 5.	 Needle puncture through the incision by advancing the snapped in and axially guided needle using the 

needle tool under US imaging control (Fig. 2)32, 33.

In step 5, the puncture is performed by guided advancement of the needle into the patient’s body. Most rel-
evantly, axial forces are emitted at the needle handle when the needle makes contact with the tissues (Fig. 9(4)). 
Needle guidance and axial force feedback when penetrating the patient’s tissues are displayed to the user via a 
Geomagic 6DOF HighForce haptic device (max. 22 N axial force). When a risk structure is struck by the needle, 
the user is notified by turning the simulation window background red, a successful insertion is indicated by a 
green background in the main viewport (Fig. 9(1)). Additionally, contrast agent spreading out in the bile ducts is 

Figure 9.  Haptic workbench and simulation: (1) Main rendering window, (2) X-ray rendering window, (3) 
ultrasound rendering window and (4) haptic device handle.
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simulated and visualized in the X-ray viewport (Fig. 9(2)). US guidance (Fig. 9(3)) effectively helps to puncture 
the target structure correctly and is very commonly used by physicians in this challenging puncture intervention.

A special training mode (“scoring mode”) can be used to assign scores to each training attempt along book-
marked reference paths defined by medical experts, so that the trainee can monitor his improvements during the 
experience with the virtual patient model.

Virtual Patient Modeling using Partially Segmented CT data.  Here, we provide background and summarize the 
time-saving virtual patient modeling approach detailed in ref. 18 using explicit segmentations of relevant struc-
tures only. General pre-processing consists of removing non-body objects from CT image acquisition such as 
patient table, cables and medical devices attached to the patient’s body. To this aim, we use a standard morpholog-
ical procedure consisting of erosions, dilations, connected component analysis and hole filling. Only the biggest 
component, i.e. the patient’s body box, is kept for further processing. Then, for new unsegmented patient images, 
the new intensity data is first adapted to a predefined reference patient by a histogram matching technique. 
Finally, regarding key structures, the fascia, the liver and its vessels are segmented using dedicated methods18.

Our start point is a fully manually-segmented and reviewed reference patient (CT and label data) to define a 
general virtual patient model. For fully segmented patients, we can estimate a tissue label using Alg. 1, step 1. Each 
new virtual patient model then consists of the same parameter attributes inherited from the reference patient 
model. After the automatic intensity data adaptation, only the segmentation masks for the key structures are 
segmented and reviewed anew specifically for the new patient model by organ-specific, known, semi-automatic 
segmentation methods (Table 1).

Haptic characteristics of the fully segmented virtual patient are represented in a label-to-tuple table, which 
contains haptic parameters from an empirical haptics modeling phase, carried out by puncture-experienced med-
ical experts (Table 1, right). By this means, we are able to provide haptical force feedback similar to in vivo force 
experience. Using derived parameters from in vitro measurements would incorporate characteristics of dead 
tissue, e.g. reflect fixation in formalin or non-blood perfused tissue. In our previous work on the simulation of 
lumbar punctures13, medical experts were consulted to define the haptic parameter tuple (TN, R, k) with cutting 
force threshold [N], friction force [N] and material stiffness [N/mm] for each label in a fully segmented patient 
(Table 1). For PTCD, concerning further relevant structures such as fascia, liver, blood vessels and bile ducts, we 
consulted again with two experienced medical experts in a tuning session to define the haptic characteristics of 
the new key tissues. In terms of haptic rendering, our direct force rendering method introduced first in ref. 34 
uses the partially segmented patient image data.

The following patient modeling summary items consist of two paragraphs each: First, we describe the concept 
for the reference patient model based on a reference patient. Second, the step for its generalization to new patient 
models is briefly presented18:

Algorithm 1 Case distinction to obtain the haptic parameters from a partially segmented patient in the undeformed state.

1. Check for a segmented voxel at the needle tip and use available haptic parameters.

2. �If no segmentation is available, use the transfer function resulting from the tissue thresholds shown in Table 1. Switch cases depending on 
needle tip position x:

     (a) Regarding body box:

               i. Outside skin: render air with zero force.

               ii. Passed skin: if the needle encounters an air cavity inside the body, signal a risk structure.

     (b) Regarding fascia layer:

               i. Outside fascia: use sensitive bone threshold −t2 .

               ii. Passed fascia: use specific bone threshold +t2 .

Figure 10.  Haptic transfer function intervals over the histogram of the reference patient: color coded transfer 
function intervals of air (gray), skin (orange), soft-tissue (yellow) and bone (purple).
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	(1)	 Using a fully segmented reference patient, the Gaussian intensity distributions of air, skin, soft-tissue (fat) 
and bone are modeled. For these large volume tissue classes we determine the intersections (cf. Table 1) of 
the normal distribution curves t0, t1 and −t x( )2  (outside fascia) and an augmented +t x( )2  (inside fascia)17, 18, 34.
A histogram matching procedure35 is customized in ref. 18 to adapt the transfer functions and the 
supporting thresholds to new patient image data. From the Bayes optimal intersection points we define the 
air, skin, fat and bone intervals as shown by their lower thresholds in Table 1 and Figs 10, 11, 12 and 13. 
During simulation they are used to define the locally adaptive haptic parameter transfer functions in 
Fig. 10 using −t2  and Fig. 12 using +t2 , respectively. This corresponds to Alg. 1, step 2(b), which differentiates 
between the needle tip x outside - resulting in Fig. 11 - and inside the fascia - resulting in Fig. 13.

	(2)	 We fit a B-spline surface φ φ φ φ= ( )s h B h B h B h( , ) ( , ), ( , ), ( , )x y z
T36 through a thresholded rib cage 

segmentation of the reference patient obtained using the thresholds t2
18.

Figure 11.  Color coded application of Fig. 10 to an undeformed axial CT slice just before puncturing the fascia.

Figure 12.  The same as Fig. 10 when the needle has passed the fascia layer (magenta).

Figure 13.  Applied transfer function from Fig. 12 augmented by some segmented key structures. The bile ducts 
are green and blood vessels red.
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The fascia layer template 3D-B-spline model from the virtual reference patient is interactively adapted 
to the new patients rib cage by manipulating the control points. The spline model is finally converted to 
a label mask representation and included into the multi-label segmentation as the fascia layer of the new 
patient data.

	(3)	 The liver and hepatic target structures are segmented by organ-specific approaches accompanied by typical 
segmentation errors. We use a multi-atlas and GraphCut segmentation concept to address the liver18, 20, 37. 
Blood vessels (risk structures to be avoided) and bile ducts (target) located inside the liver segmentation 
can be masked out and are ready to be addressed. We use a vessel highlighting and selection method based 
on multi-scale vesselness filtering21 and auto-seeded region growing followed by morphological post-pro-
cessing18, 38.

Finally, during simulation we can estimate a label and hence the haptic parameters and force output for every 
voxel as shown in Alg. 1 (steps 1 and 2) in real time (≥1000 Hz).

Figure 14.  Concept of our four phases: The proxy-tip relation is indicated by circles above the x-axis (empty 
circles = proxy, filled circles = tip; time = gray-scale).

Figure 15.  Needle in undeformed state of the virtual patient as defined by the proxy (left) and needle steered by 
the haptic device in the current deformed configuration of the tissue (right). Connecting x and p by a spring is 
used to calculate force feedback.
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Four Phase Direct Haptic Rendering with Deformable Virtual Patients.  For the axial forces 
at the needle tool handle, we use a proxy-based computation divided into four phases: (1) pre-puncture, (2) 
post-puncture, (3) pass and (4) transition (Fig. 14). In the following paragraphs, we present the used haptic algo-
rithm in detail and review the relation to our visual deformation framework10.

The deformation of the tissue caused by instruments or breathing, is described by a smooth (inverted) defor-
mation field −ut

1 at time t10, 16. Regarding tissue deformation by needle interaction we define a deformation (and 
force) vector d = |p − x| between two points as follows: First, the needle tip x lies at the same tissue related posi-
tion in the undeformed and deformed spaces. Second, in the deformed state we introduce a proxy position p to 
correspond to the needle tip = −x pu ( )t

1  in the undeformed state of the virtual patient and to a more peripheral 
position behind the tip as illustrated in Fig. 15 (right). Now, this vector fulfills two purposes: It is introduced as a 
boundary condition into the deformation field and then is smoothed to yield −ut

116. At the same time it is used as 
a force vector for a spring mounted between x and p. We determine the haptic parameters at the proxy p as we 
follow our assumption that the spatial relation of tip and proxy defines the deformation of the tissue9. Thus, 
retrieving the parameters at the proxy position in the undeformed image data (x), is equivalent to obtaining the 
parameters in a deformed state of the image (p). Our visual deformation algorithms are described elsewhere10, 16, 

32. In this paper, the focus lies on the details of the axial force rendering algorithms,which work in the undeformed 
state of the image.

Depending on the insertion depths d = |d| according to Hooke’s law, the simplest spring model has a linear 
characteristic when tip and proxy diverge at a tissue border. Another variant for computation of needle forces is a 
non-linear spring force. Facing organ surfaces we use a second degree polynomial15:

= ⋅ + ⋅ +f d a d a d a( ) (1)2
2

1 0

with d being the displacement from the undeformed surface. With Eq. (1) we can use a linear spring model 
(a0 = R, a1 = k, a2 = 0) as proposed in our previous work13. Congruent to this spring and to preserve the main 
haptic characteristics, the start force level a0, the pre-puncture phase design parameter a1 ∈ [0, k] and conse-
quently a2 = k · (k − a1)/|TN − a0| yield a non-linear spring, which punctures the surface at the same displacement 
as the linear spring to achieve similar behavior to our evaluated reference system9, 13. However, when the under-
lying gold standard and our segmentation differ only in detail, certain force errors are caused (see Fig. 16, left vs. 
right force incline) as force rendering is then out of sync.

Using Table 1 and Alg. 1 we can look up every label as L̂ x( ) and the corresponding haptic parameters (TN(p), 
R(p), k(p)) at every proxy position p in the deformed patient data.

Our force output algorithm (see Fig. 14 and Alg. 2) works in four phases:

Pre-puncture.  A tissue surface position pph1 on a needle trajectory N can be expressed using the gradient of the 
augmented label data L̂:

Algorithm 2 Haptic algorithm phases during needle insertion.

    1. Pre-Puncture: the proxy is held back at a just encountered tissue surface while the actual tip advances deeper into the (deformed) tissue.

    2. �Postpuncture: the tissue maximum surface threshold is reached and the proxy jumps forward in the direction of the trajectory towards 
the tip.

    3. Pass: the proxy and tip move in constant distance through the inner structure of the organ.

    4. Transition: The forwarded tip encounters another organ or tissue.

Figure 16.  Illustrative sequence of two phase cycles from a phantom experiment with two fascial layers: Force 
output on the surface of organs depending on slightly different reference and segmentation (left, success mode; 
right, failure mode).
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∈ ∇ ≠ ∧ ∈ .ˆp x L x x N{ ( ) 0 } (2)ph1

In our proxy based approach31, the virtual needle tip x is connected to the proxy p via a spring emitting force 
f (Eq. 1). The haptic device then renders the axial non-linear spring force vector with magnitude from Eq. 1 to 
the user:

= | − | ⋅
−

| − |
.ff p x

p x

p x
( )

(3)
ph1 ph1

ph1

ph1

In this pre-puncture phase, by manipulation of the position of the tip behind the tissue border, 3D-forces are 
exerted. Simulation of the resistance of tissue surfaces to needle puncture is achieved by fixing the proxy p on the 
tissue’s surface position pph1 until the spring generates a force:

| | > Tf p( ) (4)Nph1 ph1

higher than the tissue specific threshold. Then the cut event occurs and we enter phase 2 for a short instant in 
time. There the tip x (in the undeformed image) is already located in the internal organ structures behind the 
organ membrane.

Post-puncture.  We decided to model this phase such that after the cut instance, the proxy is released from being 
held back at pph1 and jumps into the inner organ structures towards x (R ≤ TN):

= + ⋅
−

| − |
.

R
k

p x x
x

p x

p x
( )
( ) (5)

ph2
ph1

ph1

As the proxy is a virtual object only, this motivates the quick decay of the output force to the force sustain level 
R maintained in phase 3. This provides the user with a salient feeling of cutting the membrane of an organ.

Pass.  Advancing continuously inside an organ the modeling of viscosity comes into play. Here, we use the stiff-
ness parameter k(p) [N/mm] and the friction force R(p) [N] (threshold) to define a maximum length for a spring 
moving behind the tip x that mimics advancing the needle through a viscous material:

= .
R

k

p

p
l

( )

( ) (6)
max

ph3

ph3

In contrast to the membrane puncturing, a standard linear Hook formulation is used to render the forces of 
the moving spring:

= ⋅
−

| − |
.kf p

p x

p x
( )

(7)
ph3 ph3

ph3

ph3

The force emission could be improved by modelling k as a function with additional dependence on a displace-
ment parameter, however, this is left to a future work. The spring movement is implemented by moving the proxy 
pph3, if the following condition is violated: |fph3| ≥ R or rather |pph3 − x| ≥ lmax:

= + ⋅
−

| − |
p x

p x

p x
l

(8)
ph3 max

ph3

ph3

Thus the distance between proxy and spring is always lmax at maximum. This way when advancing or retracting 
the needle, the proxy moves in constant distance behind or before the tip, resulting in a ductile feeling.

Transition.  This phase serves as a link between cycles or exit, depending on the haptic parameters of a newly 
encountered tissue. Exiting an organ means to encounter a border again. When the force R from phase 3 is greater 
than the new structure’s shell force threshold TN, the surface is cut immediately and we skip phase 1 of the new 
material. This results in a decline of the force as no cutting forces are due at this instant. This case is implemented 
as force drop to fph2 (phase 2). If the needle tip meets a harder tissue (TN > R), we start with phase 1 of the new 
material resulting in a force incline. The trivial but uncommon case in our scenario is exiting the body with a force 
decline towards 0 (piercing).

Regarding needle retraction, only phase 3 with inverse directions is used, as all membranes have already been 
cut along the needle path. Some tissues are treated in a special way in our context: For bone, a special rule applies, 
it is rendered as impenetrable. Encountering bone at the tip emits maximum force. As in our intervention sce-
nario, the physician introduces the needle through a small incision, for skin the sustained force level R is the same 
as the cut force level TN (0.7 N) (Table 1).

Force Feedback Evaluation.  We establish ground truth on the 10 CT test data sets spanning the lower 
thorax and upper abdomen. The spacing between the voxels in the data sets is between 0.775–0.925 mm in the x 
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and y directions and 0.825–1 mm in z the direction. CT images were acquired in portal venous phase. The neces-
sary full volume manual expert segmentations used as gold-standard were carried out by a team of three experts.

For axial force output assessment we measure and compare forces along preplanned test paths hitting the tar-
get. Instead of curved insertion paths, we use straight paths planned in the undeformed reference space (Fig. 15, 
left). There, needle to target alignment is possible by finding straight lines of sight, which can then be used for 
trajectory planning from skin to target. Generally in this paper, we investigate force errors stemming from axial 
structure border distance errors. We compare reference and new algorithm 1D axial force signals acquired on 
preplanned trajectories, with common signal distance metrics such as root mean squared errors and maximum 
absolute error. There are three steps outlined in the following sections:

	 1.	 Trajectory (“reference path”) planning specific to the gold-standard virtual patient. This step produces 
paths in proximity to the usual access area between the 6th and 7th rib on the right side of the patient,

	 2.	 Simulated robotic needle steering to accurately follow the trajectories and 1D force signal sampling on 
these paths using a reference (fully manual segmentation) and a new algorithm (transfer functions aug-
mented by partial segmentation),

	 3.	 Structure border lag analysis, force signal comparison and statistical analysis.

Extensive quantitative evaluations take place for force output of the haptic algorithm. We use many target 
(center line of bile ducts) hitting paths from a surgery planning step for quantitative evaluation of force feedback. 
Automatic needle steering along approximately 3000 paths from each of the ten test patients (“reference paths”) 
yields reproducible force outputs for the algorithms to be compared in ten patients (see Fig. 3). We use occlusion, 
distance from critical structures and penetration depth into bile vessels as quality criteria.

Path Planning and Needle Steering.  Visibility checks serve to generate a high number of test paths. Ray casting 
on the GPU is used for planning17. Trajectories affected by hard constraints are removed from the candidate 
path set. Acceptable paths reach the bile target within a maximum needle insertion length of 90 mm. In our path 
quality scoring, we use a concept similar to Baegert et al.39 adapted to our needs. The hard constraints for path 
dismissal comprise (1) visibility of a target structure voxel from the skin and (2) needle insertion length (9 cm). 
Individually rated soft constraints yield a path score in a weighted averaging manner.

We use the following criteria for candidate paths starting from every skin voxel:

•	 C1: The visibility hard constraint dismisses all trajectories that are blocked on their way from the skin to the 
target through a risk structure such as bones or blood vessels. Failure is indicated by a value of infinity, success 
by 0.

•	 C2: Distance to target. The target must be reached in 9 cm path length. Failure is indicated by a value of infin-
ity, success by 0.

•	 C3: The minimal distance to critical structures soft constraint scores a trajectory by calculation of the smallest 
distance to a risk structure on the path.

•	 C4: The target hit soft criterion counts the voxels along the needle shaft. This counting is conducted inside a 
cut target structure (bile duct) only and tests for a certain number of voxels being visited. A higher number 
indicates a favorable penetration depth and insertion angle in line with a bile duct.

The final score for a path N is a normalized average of the criterion scores:

∑α= ⋅ .
=

Q C N( )
(9)i

i iN
1

4

The criterion scores C3,4 are normalized to 1. Weights α =i
1
2

 determine the influence of the criteria. Paths 
with QN = ∞ are dismissed right away. For each skin voxel we keep the best path from the candidate set as refer-
ence path.

The following rationale supports the criteria set-up. In treatment, it is not advised to puncture through and 
closely below the rib bones (risk structure), where fine nerves and vessels are located causing pain if struck. Blood 
vessels should also not be close to the needle. Hence, nearby bone and blood vessel paths are removed from the 
candidate set by a quality threshold, i.e. QN < 0.4. Also, falsely detected bone voxels from the transfer function 
classification could occur in very close proximity to the ribs, e.g. due to partial volume effects. These medical and 
technical arguments motivate the removal of these low score paths from the candidate set (cf. Results, Fig. 3).

To sum up, we test our simulator for successful trainee experience, i.e. starting from the skin paths hit the 
target with respect to the hard and quality soft constraints. Paths from the skin to the target (bile ducts) colliding 
with or aligned in close proximity to risk structures are dismissed. Soft constraints are used to score the candidate 
path set and to reduce it further.

Finally, we test our haptics on 10 patients with a total of 31,222 test paths, i.e. ca. 3.000 paths per patient.

Quantitative Measures.  The selected paths from ten test patients are now used for force output evaluation. While 
steering the needle along the paths, two forces are calculated and compared. We compare forces based on the fully 
manually vs. partially segmented data18 using the same non-linear spring model.

Using about 1,000 force pair samples per planned path for insertion, the worse case for sample spacing of the 
currently steered path can be given as 0.09 mm, which is sub-voxel resolution. Thus, generous oversampling of 
≥10× for a full length path of 90 mm (worst case) is used.
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The metrics “root mean squared error” (RMSE) and “maximum absolute error” (MAE) are used to assess the 
axial force differences from the experiment. We use (1) mean and standard deviation σ, (2) account for top force 
outliers higher than 2.7 · σ and (3) use box plots in terms of MAE to better show systematic errors. The analysis 
of the higher MAE outliers can be important for method investigations during haptic algorithm development. 
For the evaluation of the segmentation errors caused by out of sync force rendering (Fig. 16) the mean surface 
distance (MSD) and Hausdorff distance (HSD) are used per path for the structures hit by the needle. We relate the 
errors to just noticeable differences (JNDs) for length and force for the hand-arm system25–27.

The so-called Weber fraction given in reference force or distance magnitude % with a perceived reference 
stimulus S and a just perceivable relative stimulus change ΔS27:

=
+ ∆ −

⋅JND S S S
S

% ( ) 100 (10)

is used to quantify JNDs. Here we regard forces and distances as stimuli. We consider 2–3 mm as an acceptable 
just noticeable spatial distance error range for salient needle force events to occur based on reasonable assump-
tions25, 26. Note, that empirically measured JNDs for distances with the finger span method26 are twice as low as for 
the upper limb movements25. The upper limb movement is more relevant in our context. A 2 mm lower threshold 
corresponds to a conservative JND of 8% distance related to an average reference length of 28 mm. This corre-
sponds to the most important sub-distances for our needle to bypass, i.e. the liver to bile duct border and skin to 
fascia border path segments. The distance of 3 mm corresponds to a JND of 11% distance. This value is justified by 
ref. 25 and corresponds to a doubling of the JND from the finger-span method for 28 mm26. Generally, JNDs for 
decreasing reference measures are higher above average in small scale domains.

Hand-arm system force JNDs range from 15 to 26% force magnitude for high (6 N) to low (0.5 N) reference 
forces27. Regarding those human force JNDs we relate a hand-arm JND of 18.1% force magnitude (for −0.87 N, 
see Table II in ref. 27) to the average counter force inside the body during insertion of 0.8 N, yielding a threshold 
of 0.145 N.

To further assess the path position fraction where the segmentation errors cause force errors, we also asses the 
strict measure of the percentage of exactly identical emitted forces for every path N:

=
| | − = ∈ |

| ∈ |
⋅ .F

f fx x x x N

x x N
%

{ ( ) ( ) 0, }

{ }
100

(11)
c

ref test

In summary, in the conducted experiment the segmentation fundament is varied: For the reference forces 
we use the full manual expert segmentation, for the test forces the transfer functions augmented by partially 
segmented data are used. Using these metrics and study design, we mainly aim to evaluate the influence of the 
segmentation errors caused by our patient modeling strategy on the force rendering in our haptic simulation.
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