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Abstract: Silver nanoparticles capped with 3-mercapto-1propanesulfonic acid sodium salt
(AgNPs-3MPS), able to interact with Ni2+ or Co2+, have been prepared to detect these heavy
metal ions in water. This system works as an optical sensor and it is based on the change of
the intensity and shape of optical absorption peak due to the surface plasmon resonance (SPR)
when the AgNPs-3MPS are in presence of metals ions in a water solution. We obtain a specific
sensitivity to Ni2+ and Co2+ up to 500 ppb (part per billion). For a concentration of 1 ppm (part per
million), the change in the optical absorption is strong enough to produce a colorimetric effect on the
solution, easily visible with the naked eye. In addition to the UV-VIS characterizations, morphological
and dimensional studies were carried out by transmission electron microscopy (TEM). Moreover,
the systems were investigated by means of dynamic light scattering (DLS), Fourier-transform
infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and high-resolution X-ray
photoelectron spectroscopy (HR-XPS). On the basis of the results, the mechanism responsible for the
AgNPs-3MPS interaction with Ni2+ and Co2+ (in the range of 0.5–2.0 ppm) looks like based on the
coordination compounds formation.

Keywords: silver nanoparticles; surface plasmon resonance; heavy metal ions sensing; Ni2+ sensing;
Co2+ sensing; water pollution; optical sensors

1. Introduction

The huge development of materials science, nanoscience, and nanomaterials technology has led
to the synthesis and engineerization of several nanostructures (metallic and non) used in different
fields such as biomedicine [1,2], biotechnology [3,4], energy [5–8], optics, and optoelectronics [9–16].
Recently, sensors based on different nanosized materials have been developed, achieving a high
sensitivity and selectivity [17–26].
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In this framework, metallic nanoparticles cover an important role for the easy synthesis, the low
costs, and for the possibility to accomplish specific external functionalization to respond selectively
to specific analytes. The reduced dimensions of the metallic structures confer them unique physical,
chemical, mechanical, optical, magnetic, and catalytic properties [27–32]. In particular, the small
dimensions allow optical properties, which make metallic nanoparticles interesting for optical
spectroscopy applications such as surface enhanced Raman spectroscopy (SERS) and surface plasmon
resonance (SPR). The latter phenomenon occurs when an electromagnetic radiation of a certain
wavelength, exciting the nanoparticle, causes the oscillation of free electrons in the conductive band.
As a result, the optical absorption presents an intense and well-shaped SPR, usually in the visible
region. The wavelength of the SPR peak strongly depends on the type of metal, particle dimension,
shape, and chemical environment. Another important aspect of these systems is their high surface to
volume ratio, which confers them a very high reactivity with the surroundings as well as the possibility
to modify their external surfaces with an appropriate surface chemistry. On this basis, many metal
nanoparticles-based sensors have been studied and developed [33–37]. The main application of such
optical sensors is the detection of heavy-metals, which have long been known to be harmful for
the environment and toxic for human health, above very small concentrations, a few ppm or lower,
as reported in the literature [38–40] and by the Guidelines for Drinking-Water Quality by the World
Health Organization (WHO) [41].

The current state of the art for the detection of heavy metal ions is based on complex and time
consuming techniques, such as high performance liquid chromatography (HPLC), atomic fluorescence
spectroscopy (AFS), flame atomic absorption spectroscopy (FAAS), and graphite furnace atomic
absorption spectroscopy (GFAAS) [42,43]. All of these methods are very sensitive and reliable, but they
have also some disadvantages, as the complexity and the high instrumentation costs, together with the
requirement of highly skilled operators. For all these reasons, the scientific community is currently
working on innovative, simple, and low cost heavy metal ions sensors. In particular, the ones based on
optical and colorimetric techniques have received great attention, as they can offer high selectivity,
stability, intrinsic operational simplicity, and immunity against electrical disturbance. In addition,
they are extremely attractive as they are based on simple and low cost materials, are very easy
to use, are portable, and need simple and cheap set ups, offering, at the same time, high sensitivity
and selectivity.

In the present work, AgNPs-3MPS were synthetized and their interaction with heavy metal
ions was studied using different techniques. The system presents a strong sensitivity to Ni2+ and
Co2+ ions, showing a consistent change in the SPR as a function of the ion concentration, resulting
in a colorimetric change of the solution. The morphological and dimensional characterizations of
the AgNPs-3MPS (average size and shape) before and after the interaction with Ni2+ and Co2+ were
obtained by TEM studies. Moreover, the system was studied by means of different techniques, such as
dynamic light scattering (DLS), UV-VIS, FTIR, and high-resolution X-ray photoelectron spectroscopy
(HR-XPS), in order to understand the mechanism of SPR sensing.

2. Materials and Methods

2.1. Materials

Silver nitrate (AgNO3, 99.5%, Sigma-Aldrich, St. Louis, MO, USA) and sodium borohydride
(NaBH4, 98%, Sigma-Aldrich, St. Louis, MO, USA), were used for the synthesis of the nanoparticles.
3-mercapto-1propanesulfonic acid sodium salt (C3H7S2O3Na, 3MPS, Sigma Aldrich, 98%) was used as
a capping agent. For the sensitivity measurement to the different ions, we used the following salts:
Mg(ClO4)2, KClO4, NaClO4, Ca(ClO4)2, Pb(NO3)2, Cd(NO3)2, FeCl3 6H2O, Cu(NO3)2, NiCl2 6H2O,
and CoCl2 6H2O. For all of the solutions, we used deionized water (electrical conductivity less than
1 µΩ/cm at room temperature) obtained from a Millipore Milli-Q water purification system. All of the
reagents were purchased from Sigma Aldrich and were used without further purification.
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2.2. Synthesis and Characterization of AgNPs

The AgNPs were prepared by a wet reduction of silver nitrate in the presence of sodium
borohydride. The thiol (3MPS) was subsequently added and it capped the silver nanoparticles.
The details of this procedure were reported elsewhere [44]. The morphological characterization was
accomplished with a TEM, FEI TECNAI 12 G2 (120 KeV) apparatus, equipped with an energy filter
(GATAN GIF model) and a Peltier cooled SSC (slow scan charged coupled device) multiscan camera
(794 IF model). A droplet of AgNPs water solution was placed on a copper TEM grid (mesh 400)
coated with ultrathin carbon support. The UV-VIS spectra of water suspensions were collected using
a Perkin-Elmer Lambda 19 spectrophotometer. The DLS measurements on the AgNPs colloidal
suspensions (0.2 mg/mL) at T = 25.0 ± 0.2 ◦C were performed by the Malvern Zetasizer Nanoseries
instrument (Malvern, UK), as reported in previous studies [45]. The ζ-potential was calculated from the
measured electrophoretic mobility by means of the Smolukovsky equation [46]. Reflection absorption
infrared spectroscopy (RAIRS) analysis was performed by means of a VECTOR 22 (Bruker, Billerica,
MA, USA) FTIR interferometer equipped with a deuterated-triglycine sulfate detector (DTGS detector),
and operating in the wavenumber range 400–4000 cm−1. The measurements were carried out by means
of a Specac Monolayer/grazing angle accessory GS19650, operating at 70◦ incidence. The samples
were prepared as thin films by solvent evaporation on Ti substrates from the mother solution; a clean
Ti surface was used to record the background.

The HR-XPS experiments were carried out at the BACH (Beamline for Advanced DiCHroism) line
at the ELETTRA synchrotron facility in Trieste (Italy) [47], to probe the nature of the interactions at the
AgNPs/organic ligands interface and the formation of Ni2+ or Co2+ coordination compounds. All of
the samples were deposited by means of a drop casting procedure on a silicon wafer substrate (TiO2/Si
(111 plane)). The XPS data were collected in a fixed analyzer transmission mode (pass energy = 30 eV).
Photon energies (PE) of 380 eV were used for C1s and S2p spectral regions, with an energy resolution
∆E = 0.2 eV, and a PE of 1050 eV was selected to acquire Ag3d, O1s, Ni2p, and Co2p core levels
spectra, with an energy resolution ∆E = 0.3 eV. The aliphatic C1s signal and metallic Ag3d5/2 signals
were used for the energy scale calibration. The XPS data analysis was performed via the curve-fitting
of S2p, Ag3d, Ni2p, and Co2p experimental spectra, using a combination of Voigt shaped peaks,
after the subtraction of a Shirley background. The S2p3/2-S2p1/2, Ag3d5/2-Ag3d3/2, Ni2p3/2-Ni2p1/2,
and Co2p3/2-Co2p1/2 doublets were fitted using the same full width half maximum (FWHM) for the
two spin-orbit components of the same signal, a spin-orbit splitting of 1.20 eV for S2p, 6.00 eV for
Ag3d, 3.30 eV, 17.27 eV for Ni2p, and 14.97 eV for Co2p, and the branching ratios S2p3/2/S2p1/2 = 2,
Ag3d5/2/Ag3d3/2 = 3/2, Ni2p3/2/Ni2p1/2 = 2, Co2p3/2/Co2p1/2 = 2 have been detected, respectively.
For the S2p XPS spectra, many chemically different species of the same element were identified
and the same FWHM value was used for all of the individual photoemission bands, in order to
reduce the number of refinement parameters, and then improving the reliability of the results. In the
Co2p and Ni2p spectral regions, shake-up satellites appear nearby the main photoelectron signals
(at higher binding energy (BE)), as expected for the transition metals ions [48]; to fit satellite signals,
variable FWHM and branching ratios were used, accordingly to the literature [49,50].

2.3. Sensing

The AgNPs-3MPS contained in a fixed volume of water (typically 0.014 mg in 1 mL) were added to
a fixed volume of water solution containing the heavy metal ions at specific concentration (typically in
1 mL). After five minutes of interaction of the nanoparticles with the metal ions, the optical absorption
spectra and the respective DLS measurements were collected. The response to several metal ions was
tested by UV-VIS spectroscopy.
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3. Results and Discussion

Figure 1 reports the SPR absorption band of the AgNPs-3MPS (reference solution) and the
optical features of the same solution with a different concentration of nickel and cobalt ions, up to
2.0 ppm for nickel (a) and up to 3.0 ppm for cobalt (b), respectively. A red shift with the increasing
concentration of ions is observed for both of the ions as well as a broadening of the SPR band.
Figure 1c,d show the wavelength shifts (∆λ) and the variation of the full width at half maximum
(∆FWHM) of the Ag absorption band for increasing Ni2+ and Co2+ concentrations. We decided to
report the FWHM of the absorption band, as it gives a qualitative idea of the broadening of the
nanoparticles dimension distribution before and after the interaction with ions. Both of the figures
show a saturation effect, represented by the plateau for high ion concentrations, 2 ppm for Ni2+ and
3ppm for Co2+. The saturation effect is reached at different ions concentration for nickel and cobalt.

The interaction of the Ni2+ ions with AgNP-3MPS causes a stronger modification of the shape and
wavelength peak of the SPR with respect to presence of Co2+. In particular, ∆λ is 36 nm for 2.0 ppm of
Ni2+, while only 17 nm for 3.0 ppm of Co2+. A similar behavior was found for ∆FWHM, 67 nm for
2.0 ppm of nickel and 36 nm for 3.0 ppm of cobalt. Fitting those curves with a sigmoidal Richards
function (y = a × (1 + (d − 1) × exp(−k × (x − xc)))(1/(1−d))), it is possible to obtain a correlation
between ∆λ and ∆FWHM with concentration. The fitting parameters of the function varies for each
system (see supporting information Figure S1 for fitting graphics and table of parameters).
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Figure 1. Optical absorption bands for Ni2+ (a) and Co2+ (b) as a function of the ion concentration
(reported in the figure labels); variation of ∆λ and variation of the full width at half maximum (∆FWHM)
of Ni2+ (c) and Co2+ (d), as a function of the ion concentration.

We checked the selectivity of the colloidal system to other ions. Figure 2 (upper part) shows the
variation of the optical plasmonic characteristics (peak wavelength and shape) of the AgNP-3MPS
solution with 1.0 ppm of the specific ions listed in the figure. The response to the non-toxic ions
such as Mg2+, K+, Na+, and Ca2+, and to the toxic agents such as, Pb2+, Cd2+, and Fe3+, is clearly
not significant. Cu2+ shows a small modification of the shape (∆FWHM) of the SPR and a negligible
change of the maximum peak wavelength. The most relevant differences were measured for Ni2+



Nanomaterials 2018, 8, 488 5 of 14

and Co2+. Figure 2 (lower part) reports a picture of the AgNPs-3MPS solution treated with a fixed
amount (1 ppm) of different ions; the colorimetric changes can be easily appreciated also by naked eye.
The different optical response to nickel and cobalt ions can be exploited for a selective detection of
these specific species.
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the colorimetric aspect of 1.0 ppm solution of different ions.

The DLS measurements were carried out, showing an increase of the average hydrodynamic
diameter (<2RH>) of the AgNPs-3MPS, after interaction with the Co2+ or Ni2+ ions (see supporting
information Figures S2–S4). Table 1 shows the dimension of NPs as a function of the increasing
concentration of Ni2+ ions, from (8 ± 3) nm for reference, that is, AgNPs-3MPS alone, to (10 ± 1) nm
for 0.5 ppm, to (43 ± 4) nm for 1.0 ppm, to (1110 ± 100) nm for 2.0 ppm of Ni2+ concentration.
Moreover, the ζ potential changes in presence of Ni2+ as follows: AgNPs-3MPS showed ζ potential of
−44 mV, while in presence of 1.0 ppm of Ni2+, the ζ potential becomes −27 mV, indicating an effective
interaction of the positive ions with NPs. In Table 1, similar results are also reported for increasing the
concentration of Co2+ ions from 0.5 to 2.0 ppm. In this case, the particles’ dimensions have a fairly
similar trend of aggregation, up to become microsized, polydispersed, and instable in presence of
2 ppm of metal ion. In fact, the ζ potential evidences the interaction and becomes less negative or
completely instable as in the case of 2 ppm of Co2+, reported in Table 1.

Table 1. Dynamic light scattering (DLS) measurements of AgNPs-3MPS before and after interaction
with the ions–water solution at specific concentrations. In the table, the average diameter and the ζ

potential are reported. Errors quote the standard deviation of at least three independent measurements.

- <2RH> (nm) ζ Potential (mV)

AgNPs-3MPS alone 8 ± 3 −44 ± 5
AgNPs-3MPS + Ni2+ (0.5 ppm) 10 ± 1 −40 ± 6
AgNPs-3MPS + Ni2+ (1.0 ppm) 43 ± 4 −27 ± 10
AgNPs-3MPS + Ni2+ (2.0 ppm) 1110 ± 100 −13 ± 5
AgNPs-3MPS + Co2+ (0.5 ppm) 55 ± 5 −40 ± 14
AgNPs-3MPS + Co2+ (1.0 ppm) 76 ± 9 −22 ± 15
AgNPs-3MPS + Co2+ (2.0 ppm) 1436 ±108 -
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Therefore, we can observe that the stable water suspension of AgNPs readily aggregate in the
presence of Ni2+ or Co2+, owing to cooperative effect of electrostatic and coordination interactions.
The interaction between the AgNPs-3MPS and Co2+ or Ni2+ ions does not produce significant
modification in the FTIR spectra (see supporting information Figure S5); the shape and position
of the characteristic peaks related to AgNPs-3MPS undergo only a slight change.

The Figure 3a reports a TEM image of the AgNPs-3MPS showing the shape and dimension
of the nanoparticles. A spherical shape of the NPs can be appreciated together with an almost
homogeneous distribution of the dimensions (see also supporting information Figure S6). The analysis
of TEM images, based on a statistic on one hundred nanoparticles, reveals an average dimension of
(4.1 ± 0.4) nm. This value is in agreement with the average diameter measured by DLS of (8 ± 3) nm,
in fact, this last technique measures the hydrodynamic diameter of the nanoparticle and not the bare
particle dimension, resulting in a greater diameter. Figure 3b shows the histogram of the average
dimensions of the particles obtained analyzing 100 particles. Figure 3c,d show the typical shape of the
AgNPs-3MPS aggregates for 1 ppm of Ni2+ and Co2+, respectively.
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Figure 3. TEM image of AgNPs-3MPS (a); histogram of the average dimensions of the nanoparticles
obtained by the analysis of 100 particles (b); scale bars are reported in the lower part of the pictures.
TEM image of AgNPs-3MPS with 1.0 ppm of Ni2+ (c); and TEM image of AgNPs-3MPS with 1.0 ppm
of Co2+ (d).

The dimensions and shapes are quite different. For cobalt ions, the aggregates are smaller and
more regular in shape, with respect to the nickel ones. This indicates the interaction occurring and the
possible formation of coordination compounds of nickel and cobalt ions with AgNPs-3MPS in analogy
to literature data [51]. This behavior is also strongly supported by the HR-XPS characterization (vide
infra). Moreover, considering the electrochemical analogies between Ni2+ and Co2+ ions, with standard
reduction potentials quite close (−0.23 V and −0.28 V for Ni2+/Ni◦ and Co2+/Co◦, respectively), it is
possible to explain the similar behavior of the two ions in solution.

Figure S7 in supporting information reports a high resolution TEM image of a single nanoparticle
presenting a greater radius with respect to the average value, but showing the good crystallinity of the
material. The measured lattice parameter is 0.24 nm (111 plane), as reported in the figure, which is in
close agreement with the lattice parameter of the silver nanoparticles reported in the literature [52,53].
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To assess the silver nanoparticles molecular stability and to gain insights in the AgNPs-3MPS/ions
interaction, HR-XPS measurements were carried out on thiol-functionalized silver NPs with Ni or
Co ions-water solution, at concentrations 0.5, 1.0, 1.5, and 2.0 ppm (concentrations of 1.0 ppm for both
ions will be here reported as examples), collecting the data at the C1s, O1s, S2p, Ag3d, Ni2p, or Co2p
core levels. The AgNPs-3MPS were also measured as a reference for the data analysis discussion.

First of all, the Ag3d spectra were collected and analysed with the aim of probing the metal
nanoparticles stability and to gain information about their dimensions. The XPS data and best fits for
the Ag3d core levels are shown in supporting information Figure S8. The main quantitative results are
summarized in Table 2.

Table 2. High-resolution X-ray photoelectron spectroscopy (HR-XPS) Ag3d5/2 metal core levels data
collected on pristine AgNPs-3MPS and AgNPs-3MPS, in presence of 1 ppm of Ni and Co ions (binding
energy (BE), full width half maximum (FWHM), atomic ratio, and assignments).

Sample Signal BE (eV) FWHM (eV) * I Ratio Assignments

AgNPs-3MPS Ag3d5/2 368.2 1.1 85% Ag(0)
Ag3d5/2 369.1 “ 15% Ag(δ+)

AgNPs-3MPS + Ni2+ (1.0 ppm)
Ag3d5/2 368.1 1.2 78% Ag(0)
Ag3d5/2 369.1 “ 22% Ag(δ+)

AgNPs-3MPS + Co2+ (1.0 ppm)
Ag3d5/2 368.2 1.3 80% Ag(0)

Ag3d5/2 369.3 “ 20% Ag(δ+)

* I ratios = Ipeak/Itot signal for a selected element.

Following a curve fitting procedure, two spin-orbit pairs were individuated in the Ag3d XPS
spectra (see supporting information Figure S8). The main Ag3d5/2 components are centered around
368.1–368.2 eV binding energy (BE) value, and correspond to metallic silver atoms in the nanoparticles
core, as expected and extensively reported in the literature for functionalized Ag nanoparticles [54].
The second spin-orbit pairs of small intensity at higher BE values (Ag3d5/2 BE of about 369.1–369.3 eV)
are attributed to the more oxidized surface Ag bonded with an organic structure, as suggested in
the literature for analogous systems [55]. The difference in the BE between the first Ag3d5/2 and the
second Ag3d5/2 component is of about 1 eV for all of the investigated samples. The atomic percents
detected for the metal associated to the covalent bond with sulphur (see Table 2) are consistent with
the nanoparticles dimension indicated by TEM. Indeed, the percent of metal atoms located on the
nanoparticle surface suggests a high surface to volume ratio, as expected for particles below 5 nm
diameter [56]. To investigate the chemical environment at the interface between the AgNPs and 3MPS
thiol, and to probe the hypothesized formation of the Ni and Co coordination compounds, the HR-XPS
S2p core levels signals were collected and analysed. The spectra and complete BE, FWHM, atomic ratio,
and assignments for the functionalized nanoparticles are reported in Table 3 and Figure 4, respectively.

Table 3. HR-XPS S2p core levels data collected on silver nanoparticles (NPs) stabilized by 3MPS
(BE, FWHM, atomic ratio, and assignments) and AgNPs-3MPS in presence of nickel and cobalt ions
(1.0 ppm).

Sample Signal BE (eV) FWHM (eV) * I Ratio ** Assignments

AgNPs-3MPS S2p3/2 161.2 1.5 54% RS-Ag
S2p3/2 168.0 “ 46% SO3

−Na+

AgNPs-3MPS + Ni2+ (1.0 ppm)

S2p3/2 162.2 1.5 30% RS-Ag
S2p3/2 163.2 “ 26% RS-H
S2p3/2 168.2 “ 16% SO3

−Na+

S2p3/2 168.8 “ 28% SO3
−-M

AgNPs-3MPS + Co2+ (1.0 ppm)

S2p3/2 162.3 1.7 22% RS-Ag
S2p3/2 163.0 “ 24% RS-H
S2p3/2 168.3 “ 32% SO3

−Na+

S2p3/2 168.8 “ 22% SO3
−-M

* I ratios = Ipeak/Itot signal for a selected element. ** M = Ni2+; Co2+.
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The S2p spectra analysis carried out on functionalized AgNPs in the presence of Ni and Co
ions points out four distinct chemical states for S, the spin-orbit doublets at lower BE values (from
literature BE S2p3/2 components around 161–162 eV) can be associated to RS-Ag bonded thiol [57,58];
more in detail, S2p3/2 components at about 161 eV and 162 eV are attributed to sulphur atoms
covalently bonded to metals in a monolayer or sub-monolayer regime, with the S atom in two
different hybridizations, sp (around 161 eV) and sp3 [59]. The S2p3/2 signal occurring at nearly
163.0–163.2 eV BE is due to sulphur atoms of the thiol moiety of physisorbed 3MPS molecules;
conversely, the spin-orbit pair at higher BE values (S2p3/2 components BE close to 168.0–168.3 eV) is
related to S in sulfonates functional groups (–SO3

–), and finally, the S2p3/2 signal at BE = 168.8 eV can
be attributed to sulfonate groups coordinating nickel or cobalt ions. It is noteworthy the absence of the
spin-orbit pair at higher BE values for the pristine AgNPs-3MPS (see Table 3 and Figure 4), supporting
the hypothesis that the S2p component around 168.8 is actually indicative for the formation of Ni2+

and Co2+ coordination compounds. The FWHM for XPS S2p signals was always found to be between
1.5 and 1.7 eV, consistent with literature reports on analogous systems [56,60]. The fraction of S atoms
in the sulfonate groups (both free and coordinated to metal ions), with respect to the chemisorbed and
physisorbed thiol moieties, is 0.8:1 for AgNPs-3MPS + Ni2+ and 1.1:1 for AgNPs-3MPS + Co2+, and the
atomic ratio between the sulfonates and thiols signal is 0.9:1 for the reference AgNPs-3MPS sample as
well. Taking into account the statistic error in semi-quantitative XPS analysis, which is of about 5%
of the estimated value [61], the observed experimental atomic ratios are in good agreement with the
theoretical ones, based on the 3MPS chemical structure, confirming the molecule integrity for all of the
samples. Moreover, the relative percent of S atoms involved in the coordination compounds formation,
with respect to the sulfonate groups, can be qualitatively estimated by comparing the intensities of the
metal-coordinated sulfur signals, with respect the –SO3

– signals. The fraction of atoms in the –SO3
– +

M2+ (where M2+ is Ni2+ or Co2+, according to the sample) configuration, with respect the –SO3
–, is 1.8:1
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for the AgNPs-3MPS + Ni2+ sample and 0.7:1 for the AgNPs-3MPS + Co2+ sample, indicates that a
higher number of Ni ions coordinates the NPs ligands, as already suggested by the larger aggregates
of AgNPs-3MPS found in the TEM measurements. In Table 4 and Figure 5, the Ni2p and Co2p XPS
data analysis results are reported. It is known that nickel and cobalt can form a variety of complexes
in different stereogeometries containing the metal ions in different oxidation states. The variation of
binding energies and shake-up satellites spectral behavior are a function of stereochemistry, magnetic
properties, and ligand surroundings. The fitting procedure applied to analyse the Ni2p spectrum
collected on the AgNPs-3MPS + Ni2+ sample (1.0 ppm) allowed identifying the presence of one
spin-orbit pair and two shake-up satellites in both 2p levels (see Panel A in Figure 5). The Ni2p3/2
signal at BE = 856.2 eV can be associated with the Ni2+ oxidation state in the nickel coordination
compounds [49]. Likewise, the Co2p data analysis carried out for the AgNPs-3MPS + Co2+ (1.0 ppm)
sample led to individuate a single pair of spin-orbit components with the Co2p3/2 main component
at about 782 eV in binding energy, as expected for the Co2+ oxidation state in cobalt coordination
compounds [48,50].

Nanomaterials 2018, 8, x FOR PEER REVIEW  9 of 14 

 

confirming the molecule integrity for all of the samples. Moreover, the relative percent of S atoms 

involved in the coordination compounds formation, with respect to the sulfonate groups, can be 

qualitatively estimated by comparing the intensities of the metal-coordinated sulfur signals, with 

respect the –SO3– signals. The fraction of atoms in the –SO3– + M2+ (where M2+ is Ni2+ or Co2+, 

according to the sample) configuration, with respect the –SO3–, is 1.8:1 for the AgNPs-3MPS + Ni2+ 

sample and 0.7:1 for the AgNPs-3MPS + Co2+ sample, indicates that a higher number of Ni ions 

coordinates the NPs ligands, as already suggested by the larger aggregates of AgNPs-3MPS found in 

the TEM measurements. In Table 4 and Figure 5, the Ni2p and Co2p XPS data analysis results are 

reported. It is known that nickel and cobalt can form a variety of complexes in different 

stereogeometries containing the metal ions in different oxidation states. The variation of binding 

energies and shake-up satellites spectral behavior are a function of stereochemistry, magnetic 

properties, and ligand surroundings. The fitting procedure applied to analyse the Ni2p spectrum 

collected on the AgNPs-3MPS + Ni2+ sample (1.0 ppm) allowed identifying the presence of one 

spin-orbit pair and two shake-up satellites in both 2p levels (see Panel A in Figure 5). The Ni2p3/2 

signal at BE = 856.2 eV can be associated with the Ni2+ oxidation state in the nickel coordination 

compounds [49]. Likewise, the Co2p data analysis carried out for the AgNPs-3MPS + Co2+ (1.0 ppm) 

sample led to individuate a single pair of spin-orbit components with the Co2p3/2 main component at 

about 782 eV in binding energy, as expected for the Co2+ oxidation state in cobalt coordination 

compounds [48,50]. 

 

Figure 5. Ni2p and Co2p core levels spectra of thiol-functionalized AgNPs with 1.0ppm of nickel 

(panel A) and 1.0 ppm of cobalt (panel B). 

Table 4. HR-XPS Ni2p3/2 and Co2p3/2 metal core levels data collected on silver NPs stabilized by 

3MPS in presence of nickel and cobalt ions (BE, FWHM, and assignments). 

Sample BE (eV) FWHM (eV) Assignments 

AgNPs-3MPS + Ni2+ (1.0 ppm) 
856.2 4.3 Ni2+ Coordination Compounds 

861.9 6.3 Satellite Structure 

AgNPs-3MPS + Co2+ (1.0 ppm) 
782.3 4.6 Co2+ Coordination Compounds 

787.2 8.3 Satellite Structure 

In conclusion, the HR-XPS analysis confirms the effective thiol-functionalization of the silver 

nanoparticles, without molecular degradation, and supports the hypothesis of the formation of the 

Ni2+ and Co2+ coordination compounds in the presence of nickel and cobalt ions in water. For the 

sake of clarity, we reported a very simple scheme illustrating the formation of the different 

aggregates in presence of the two ions, in Figure 6. 

The XPS experimental results are also consistent with the NPs size, evidencing a high surface to 

volume atomic ratio, confirmed by the TEM measurements. The sensitivity limit measured in this 

work, of the order of 500 ppb for both Ni2+ and Co2+ ions, is coherent with recent works exploiting 

similar detection systems, reported in literature. For nickel sensing, Y. Shang at al. achieved a 

sensitivity of 14 ppb [62] and Li et al. of 4400 ppb [51]; while for cobalt, F. Zhang et al. reported 

values of 18 ppb [63] and V.N. Mehta et al. of 800 ppm [64]. The different sensibilities are clearly 

Figure 5. Ni2p and Co2p core levels spectra of thiol-functionalized AgNPs with 1.0 ppm of nickel
(panel A) and 1.0 ppm of cobalt (panel B).

Table 4. HR-XPS Ni2p3/2 and Co2p3/2 metal core levels data collected on silver NPs stabilized by
3MPS in presence of nickel and cobalt ions (BE, FWHM, and assignments).

Sample BE (eV) FWHM (eV) Assignments

AgNPs-3MPS + Ni2+ (1.0 ppm)
856.2 4.3 Ni2+ Coordination Compounds
861.9 6.3 Satellite Structure

AgNPs-3MPS + Co2+ (1.0 ppm)
782.3 4.6 Co2+ Coordination Compounds
787.2 8.3 Satellite Structure

In conclusion, the HR-XPS analysis confirms the effective thiol-functionalization of the silver
nanoparticles, without molecular degradation, and supports the hypothesis of the formation of the
Ni2+ and Co2+ coordination compounds in the presence of nickel and cobalt ions in water. For the sake
of clarity, we reported a very simple scheme illustrating the formation of the different aggregates in
presence of the two ions, in Figure 6.

The XPS experimental results are also consistent with the NPs size, evidencing a high surface to
volume atomic ratio, confirmed by the TEM measurements. The sensitivity limit measured in this work,
of the order of 500 ppb for both Ni2+ and Co2+ ions, is coherent with recent works exploiting similar
detection systems, reported in literature. For nickel sensing, Y. Shang at al. achieved a sensitivity
of 14 ppb [62] and Li et al. of 4400 ppb [51]; while for cobalt, F. Zhang et al. reported values of
18 ppb [63] and V.N. Mehta et al. of 800 ppm [64]. The different sensibilities are clearly related to the
external functionalization and to the complexity of the detection systems [65], however, they are in
a range very similar to our results. In addition, it has to be underlined that our system is extremely
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easy to synthesize, even in large amounts. The obtained results are precious and helpful for a deep
understanding of the detection mechanism, which is essential to develop simple and economic systems
for a high precision colorimetric detection of heavy metal ions in water.
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4. Conclusions

Optical sensor for Ni2+ and Co2+ ions in a water solution based on capped silver nanoparticles
has been prepared and tested. The working principle of the sensor system is a change of the shape
and the maximum wavelength of the surface plasmon resonance band. The AgNPs capped with
3MPS show selectivity for the two specific ions in water, Co2+ and Ni2+, and a good sensitivity up to
500 ppb. Careful analysis based on DLS, FTIR, and HR-XPS spectroscopies were performed together
with TEM characterization, in order to understand the mechanism of SPR sensing. By the analysis,
the mechanism responsible of the sensitivity of the AgNPs-3MPS seems based on the formation of the
coordination compounds of Ni2+ and Co2+.
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