
Immunoglobulin Structure Exhibits Control over CDR Motion

Michael T. Zimmermann1,2,3, Aris Skliros1, Andrzej Kloczkowski1,2,4,5, and Robert L.
Jernigan1,2,3,†

1L. H. Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames, IA
50011, USA

2Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA
50011, USA

3Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011, USA

4Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children’s
Hospital, The Ohio State University College of Medicine, Columbus, OH 43205, USA

5Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205,
USA

Abstract

Motions of the IgG structure are evaluated using normal mode analysis of an elastic network

model to detect hinges, the dominance of low frequency modes, and the most important internal

motions. One question we seek to answer is whether or not IgG hinge motions facilitate antigen

binding. We also evaluate the protein crystal and packing effects on the experimental temperature

factors and disorder predictions. We find that the effects of the protein environment on the

crystallographic temperature factors may be misleading for evaluating specific functional motions

of IgG. The extent of motion of the antigen binding domains is computed to show their large

spatial sampling. We conclude that the IgG structure is specifically designed to facilitate large

excursions of the antigen binding domains. Normal modes are shown as capable of

computationally evaluating the hinge motions and the spatial sampling by the structure. The

antigen binding loops and the major hinge appear to behave similarly to the rest of the structure

when we consider the dominance of the low frequency modes and the extent of internal motion.

The full IgG structure has a lower spectral dimension than individual Fab domains, pointing to

more efficient information transfer through the antibody than through each domain. This supports

the claim that the IgG structure is specifically constructed to facilitate antigen binding by coupling

motion of the antigen binding loops with the large scale hinge motions.
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Background

Immunoglobulin Gamma (IgG) is one of the principal players in the adaptive immune

system and is commonly referred to as an antibody. It is produced in a huge array of diverse

antigen binding forms by B-cells through a combinatorial process called V(D)J

recombination. This produces molecules comprised of two heavy and two light chains with

highly variable complementary determining regions CDRs. The heavy chains of a given

antibody are identical in sequence to one another and are comprised of four immunoglobin

folds (a two layer sandwich of 7 anti-parallel beta strands), one of which is variable in

sequence. Light chains are also identical in sequence and consist of two immunoglobin

folds, one of which is variable. The two light chain and the first two heavy chain (including

the variable) immunoglobin domains come together to form an antigen binding domain (one

for each pair). The remaining four (two per chain) heavy chain immunoglobin folds interact

with each other to form a third domain that is often referred to as the constant region. IgG

has been studied by proteolysis which cuts the structure into the three described fragments.

For this reason the two types of domains which comprise the IgG are referred to as the

antigen binding fragments, or Fab, and the constant fragment, or Fc. The region connecting

the Fab domains to the Fc is known to be a highly flexible hinge. This hinge region has 2–4

disulfide bonds bridging the heavy chains. Previously it has been excised from IgG and used

in protein design as a molecular linker. This sequence has been extensively characterized

and even synthesized [1,2]. While the primary characteristic of this region is its hinge

flexibility, which was an impediment to resolving the structure early on, it has also been

shown to have somewhat unique hydrophobic binding that allows it to be selectively bound

to a stationary membrane so that either the Fab or Fc fragments can be cut off with different

proteases and recovered [3].

Here we compute a hinge map of IgG using Elastic Network Models (ENMs), show the

extensive spatial freedom of the unrestrained Fab domains that presumably facilitates

binding, analyze the internal changes of the structure and how they affect the hypervariable

CDRs, and apply a recently derived normal mode based kinematic simulation to generate

motions of the structure. Motions of the structure are analyzed and a description of the high

mobilities of the CDRs is provided.

Materials and methods

Elastic Network Model

To study the kinematics of IgG we use NMA (normal mode analysis) within the context of

ENMs. Biological structures are often represented by Cα atoms connected with harmonic

springs. This represents the protein structure as an elastic network. The Gaussian Network

Model (GNM), the earliest and one of the simplest of the elastic network models, is used to

compute the relative magnitudes of motion. It was originally proposed by Bahar, Haliloglu

and Erman for coarse-grained models in 1997 [4,5], who applied the assumption postulated

by Tirion [6] for atoms that both bonded and non-bonded contacts in proteins can be

represented by a single universal spring. The Anisotropic Network Model (ANM) proposed

in [7], can be used to compute the directions of motions of all points in the structure. We

employ the ANM model throughout the present analyses. To generate an ANM model we
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first construct a Laplacian (or Kirchhoff) matrix using Equation 1 where rc is a cutoff radius

(typically 10–13Å), dij is the distance between atoms i and j, and γ is the spring constant.

The potential energy of such a system is given by Equation 2. We then compute a matrix of

second derivatives of the potential energy (see [7] for details), the eigenvectors (Qi) of

which are called normal mode shapes, and the eigenvalues (ωi) are the corresponding

squared frequency. For a given normal mode we can then compute fluctuations of the

structure with Equation 3.

(1)

(2)

(3)

Extensive applications of NMA to biological and chemical systems have been discussed in

Cui and Bahar [8], Jernigan and Kloczkowski [9], and Sen et al. [10]. Successes with these

methods make it clear that functionally important motions of biomolecules are usually

governed by packing density. These and many other studies have enabled computations of

the important motions on time scales beyond the usual reach of atomic molecular dynamics

(MD). ENMs can be generated for small and medium sized proteins in seconds or minutes; a

huge gain in comparison to the extremely long computational times required for

corresponding MD studies. Work by Bakan and Bahar suggests that ANM may even sample

conformation space more thoroughly than classic MD [33]. It has been demonstrated that

extremely large molecular assemblages can be even further coarse-grained without loss of

the major important motions [11]. More detailed analyses are available by use of elastic

models that employ mixed-resolution models, where most of the structure is coarse-grained

but with the regions of special interest remaining in atomic detail.

The dominance of the low frequency normal modes is universal, and usually there are only a

few of these characteristic motions that are truly important. Here we represent the mean-

square fluctuations by using the lowest frequency non-zero modes.

Kinematics of Proteins

Our method for solving the kinematics of coarse-grained protein structures is based on the

Lagrangian equation for the potential and kinetic energy of the system, as described by

Chirikjian and coworkers [12–16]. First, a rigid body translation and rotation of the structure

is performed to place the origin of the coordinate system at the center of mass and so that the

moment of inertia tensor is diagonal. The potential energy of the system of N points can then

be written as in Equation 1. Note that Γ is the 3N dimension square stiffness matrix of the

system.
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The displacement vector of the system, ΔR(t) , could be calculated as

(4)

This facilitates performing time-dependent kinematic simulations with the ENMs using any

desired combination of normal modes fixed by the index i and by choosing appropriate

phase angles to describe the displacements between the phases of the different normal

modes.

Computing Changes in Internal Distances

We also consider the displacements of the positions of points in the structure with ANM.

The mean-square change in internal distance (MSID) is computed as

(5)

These values are obtained directly from the inverse of the Hessian matrix, Γ , from which

the normal modes are derived:

(6)

where kB is the Boltzmann constant, T absolute temperature, and γ the ANM spring

constant. We can also consider the normalized change in internal distances. This metric can

be used to compare the magnitude of internal distance changes.

(7)

Fractal and Spectral Dimension

As early as 1980 the fractal dimension of myoglobin was studied [17], and it was found to

be about 1.65. Experimental analysis of the spectral dimension of lysozyme was recently

performed [18]. This study revealed not only that proteins may exhibit a mix of phonon

(exhibiting discrete vibrational modes) and fractal character but also that the spectral

dimension is relatively low and shows only moderate sensitivity to temperature. This finding

provides an explanation for the efficient information transfer through protein structures.

More recently, Granek and Klafter showed mathematically that certain fractal structures

(and not uniform lattices) will experience the type of autocorrelation decay that is observed

in protein experiments [19]. The compactness of protein structures is represented by a fractal

dimension between 2.3 and 2.7 (see Enright and Leitner [20]). Investigation of the spectral

dimension of elastic networks and explaining its relation to real structures has also been

carried out [21]. Spectral and fractal dimensions were related to one another in recent papers

by Reuveni and colleagues [22,23]. An equation was proposed that relates the two

dimension metrics that fits well with the 5794 surveyed protein structures [24]. Here, we

Zimmermann et al. Page 4

Immunome Res. Author manuscript; available in PMC 2014 September 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



utilize the methods described in Ref. [22] for calculating the spectral and fractal dimensions

of IgG and relate these findings to the CDR motions.

The fractal dimension describes how the mass captured within concentric spheres scales

with the radius of these spheres. It is calculated here by finding the ten points closest to the

proteins center of mass. Concentric spheres with incremental radii of 1Å are constructed and

the total mass captured within each is recorded. Linear regression is performed ten times,

once for each of the points closest to the protein’s center. The average slope of the log-log

plot of sphere radius versus mass captured is taken as the fractal dimension. The spectral

dimension describes how the frequencies of vibration for the structure scale with the density

of modes. That is, one performs a linear regression against the log-log plot of frequency

versus the cumulative number of modes at each frequency. The spectral dimension is then

the slope of this regression.

Results and Discussion

We seek quantification of the motions of IgG in its dominant normal modes, which

correspond to the flexing about the major hinge, particularly to see how this affects the

spatial freedom of the CDR, both overall and internally.

Figure 2 shows the impact of the six slowest normal modes on the motion of the IgG and

points out the CDRs. We see that these six normal modes account for nearly all of the

motion of the Immunoglobulin, above 85% of the total motion for all residues and greater

than 90% for the majority. This means that residues of the immunoglobulin move in a highly

coordinated motion and that the loops do not act as in polymers, to randomly sample their

dihedral angles. A large body of evidence shows that the ENM generates low modes that

correspond with known biochemical functions of proteins. This gives us confidence to

conclude that correlations of motion within a low frequency mode are pertinent to the

function of the IgG.

We have also computed correlations between mean-square fluctuations calculated using

only the six lowest frequency modes and using all modes, for all residues, and the CDR (see

Figure 2). Similarly, we compare correlations computed by using all normal modes in

equation 4 with those obtained by using only the slowest modes (see details in the Methods

section).

Figure 2 shows that the mean impact of the first 6 normal modes on the total motion is about

96% and that the lowest frequency modes do provide an excellent representation of the

overall motions of the system. From a visual inspection we see the low frequency modes are

associated with domain motions, a behavior that is usually seen in multidomain structures.

For this reason normal modes have been used to identify hinges within structures [25]. We

perform similar computations to confirm the presence of the hinges within IgG (see Figure

3). In order to determine the extent of CDR sampling we generate conformers using the

normal modes. The magnitude of deformation in each mode is set by choosing the largest

deviation that does not substantially deform the sequential virtual bond lengths. The lowest

frequency modes corresponding to the global motions are collective in nature and exhibit
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comparatively low virtual bond stretching. We find that overall the three domains are anti-

correlated with one another. Figure 3 part C displays a representation of CDR sampling after

following normal modes. It is apparent that the structure of IgG is designed to span the

maximal space for the CDRs, presumably to aid binding. A similar approach for

understanding the spatial freedom that the structure can sample would be to alter dihedral

angles; Figure 4 illustrates this mapping approach, which is only preliminary. Other

considerations would be required for more realistic dihedral sampling (steric hindrances,

backbone constraints, energetic and inertial effects, etc.).Normal mode calculations are often

performed to elucidate which residues or atoms in a molecular structure are the most mobile.

Mobile active site residues may play roles in binding or substrate selection, whereas rigid

regions are more likely to play key stabilization roles in the structure as a whole, as in a

scaffold. An important exception to this occurs for the catalytic residues within an active site

cleft that are relatively rigid.

Another quantity that is informative about internal conformational changes is the mean-

square internal distance (MSID) changes, <(ΔRi–ΔRj)2 >, given by equation 5. MSID

changes can be calculated directly from the Hessian matrix that is used to generate normal

modes in ANM with equation 6. This quantity describes the changes within a structure; how

the normal modes stretch, compress, or otherwise alter the pair-wise distances between

points in the structure. If this change in internal distance is zero for a given (i,j) pair, then the

two points move together rigidly (the distance between them remaining unchanged). We

have analyzed structures and seen that (data not shown) the areas of a protein with the

smallest internal mean square distance changes are the cores of domains with these values

increasing further away from stable cores. We have employed ANM models built with

uniform springs with cutoffs ranging from 10–15 Å and with springs having inverse square

dependences on distance. All of these yield similar results. Figure 5 shows this quantity

averaged across all pairs of points within 7Å of one another. The CDR and major hinge are

shown separately. We see that the CDR and hinge regions do not have significantly lower or

higher average RMSID. We find that the Fab domains experience more internal motion than

the Fc, but that the two Fabs are not symmetric in their motions. This is likely due to the

asymmetry in the initial structure. But, other feasible structures might be expected to

actually behave in a symmetric way. Fab2 is closer to the Fc than Fab1 and has more

connections (higher stiffness) with it. Notably, we find that the internal distance changes at

the hinge, as usual, are relatively small.

For many proteins, it is common to compare motions from the computations with the

crystallographic temperature factors, the B-factors. The B-factors describe the uncertainty

assigned to a given atom, usually by assuming it originates from relevant internal

fluctuations. Rigid body contributions are often removed by the crystallographer, but the

successes of the TLS [26,27] and vGNM [28] methods provide strong evidence that B-

factors often contain significant rigid body contributions. In the case of the 1IGT crystal we

find that the B-factors may not be representative of the solution dynamics since the CDR of

each Fab is strongly bound to the Fc of another IgG (see Figure 6). While the experimental

B-factors do highlight the major hinge as the most flexible part of the structure it is
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important to note that this is not because it is allowed to flex in the protein crystal, since the

molecules are highly restrained by intermolecular interactions.

Intrinsic disorder in proteins is a topic of growing popularity. Two disorder predictors were

applied to the IgG structure, DisEMBL [29] and POODLE [30]. Interestingly, both methods

predict the most mobile part of the structure, the CDR, to be the least likely to be disordered.

Both methods have components in their scoring scheme that are knowledge-based; learned

from scanning the PDB. We believe the CDR is predicted to be so stable because of the

abundance of IgG structures and because the CDR is rarely unbound. Because the CDR is

almost never free to move, it is always ordered in the known structures. DisEMBL predicts

disorder while the POODLE prediction predicts 3 quantities; the secondary structure as coil,

the residues un-resolved in a crystal, and the probability of residues having a high B-factor.

Both methods employ a probability cutoff of 0.5; any residue above the threshold is deemed

to be disordered. Interestingly, the CDR is predicted to be the least disordered part of the

structure. It is possible, due to the ambiguity that remains in defining protein disorder and

the complexity of crystal B-factors, that some knowledge based disorder predictions may not

be predicting exactly what one expects.

In Figure 7 we show the mean-square fluctuations of the IgG variable fragments computed

with the ANM model. We find the parts of the structure that are most variable in sequence,

the CDRs, are also the most mobile. It is interesting to note that ANM indicates 4 loops with

high spatial mobility (and also the N-terminus), but there are only 3 CDR loops in the

variable domain of each chain. The fourth loop is colored purple in the inset molecular

images in Figure 7. Each Fab domain then has two of these conserved mobile loops with one

on either side of the CDR. It is interesting to note that the Fab-like T-cell receptor (TCR) has

the same spatial arrangement of loops, but the fourth loop found to be mobile here is also

hypervariable in sequence [31]. While this loop does not usually bind antigen, it is involved

in nonspecific antigen binding of TCRs.

To further investigate the motion patterns within the CDR and whether these may indicate

that the IgG structure it-self facilitates excursions of the hypervariable loops, we consider

the difference in the mean square fluctuations, internal distance changes, as well as spectral

dimensions and fractal dimensions of the full IgG structure and of the individual Fab

domains. GNM usually predicts the mean square fluctuations of each point more accurately

(as judged with crystallographic B-factors) than ANM. Motions of the CDRs from the GNM

are shown in figure 8. Curves from the full IgG structure and for the Fab1 domain have been

scaled overall to match the range of the crystal B-factors. Including the the whole structure

yields a correlation with experiment of 0.87 for the Fab1, whereas utilizing only the structure

of the Fab1 for the computations yields a correlation of 0.5. We have previously noted that

the B-factors in this structure have the Fab locked in a bound state. Interestingly, the

computed CDR motion appears to be captured better by the full IgG model than by use of

the Fab only. Internal distance changes, computed by using equation 5, indicate the extent of

deformation between pairs of points in the structure. In figure 9, the effect of the full

structure on the magnitude of change within and between hypervariable loops is

summarized. The mean change within a (or between) loop(s) is plotted with error bars

indicating one standard deviation. Before computing the extent of fluctuation, we rescale
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each mode to agree with equipartition wherein each internal degree of freedom would be

assigned energy [32]. The full IgG structure amplifies internal distance changes within and

between hypervariable loops, relative to a single Fab. This is further indication that the

whole antibody structure may facilitate CDR configurational sampling so that a proper

binding pose is found.

Information transfer within molecular structures has been the focus of numerous studies

including the consideration of protein structures being fractal in nature (see Methods).

Following previously established algorithms, we compute the fractal and spectral dimension

of IgG and single Fab domains (Figure 10). Briefly, the fractal dimension describes how the

mass captured by concentric spheres scales with the radius of these spheres, and the spectral

dimension describes how the frequencies of vibration for the structure scale with the density

of modes. We find that the full length IgG behaves nearly like a 2D object in terms of its

ability to transfer information from one part of the structure to another. Information transfer

is thus significantly faster than one would expect from a uniform crystal lattice. This spectral

dimension is in the range expected for proteins [24]. Interestingly, we find that the full

structure has a lower spectral dimension than any single domain, again pointing to the

possible utility of the whole structure for finding the right binding pose.

Conclusion

Normal mode analysis using ANM are shown here to detect the hinge motions within the

dominant low frequency motions, as well as the internal motions of the IgG structure. We

have also evaluated the protein crystal and compared against the experimental temperature

factors and disorder predictions. We find that the protein environment may be misleading in

the crystal regarding the actual functional motions. Crystallographic temperature factors also

reflect the crystal intermolecular interactions, which are extensive in this structure.

Modeling approaches such as those applied here can provide a more comprehensive view of

the biomolecule and its functional motions. The spectral dimension relates the density of

vibrational modes to their frequency and can be used as a judge of the efficiency of energy

transfer through a structure. Since this quantity is lower for IgG than for any individual

domain, the hypothesis that hinge motions (the dominant computed motions) facilitate CDR

motion is strongly supported. We conclude that the IgG structure is specifically designed to

facilitate large excursions of the Fab domains, as shown with the present methods for

computational evaluation of the extent of hinge motions and the spatial sampling by

components of the structure. Normal modes derived from the simplest potential function

afford a good approximation to the total hinge motion and predict the most sequence-

variable regions also to be the most spatially mobile – facilitating the binding of the Fabs.

Our results may impact immunology by suggesting ways to include flexibility in the docking

to predict the bound structures of IgGs.
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Figure 1.
The structure of IgG (PDB structure 1IGT). Heavy and light chains are distinguished from

one another by colors. The Fab domains have orange ellipses indicating the locations of the

hypervariable loops (the CDRs) and green and yellow circles identifying the major and

minor hinges. Fab domains consist of one light chain and half of a heavy chain and are

connected to the Fc and each other by the major hinge.
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Figure 2.
The first six modes of motion capture most of the total motion. Mean correlations of the

motion derived from the first six normal modes with the total motion for (A) the entire

structure, (B) the six CDR loops from chains A and B, (C) the six CDR loops from chains C

and D. 1IGT has 1316 residues in total. The mean correlation over all residues is 0.96

showing that the slowest modes strongly dominate the intrinsic motions of the structure.

Behaviors for each of the individual CDRs are shown.
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Figure 3.
Hinges and the motion behaviors identified by computations. (A) Correlation matrices (dot

products between normalized pairwise displacement vectors). All values fall in the range

[1,−1]. The average over the first 9 modes is displayed, with red corresponding to the

motion of Cα pairs positively correlated, blue for negative correlations, and white

uncorrelated. From the block structure of the diagram and the changes in sign we can

identify the hinge regions within the structure. (B) Similar to (A), but for individual modes;

1 (top) and 9 (bottom). (C) We use the 12 slowest modes to compute conformers of IgG
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because the majority of the motions in these modes are localized at the three prominent

hinge regions. The Fc is aligned in all conformers. Structure coloring shows the Fc in blue,

the major hinge in red, CDRs in green, and the remainder of the Fab in orange (in two

perpendicular views).
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Figure 4.
The sampling of hinge forms on the position of the CDR. In this figure the red amino acid’s

psi-angle at the major hinge is varied in 15° increments and the resulting position of the

CDR on the right side is accumulated. The collection of all of these CDR coordinates is

shown as the blue volume similar to Figure 3(C). This visualization could be useful for IgG

hinge analysis, but would require inclusion of the limitations imposed by torsion angle

availability (Ramachandran space) and steric clashes.
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Figure 5.
Mean-square internal distance changes within the entire immunoglobulin. (Inset) The CDRs

from Fab1 are comprised of the variable loops in chains A and B, and the Fab2 CDRs are in

chain C and D of 1IGT. We find that Fab domains experience more internal motion than the

Fc, but that these are not symmetric. The inset shows the same quantity but specifically for

the two CDR regions and the major hinge.
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Figure 6.
Intermolecular crystal packing in 1IGT. (A) One Fab domain in 1IGT is shown in blue with

its CDR as an orange surface. A symmetry related IgG is interacting with this CDR in the

protein crystal. It is shown as a red surface and green sticks for the bound N-Acetyl-D-

Glucosamine. (B) The Fc domain of 1IGT is shown as a red cartoon with gray transparent

surface. Two intermolecular interacting Fabs are shown in blue whose CDRs are highlighted

in orange. These two views highlight crystal packing via CDRs contacting Fc.
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Figure 7.
The computed mean-square fluctuations in positions of the Fab residues, with the CDR

residues highlighted with a thicker line. Molecular structures are shown with a semi-

transparent surface colored blue to red for low and high computed B-Factors, respectively.

Each plot has 4 peaks. Three of these correspond to the CDR and are colored yellow while

the fourth is marked with an asterisk and colored purple. The remainder of the structure is

colored green. In A, B, and C the CDR faces to the left while in D it faces right. This has

been done because in D the back side is less mobile and the yellow CDR loops are less

distinguishable when looking through the blue surface. In the Fab-like T-cell receptor the

fourth loop (*) is also variable in sequence.
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Figure 8.
Correlation of experimental and computed temperature factors of the CDRs is stronger when

the full IgG structure is considered than when parts of the structure are considered.

Experimental temperature factors from the CDR are plotted in the heavy line. The first 25

residues plotted are from the heavy chain and the next 22 from the light. Heavy (left) and

light (right) chains are delineated by black bars underneath the residue index and individual

CDR hypervariable loops are shown by gray bars. CDR motion computed from the full IgG

has a higher correlation (0.87) with experimental data than motion computed for the CDR

using only the Fab domain (0.50) when the 50 lowest frequency normal modes are used. The

correlation between the two theoretical curves is 0.60. (inset) The correlations between

temperature factors from the experimental B factors and computed from GNM models are

shown. The magnitude of the correlation is not significantly affected by the choice of cutoff

value. “+s” indicates the inclusion of coarse grained points from sugar molecules that
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attached to the Fc. It is evident that the motions available to IgG in the crystal environment

are not likely to be identical to those in solution.
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Figure 9.
Inclusion of the full IgG structure diminishes the magnitude of internal distance changes.

Normalized internal distance changes within the CDR calculated from ENM modes are

scaled according to equipartition and constructed from the full IgG structure (blue) and from

a single Fab domain (black). The IgG structure it-self appears to facilitate significantly

larger excursions of the CDR loops away from their native positions, but does so without

any significant internal rearrangements. The non-normalized changes are significantly

greater for IgG.
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Figure 10.
Spectral and Fractal dimension of IgG and its domains. The full length IgG has a lower

spectral dimension no matter the cutoff employed. For the typical GNM of 7.3 the spectral

dimension of IgG is 1.7. This is in good agreement with experimental measures on other

proteins. The Fab domain alone has a larger spectral dimension of about 1.9, but all

structures considered have a similar fractal dimension. “+s” indicates the inclusion of

coarse-grained points from sugar molecules that are affixed to Fc.
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