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Abstract: Asymmetric optical transmission plays a key role in many optical systems. In this work,
we propose and numerically demonstrate a dielectric–metal metasurface that can achieve high-
performance asymmetric transmission for linearly polarized light in the near-infrared region. Most
notably, it supports a forward transmittance peak (with a transmittance of 0.70) and a backward
transmittance dip (with a transmittance of 0.07) at the same wavelength of 922 nm, which significantly
enhances operation bandwidth and the contrast ratio between forward and backward transmittances.
Mechanism analyses reveal that the forward transmittance peak is caused by the unidirectional
excitation of surface plasmon polaritons and the first Kerker condition, whereas the backward trans-
mittance dip is due to reflection from the metal film and a strong toroidal dipole response. Our work
provides an alternative and simple way to obtain high-performance asymmetric transmission devices.

Keywords: metasurface; asymmetric optical transmission; surface plasmon polaritons; Kerker conditions

1. Introduction

Asymmetric optical transmission refers to different transmittance responses when
a beam of light passes through a medium in forward and backward directions. Over
the past few decades, due to its indispensable role in many optical systems, asymmetric
transmission (AT) has attracted great attention in various applications, such as optical
isolating [1,2], optical diodes [3,4], noise control or cancelation [5,6], systems for one-side
detection/sensing [7,8], etc. One conventional way to achieve AT devices is to take advan-
tage of non-reciprocity, which can be obtained by using magneto-optical materials [9,10] or
nonlinear effects [11]. However, it is difficult to achieve on-chip integration due to their
bulky size and the requirement of high threshold operating intensity.

Fortunately, the emergence of metamaterial provides an appealing alternative to
control electromagnetic wave manipulations properties [12–17], and the discovery of the
AT phenomenon based on metamaterial was first experimentally demonstrated in the
microwave region by Fedotov et al. in 2006 [18]. Since then, various AT devices based on
artificial structures have been proposed which use photonic crystals [19,20], subwavelength
asymmetric gratings [21–24], chiral metamaterials [25–27] and metasurfaces [28–30], and
the operation wavelengths have been covered from microwave to visible light [31–33].
These devices show promise to some degree; however, those using chiral metamaterials
are usually complex and incorporate multilayer structures, whereas those using subwave-
length asymmetric gratings are polarization sensitive. Therefore, it is still highly desirable
to develop polarization-insensitive AT devices with simpler structures, polarization inde-
pendence and higher contrast ratios between forward and backward transmittances.

Here, we employ a dielectric–metal metasurface to realize high-performance asymmet-
ric transmission (AT) for linearly polarized light at the near-infrared region. Its structural
unit consists of a dielectric (Al2O3) disk and a thin layer of gold (Au) film on a SiO2
substrate. Simulation results show that it supports a forward transmittance peak (with a
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transmittance of 0.70) and a backward transmittance dip (with a transmittance of 0.07) at
922 nm. The occurrence of a forward transmission peak and backward transmission dip at
the same wavelength notably enhances operation bandwidth and the contrast ratio between
the forward and backward transmittances. This is quite different from previously reported
works: to the knowledge of the authors, such a phenomenon has not been reported yet.
Here, it is revealed that unidirectional surface plasmon polaritons (SPPs) excitation and
Kerker conditions are responsible for the emergence of the forward transmittance peak,
while the reflection from the metal layer and strong toroidal dipole response are responsible
for the backward transmittance dip.

The rest of the paper is organized as follows: In Section 2, we present the device
structure and operation principle. In Section 3, we first interpret the origin of the AT effect
by using unidirectional excitation and tunneling of SPPs and Kerker conditions. Finally, a
conclusion is given in Section 4.

2. Materials and Methods

Figure 1a schematically shows the structural unit array of the proposed dielectric–
metal metasurface, which consists of Al2O3 dielectric disks and a thin layer of gold (Au)
film on a SiO2 substrate. Figure 1b is for one structural unit. The radius of Al2O3
disk is r = 200 nm and the thicknesses of the Au layer and Al2O3 disk are t1 = 20 nm
and t2 = 200 nm, respectively; structural units are periodically arranged with period
px = py = 700 nm. Compared with previous AT devices based on metal–insulator–metal
(M–I–M) [22] or metal–metal–metal (M–M–M) subwavelength grating [23], our design can
also be viewed as a kind of meta-grating with a relatively simple and easy-to-fabricate
structure that can be easily integrated with other optoelectronic devices.
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Figure 1. Schematic diagrams of the proposed dielectric–metal metasurface. (a) Perspective view
of the structural unit arrays of the dielectric–metal metasurface. (b) The optimized geometrical
parameters of one unit: px = py = 700 nm, t1 = 20 nm, t2 = 200 nm, r = 200 nm.

In addition, it can be observed that the proposed device has rotational symmetry,
meaning it can work under both x- and y-linearly polarized light as well as circularly po-
larized light. Next, for simplicity, we will just discuss the case of x-polarized incident light.

The operation mechanism of the AT device mainly involves unidirectional SPPs
excitation and Kerker conditions. Therefore, we introduce these two aspects below.

(1) Unidirectional excitation of SPPs
To begin, we explain how unidirectional SPP excitation is produced. When x-polarized

incident light illuminates the device in the forward direction (i.e., along the positive z-axis),
the light first impinges on the periodically arranged dielectric disks which provide the
required wave vector for efficient excitation of surface plasmon polaritons (SPPs), and
thus, help electromagnetic energy tunnel through the Au film. By contrast, in the case
of backward illumination, the light first hits the Au film. Lacking a periodic structure to
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provide an extra wave vector to excite SPPs, the device obtains low backward transmittance,
and most of the electromagnetic energy is reflected.

(2) Kerker conditions
Kerker conditions were first proposed by M. Kerker et al. [34] to study electromagnetic

scattering by magnetic spheres with zero backward or zero forward scattering arising
from the interference between electric and magnetic dipole modes. A direct conclusion
is that when electric dipole (ED) and magnetic dipole (MD) resonances oscillate in-phase
with equal magnitudes, the scattered fields are mainly in the direction of the incoming
wave with zero-backward radiated power, which is named as the first Kerker condition.
Correspondingly, when the two dipoles are of equal magnitude but oscillate out of phase,
they may lead to zero forward radiation, which is named as the second Kerker condition.
To date, this theory has been expanded to study directional scattering from non-spherical
nanostructures containing electric and magnetic multipole resonant modes [35,36].

On the other hand, as is well known, a dielectric nanostructure, such as a nanosphere or
a nanodisk, can simultaneously support electric and magnetic responses [37–39]. Therefore,
the Al2O3 dielectric disk of a suitable thickness also inherently possesses a strong electric
and magnetic dipole or multipolar moments, and the overlap between the ED and MD
resonances can greatly enhance forward transmittance at the operation wavelength if we
carefully design the metasurface by deliberately employing Kerker conditions. Next, we
discuss how Kerker conditions work in our AT device.

When an x-polarized wave normally illuminates the metasurface along the positive z-
axis (i.e., the forward propagation direction), the light first hits the dielectric disk array and
excites an electric dipole px along the x-axis within each disk. Different from a plasmonic
structure, which needs a special profile to excite a circular current to support an equivalent
magnetic dipole response, the dielectric disk itself can simultaneously support electric
dipole and magnetic dipole responses. Therefore, a magnetic dipole moment my along the
y-axis is induced inside the Al2O3 dielectric disk. The normalized forward/backward (i.e.,
along the positive or negative z-axis) scattering cross-section of the structure unit can be
expressed as [40]:

Q =
k4

4πε2 A|Einc|2

∣∣∣∣px ±
√

εrmy

c

∣∣∣∣2, (1)

where k is the wavenumber in a background material with electric permittivity ε = ε0εr, c is
the speed of light in free space, and |Einc| is the electric-field amplitude of the incident
wave. A is the geometrical cross-section, and the symbols ‘±’ represent forward and
backward scattering cross sections, respectively.

According to Equation (1), zero backward scattering occurs at some wavelengths
when the first Kerker condition is met, which is expressed as:

px −
√

εrmy

c
= 0, (2)

In this case, the scattered field is mainly in the direction of the incoming wave, leading
to a zero reflection, and a high transmittance is achieved if optical absorption is also low.

Similarly, zero forward scattering takes place at some wavelengths when the second
Kerker condition is fulfilled, which is written as:

px +

√
εrmy

c
= 0, (3)

In this case, the scattered field mainly propagates opposite to the direction of the
incoming wave, leading to a zero transmission.

At other wavelengths, if neither the first Kerker condition nor the second Kerker
condition is met, then the light will be partly transmitted and partly reflected.
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3. Results and Discussion

To verify the AT behavior of the proposed dielectric–metal metasurface, we carry
out full three-dimensional (3D) finite-difference time-domain (FDTD) simulations by em-
ploying the FDTD solver from Lumerical, Inc. to simulate its electromagnetic response
and scattering characteristics. Periodic boundary conditions are applied in the x- and
y-directions, and a perfectly matched layer condition is applied in the z-direction. The
substrate is silica (SiO2), the dielectric disk is Al2O3, and their permittivity values are
inferred from Palik refractive index database values [21]. The thin metal layer is gold, and
its dielectric constants are taken from Johnson and Christy data, which can also be obtained
in the material database from the simulation software. Mesh refinement is used for both
the thin metallic film and Al2O3; the mesh sizes in the z-direction are set as dz = 2 nm
and dz = 10 nm, respectively, while the mesh size in the x- and y-directions are both set as
dx = dy = 10 nm.

3.1. High-Performance Asymmetric Transmission

The simulated transmittance spectra under forward (green solid line) and backward
(red dashed line) illumination are shown in Figure 2a. It can be clearly seen that the
asymmetric transmission region exists at a cut-off wavelength (i.e., λA) corresponding to
the Wood–Rayleigh anomaly wavelength given by λ = np [41], where n is the refractive
index of the substrate and p is the structural period. In our case, n and p are 1.45 and
700 nm, respectively. Because λ = np = 1015 nm, it coincides well with the simulation result
λA = 1017 nm. It should be noted that the cut-off wavelength divides the wavelength do-
main into a diffraction region (λ < λA) and a non-diffraction region (λ > λA). Furthermore,
the asymmetric transmission phenomenon occurs in the diffraction region [41,42].
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versus wavelength. The marked wavelengths are λA = 1017 nm at point A, λB = 922 nm at point B,
and λC = 800 nm at point C.

Moreover, a very interesting phenomenon can be clearly seen in Figure 2a, where the
forward transmission peak and backward transmission dip occur at the same wavelength
λB = 922 nm. When propagating in the forward direction, the optical wave at this wave-
length is a transmittance peak, with a transmittance of 0.70. However, when this wave
backwardly illuminates the metasurface, a transmittance dip is observed, with a very low
transmittance of 0.07. This is quite different from previously reported AT works. To the
best of our knowledge, such a phenomenon has not been reported yet.

A good asymmetric transmission device requires not only a higher forward transmit-
tance but also a larger contrast ratio and wide operation bandwidth. A contrast ratio is
used to evaluate the degree of asymmetric transmission, which is defined as:

contrast ratio =
|Tf − Tb|
Tf + Tb

, (4)
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where Tf and Tb are the forward and backward transmittances, respectively.
As shown in Figure 2b, the contrast ratio reaches 0.82 at λB = 922 nm, and the full

width at half maximum (FWHM) is 100 nm, which means the proposed dielectric–metal
metasurface has a large wide operation bandwidth. The reason for the high contrast ratio
and big bandwidth mainly lies in the fact that the forward transmission peak and backward
transmission dip occur at the same wavelength.

In what follows, we will further reveal how the device achieves high-performance
asymmetric transmission.

3.2. Mechanism Analyses on Asymmetric Transmission

To demonstrate how the unidirectional excitation of SPPs works in our device, Figure 3
shows the corresponding Ez electric-field distributions at λB = 922 nm, where the white
dotted lines mark the locations of the dielectric disks and the black dotted line marks
that of the metal layer. As can be clearly seen in Figure 3a, under forward illumination,
SPPs with wavelength λSPP = 708 nm are excited in the dielectric–metal interface, then
tunnel through the Au film and, finally, enter the SiO2 substrate, meaning a high forward
transmittance is obtained. In contrast, for backward incident light at λB = 922 nm, the
electric field intensity is too weak to see obvious excitation of SPPs, as shown in Figure 3b.
This result occurs when the incident direction is reversed because the light first hits the Au
film. On the one hand, there are no periodically arranged resonators to provide the extra
wave vector to efficiently excite SPPs. On the other hand, the Au film in this case works as
a high-efficiency reflector. As a result, most of the electromagnetic energy is reflected by
the Au film.
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Figure 3. Electric-field Ez distributions along the x-z plane at λB = 922 nm under forward (a) and
backward (b) illumination.

However, the appearance of SPPs does not guarantee that the corresponding trans-
mittance will be very high. Next, we will further investigate how the device can achieve
a forward transmission peak and backward transmission dip at the same wavelength of
922 nm.

3.2.1. Role of Kerker Conditions in the Realization of the Forward Transmission Peak

Above, we have offered a preliminary analysis on the origin of the asymmetric trans-
mission; now, we further investigate how the forward transmission peak is achieved at
λB = 922 nm. As mentioned earlier, Kerker conditions are usually adopted to explain
electromagnetic scattering characteristics in many metasurface systems, such as perfect
transmission [36,43], and asymmetric transmission (AT) [21,22].

Here, in order to investigate how Kerker conditions are satisfied in our AT device,
we choose two specific wavelengths for comparative analysis: one is λB = 922 nm, at
which forward transmittance has a maximal value of 0.70, and the other is λC = 800 nm,
at which forward transmittance reaches a minimal value of 0.21. Figure 4(a1,a2) and
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Figure 4(b1,b2) plot their electromagnetic field distribution profiles in the x–y plane under
forward incidence.
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Figure 4. Electromagnetic field distribution in the x–y plane for forward incidence light. (a1) Electric
dipole and (a2) magnetic dipole at λB = 922 nm. (b1) Electric dipole and (b2) magnetic dipole at
λC = 800 nm. The black dotted line marks the outline of the Al2O3 disk. The white arrow stands for
the direction of the electric or magnetic dipole.

At λB = 922 nm, when the metasurface is forwardly illuminated by x-polarized light,
a strong Ez field is excited in the dielectric disk (marked by the black dashed line in
Figure 4(a1)), and the stimulated positive (marked as ‘+’) and negative (marked as ‘−’)
charges are formed, which give rise to an electric-dipole moment px oscillating along the
negative x-axis (the white arrow stands for the direction of the electric dipole). Meanwhile,
as shown in Figure 4(a2), the dielectric disk also supports a magnetic dipolar my along
the negative y-axis. px and my are both along the negative directions, signifying that the
radiated fields from px and my oscillations are nearly in phase; hence, their overlap causes
strong suppression in reflection, which implies that the first Kerker condition is satisfied
and zero backward scattering occurs. As a consequence, a forward transmittance peak,
with a transmittance of 0.70, appears at λB = 922 nm.

At λC = 800 nm, Figure 4(b1) shows electric dipole px1 is along the positive direction
of the x-axis, and the induced magnetic-dipole moment my1 is along the positive y-axis, as
shown in Figure 4(b2). Therefore, the radiated fields from px1 and my1 oscillations are also
nearly in phase. However, by comparing the electric- and magnetic-dipole distributions
at λC (see Figure 4(b1,b2)) with those at λB (see Figure 4(a1,a2)), one can see that the
amplitude of px1 at λC = 800 nm is much lower than that of px at λB = 922 nm, and the
amplitude of my1 at λC = 800 nm is close to that of my at λB = 922 nm. Nevertheless, the
large difference in amplitudes of px1 and my1 infers that the interaction between them
cannot lead to a good interference to obtain high forward transmittance at λC = 800 nm. As
a consequence, the forward transmittance at λC = 800 nm has a value of only 0.21.
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3.2.2. Realization of the Low Backward Transmittance Dip

After analyzing the origin of the forward transmittance peak at λB = 922 nm, we
now continue to investigate the origin of the low backward transmittance dip at the
same wavelength.

In the discussion of Figure 3b, we already explained that the lack of efficient excitation
of SPPs and the back reflection by the Au film contribute to the low backward transmittance.
However, this cannot explain why a transmittance dip with a near-zero transmittance
appears at λB.

We know that geometrical parameters of a device determine its electromagnetic (EM)
response, thus affecting its scattering characteristics when it interacts with electromagnetic
waves [44,45]. As a kind of scattering, the characteristic transmittance curve is also directly
affected by different electromagnetic responses. In this regard, it is common to study their
resonant properties in terms of electric and magnetic multipoles, which can be derived from
the Taylor expansion of their EM fields and potentials [46]. Here, we only consider electric
dipole (ED), magnetic dipole (MD), electric quadrupole (EQ), magnetic quadrupole (MQ)
and toroidal dipole (TD), because higher-order electric and magnetic resonance modes
cannot be excited. In a Cartesian coordinate system, the multipole decomposition can be,
respectively, written as [47]:

P =
1

iω

∫
jd3r, (5)

M =
1
2c

∫
(r× j)d3r, (6)

QEαβ =
1

iω

∫ [(
rα jβ + rβ jα

)
− 2

3
(r·j)

]
d3r, (7)

QMαβ =
1
3c

∫ [
(r× j)α jβ + (r× j)β jα

]
d3r, (8)

T =
1

10c

∫ [
(r·j)r− 2r2j

]
d3r. (9)

where c is the speed of light, j is current density, ω is the angular frequency of the electro-
magnetic wave and r is the position vector from the origin to point (x, y, z) in a Cartesian
coordinate system (α, β = x, y, z). P, M, QEαβ, QMαβ, and T are the electric dipole (ED)
moment, magnetic dipole (MD) moment, electric quadrupole (EQ) moment, magnetic
quadrupole (MQ) moment and toroidal dipole (TD) moment, respectively.

The corresponding radiated light powers are calculated by [47]:

IP =
2ω4

3c3 |P|
2, (10)

IM =
2ω4

3c3 |M|
2 (11)

IT =
2ω6

3c5 |T|
2, (12)

IQE =
ω6

5c5 ∑
∣∣∣QEαβ

∣∣∣2, (13)

IQM =
ω6

20c5 ∑
∣∣∣QMαβ

∣∣∣2. (14)

According to Equations (10)–(14), we calculate electromagnetic multipolar dipoles
under backward illumination and present the results in Figure 5a. As shown, near
λB = 922 nm, the toroidal dipole (TD) has the strongest scattering power while the elec-
tric quadrupole (EQ) ranks second; other electromagnetic multipoles account for a small
proportion, especially the electric dipole (ED) and the magnetic dipole (MD), which are
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strongly suppressed. These results demonstrate that the resonance at λB = 922 nm is
dominated by the toroidal dipole moment.
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Figure 5. (a) Scattering spectra for ED, MD, EQ, MQ, and TD modes under backward illumination.
(b) Cross-sectional vectorial (y–z plane) for the magnetic-field (H-field) maps for the excitation of
toroidal dipole (TD). The black dashed line marks the outline of Al2O3 disk, while the black circular
lines along the circumference indicate toroidal moment. The green arrow marks the circular magnetic
field direction, and the direction of TD is shown by the symbol
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As we know, the toroidal dipole (TD), as an independent family of elementary electro-
magnetic source, corresponds to electric currents flowing on the surface of a torus. However,
toroidal dipole response in electrodynamics is often masked by the more dominant electric
and magnetic multipoles at a similar frequency. Recently, due to its nonradiating feature,
toroidal dipole has attracted increasing attention in metasurface research, and it provides
many interesting phenomena with enhanced light–matter interactions and applications
in spasers [48], ultrasensitive biosensing [49] and nonlinear effects [50]. However, the
application of toroidal dipole in asymmetric transmission has not been reported yet. As
can be clearly seen in Figure 5a, the scattering of the toroidal dipole (TD) corresponds to a
dip at λB, and other electromagnetic poles, except for the magnetic quadrupole (MQ), also
exhibit a resonance dip at this wavelength. These dips demonstrate the appearance of a
low backward transmittance dip at λB = 922 nm.

Based on the above discussion, we believe that the lack of efficient excitation of SPPs,
the back reflection by the Au film and the dominant toroidal dipole response together
contribute to the appearance of a backward transmittance dip at λB = 922 nm.

To further verify the existence of TD, the cross-sectional (y–z plane) magnetic-field
(H-field) at λB = 922 nm is plotted in Figure 5b, in which the black dashed line shows
the position of the Al2O3 dielectric disk. As shown, the poloidal magnetic field spins in a
clockwise path in the Al2O3 dielectric disk, which can explain the existence of the toroidal
dipole (TD), represented by the black circle line in Figure 5b, while the green arrow marks
the circular magnetic field direction.

Furthermore, from Figure 5b, one can see that the circulating magnetic fields are
mainly located inside the dielectric disk; hence, changing the thickness of the dielectric
disk will have a significant impact on the transmittance response.
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3.2.3. Effect of the Thickness of the Dielectric Disk and Au Layer on
Asymmetric Transmission

Besides the disk thickness mentioned above, which has a significant effect on trans-
mission spectrum, the metal layer’s thickness is also crucial because it plays a key role
in the tunneling of SPPs and impacts transmittance spectra. Therefore, it is necessary to
choose suitable thicknesses for the Au film and dielectric disk.

Firstly, as shown in Figure 6a, when the thickness of the gold (Au) layer, t1, increases
from 20 nm to 40 nm by a step of 10 nm (while other geometric parameters remain
unchanged), both the forward (F) and backward (B) transmittance spectra tend to decrease.
Obviously, in the case of forward incidence, it is more difficult for the SPPs to tunnel
through a thicker Au layer, whereas in the case of backward incidence, a thicker Au layer
reflects more light. As a result, both forward and backward transmission decreases with
the increase in Au thickness.
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Figure 6. Forward (F) and backward (B) transmittance spectra for different geometric parameters.
(a) Au layer thickness t1; (b) dielectric disk thickness t2.

Secondly, as shown in Figure 6b, when the thickness of the dielectric disk t2 is 50 nm,
the maximal forward transmittance is only 0.3. With the increase in t2 (while other geo-
metric parameters remain unchanged), the peak value of forward transmittance increases
gradually. Most notably, when t2 increases to 200 nm, the maximal forward transmittance
is close to 0.70 at 922 nm. This can be understood as follows: when t2 is small, it is hard
to excite the annular displacement current inside the dielectric disk; thus, an effective
magnetic response is unable to form [51,52], which affects the interference effect between
electromagnetic multipolar moments. Therefore, in this paper, we choose t2 = 200 nm as
the optimization thickness for the dielectric disks.

In addition, under backward illumination, when t2 increases from 50 nm to 200 nm, the
transmission dip gradually redshifts, and its corresponding transmittance also decreases.
This is especially noticeable when t2 increases to 200 nm, for its value is only 0.07 at
λB = 922 nm. This is because the toroidal dipole response gradually rises to the dominant
position; thus, it further suppresses transmission and, finally, leads to a low transmittance
dip at λB = 922 nm.
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4. Conclusions

In summary, we propose and numerically demonstrate a dielectric–metal metasurface
that can work as a high-performance asymmetric transmission (AT) device in the near-
infrared region. The simulation results show that it can support a forward transmittance
peak (with a transmittance of 0.70) and a backward transmittance dip (with a transmit-
tance of 0.07) at wavelength 922 nm. The occurrence of a forward transmission peak
and backward transmission dip at the same wavelength notably enhances the operation
bandwidth and the contrast ratio between the forward and backward transmittances, and
this feature is quite different from previously reported devices. The physical mechanism
behind this extraordinary phenomenon is investigated with respect to the unidirectional
excitation of surface plasmon polaritons (SPPs), Kerker conditions and the electromagnetic
multipole decomposition method. To be specific, when the light is forwardly incident on
the proposed dielectric–metal metasurface, the dielectric disk and the metal film excite
SPPs; meanwhile, the electric and magnetic responses within the dielectric disk satisfy the
first Kerker condition so that the electromagnetic energy can tunnel through the metal layer
with the assistance of SPPs, realizing a transmittance peak at 922 nm. However, when the
incident direction is reversed, the light cannot pass the device due to the lack of effective
SPPs excitation, resulting in most electromagnetic energy being reflected by the metal layer.
At the same time, the nonradiating toroidal dipole dominates in the far-field scattering
powers, and it further promotes the formation of a transmittance dip at 922 nm.

In view of its simple structure and excellent performance, we believe that the proposed
metasurface shows extensive versatility for potential applications including, but not limited
to, noise control, one-side detection, optical beam splitters and other photonic devices.
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