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Abstract
Lyssaviruses are bullet-shaped, single-stranded, negative-sense RNA viruses
and the causative agents of the ancient zoonosis rabies. Africa is the likely
home to the ancestors of taxa residing within the Genus  , Family Lyssavirus

. Diverse lyssaviruses are envisioned as co-evolving with bats,Rhabdoviridae
as the ultimate reservoirs, over seemingly millions of years. In terms of relative
distribution, overt abundance, and resulting progeny, rabies virus is the most
successful lyssavirus species today, but for unknown reasons. All mammals
are believed to be susceptible to rabies virus infection. Besides reservoirs
among the Chiroptera, meso-carnivores also serve as major historical hosts
and are represented among the canids, raccoons, skunks, mongooses, and
ferret badgers.  Perpetuating as a disease of nature with the mammalian central
nervous system as niche, host breadth alone precludes any candidacy for true
eradication. Despite having the highest case fatality of any infectious disease
and a burden in excess of or comparative to other major zoonoses, rabies
remains neglected. Once illness appears, no treatment is proven to prevent
death. Paradoxically, vaccines were developed more than a century ago, but
the clear majority of human cases are unvaccinated. Tens of millions of people
are exposed to suspect rabid animals and tens of thousands succumb
annually, primarily children in developing countries, where canine rabies is
enzootic. Rather than culling animal populations, one of the most cost-effective
strategies to curbing human fatalities is the mass vaccination of dogs. Building
on considerable progress to date, several complementary actions are needed
in the near future, including a more harmonized approach to viral taxonomy,
enhanced de-centralized laboratory-based surveillance, focal pathogen
discovery and characterization, applied pathobiological research for
therapeutics, improved estimates of canine populations at risk, actual
production of required vaccines and related biologics, strategies to maximize
prevention but minimize unnecessary human prophylaxis, and a long-term,
realistic plan for sustained global program support to achieve success in
disease control, prevention, and elimination.
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Introduction
Rabies is not a simple long-ago vestige, nightmarish myth, or lit-
erary allegory but rather a significant viral encephalitis with the 
highest case fatality of any conventional infectious disease. Who 
else, besides those afflicted and affected, should care about rabies 
today? Legions—including the true animal lover, anthropologist, 
administrator, caver, educator, environmentalist, farmer, medical 
professional, traveler, health economist, hiker, historian, humanist, 
industrialist, legislator, modeler, philanthropist, sociologist, student, 
conservation biologist, and life scientist, to name a few by vocation 
or avocation—curious for elevated self and situational awareness, 
caring for the common good, intrigued by this view of life from an 
applied microbiological and ecological perspective or challenged 
by the allure for professional intervention in nature, represented by 
the less-than-apparent “non-low-hanging fruit”.

To simplify the infectious cycle of rabies, exposure is direct, not 
by environmental deposition, but rather individual-to-individual 
intra- and inter-specific transmission, usually occurring via bite. 
Millions of highly neurotropic virions are excreted intermittently 
in the saliva of a rabid host, days to weeks before overt morbidity 
and eventual demise, entering the peripheral nervous system of a 
bite recipient. In vivo, from local depots and centripetal transit in 
the axoplasm, primary replication occurs within neurons of the cen-
tral nervous system (CNS). Thereafter, centrifugal passage occurs 
from the CNS to a number of highly innervated sites, including 
the salivary glands. Oral, mucosal, or transdermal delivery of viri-
ons occurs by normal daily mammalian interactions. Failing these 
routine modus operandi pathways, altered unusual behaviors offer 
a variety of options for secondary contacts. These may range from 
mania to paresis and paralysis, with deliberate transmission options 
of agonistic encounters and biting, increased movement outside of 
normal home range/territories, or acute death, with predation by 
others upon virion-laden tissues and organs of the affected host. If 
a productive infection ensues, the entry-reproduction-exit cycle is 
poised to begin anew after initiation, taking days, weeks, months, 
or (rarely) years of incubation before excretion or obvious clini-
cal manifestation. Such obligate, parasitic virions ensure elegant  
self-transfer by exploitation of the normal through to the bizarre. 
Relatively distant viral familial relatives hail among invertebrates 
and plants, but warm-blooded vertebrates are the rabies-prone 
hosts. Although these agents predated Homo sapiens, their current 
distribution, abundance, and diversity likely exceed pre-historic 
comparisons, especially mediated during the Anthropocene period.

Among warm-blooded vertebrates, birds are susceptible to infec-
tion, but rabies predominates naturally among various mamma-
lian populations. Within the Mammalia, a virtual alphabet soup of 
cases has been recorded, from the armadillo to the zebra. Rabies is 
a significant disease of domestic and wild mammals alike, yet its 
zoonotic aspect is the cause of major historical infamy. Few and 
privileged were the civilizations that did not describe the ravages of 
an entity akin to rabies, such that this infection has impacted art, lit-
erature, and cultural practices for millennia. By one small measure, 
during the time taken by a typical reader to peruse this article, more 
than 1,300 people will have been exposed to rabies virus (RABV). 
Annually, tens of thousands of persons will succumb, the majority 
children. Most are poor, have no access to modern medical care, 

and will die unreported, frequently at home in a rural village. If 
among other scales—on the basis of disability-adjusted life-year 
scores or health economic measures—rabies ranks within the top-
ten list of neglected viral zoonoses, one would anticipate that the 
degree of philanthropic input would be roughly equivalent among 
such pathogens. Unfortunately, such is not the case. For example, 
several other neglected viral diseases may have a somewhat smaller 
presumed impact yet receive far greater attention for international 
support (Table 1). Not rooted entirely in science, a more holistic 
transdisciplinary philosophy assists in a better partial understand-
ing of why such biomedical disparities persist between need and 
assistance, provoking a bootstraps approach in the field out of frus-
trated necessity in the face of apparent contradictions.

In light of meaningful global action for the public good, at what 
level should one come to terms with rabies in the 21st century? 
Management, control, prevention, elimination, eradication, and so 
on are often freely bandied about together in today’s lexicon of dis-
ease deliberations but are not synonymous terms. Unlike smallpox 
or rinderpest, rabies is not a candidate for actual eradication today, 
given the extent of host breadth and diversity. However, rabies has at 
least three major attributes in common with those other two extinct 
viral pathogens: validated diagnostic protocols, safe and effective 
vaccines, and the epidemiological insight to apply those laboratory 
tools and licensed biologics for sound prevention and control prac-
tices. Somewhat paradoxically, based upon a century of experience, 
modern rabies management accomplishes, in a truly One Health 
capacity, what no other comparable zoonosis program can achieve 
in tandem: human cases prevented by avoiding defined exposure 
and seeking prophylaxis after exposure; primary canine and sec-
ondary species infections eliminated, by mass immunization; and 
significantly, wild carnivore viral perpetuation interrupted via oral 
vaccination efforts on a landscape scale. Building upon such appar-
ent progress, this review aims to provoke renewed discussions on 
several of the current issues and challenges related to modern lys-
savirus taxonomy, phylogeny, surveillance, prevention, treatment, 
control, and elimination, based in part upon the opinions of the 
authors, representing more than a century of collective person-years 
of introspective knowledge, skills, and abilities in the field—not as 
an historical aside alone, but rather within the context of evidence 
from the peer-reviewed literature, focusing upon relevant publica-
tions primarily within the past few years1–115. Our hope is, in some 
small manner, to educate, enlighten, engage, and enable others to 
participate meaningfully in these remaining endeavors, within the 
realm of a ‘science of conviction’.

An evolving viral taxonomy: what is in a name?
Taxonomy, a formal attempt at objective, systematic classification 
and naming of entities in the complex milieu of life on earth, repre-
sented by plants, animals, and so on, also extends to the microbio-
logical arena. Both RABV and a group of phylogenetically related 
viruses (all of which cause the acute progressive encephalomyelitis 
known as rabies) belong to the genus Lyssavirus, within the family 
Rhabdoviridae and the order Mononegavirales, the single-stranded, 
non-segmented, negative-sense RNA viruses. With active surveil-
lance and technical advances offered by next-generation sequenc-
ing, the taxonomy of the Rhabdoviridae is developing with increased 
complexity and new rhabdoviruses are being characterized1.  
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However, although new lyssaviruses are also being described, the 
genus forms a well-delineated cluster within the family and does 
not have any close relationships with other rhabdoviruses.

Recently, the International Committee on Taxonomy of Viruses 
(ICTV) moved toward a partial appropriation of binomial species 
nomenclature, which exists in other fields of taxonomy. However, 
the ICTV applied such naming inversely, so the genus name appears 
after the species name2. An objective rationale for this change is 
somewhat difficult to fathom unless the ICTV is trying to underline 
the fact that “real” virions and the concept of viruses and viral spe-
cies are totally different entities. Although virions are observed by 
electron microscopy, no one has ever seen a “virus”. Virions are 
particulate, whereas viruses are conceptual populations of microor-
ganisms, and more so virus species are “polythetic classes” (or fab-
ricated “containers”) in which certain agents are placed artificially 
on the basis of their genetic, morphological, and physio-chemical 
properties3. In other fields of biology, one would use the scientific 
name of an organism as the synonym for its species, but in virus 
taxonomy this is not the case. For example, now RABV belongs to 
the type species of the Lyssavirus genus, termed Rabies lyssavirus. 
So speaking in general of the virus as an organism, one still uses 
the former, whereas the latter is employed in a taxonomic context 
only. Inherited operational difficulties of use—for example, RABV 

(a virus) but Rabies lyssavirus (a species); Mokola virus (a virus) 
but Mokola lyssavirus (a species) and so on, also noting that virus 
names, but not species names, can be abbreviated—may lead to 
further changes of this binomial nomenclature in future years4.

Other species in the genus include Aravan lyssavirus, Australian 
bat lyssavirus, Bokeloh lyssavirus, Duvenhage lyssavirus, Euro-
pean bat lyssaviruses, type 1 and type 2, Ikoma lyssavirus, Irkut 
lyssavirus, Khujand lyssavirus, Lagos bat lyssavirus, Mokola lyssa-
virus, Shimoni bat lyssavirus, and West Caucasian bat lyssavirus2. 
Two other putative lyssaviruses do not yet have taxonomic status. 
One is Lleida bat lyssavirus (LLEBV), identified previously by 
only a partial genome sequence, while isolation attempts continue5. 
The other, soon to be submitted to the ICTV for review, is the most 
recently described Gannoruwa bat lyssavirus6. Lyssavirus phylog-
eny is depicted in Figure 1 (with colors of the branches applicable 
to Figure 2).

Globally, lyssaviruses have been subdivided into two phylogroups 
on the basis of genetic distances within their G-protein ectodo-
mains and serologic cross-reactivity7. Phylogroup I includes Rabies 
lyssavirus, Aravan lyssavirus, Australian bat lyssavirus, Bokeloh 
lyssavirus, Duvenhage lyssavirus, European bat lyssaviruses, type 
1 and type 2, Irkut lyssavirus, Khujand lyssavirus, and the new  

Table 1. Comparison of associated health parameters of two vector-borne diseases and human rabies transmitted by dogsa.

Yellow fever Japanese encephalitis Rabies

Disease Mild to acute viral hemorrhagic 
syndrome 

Mild to severe viral encephalitis Acute progressive viral encephalitis 

Etiology Flavivirus Flavivirus Lyssavirus 

Distribution Endemic in tropics of about 
34 African and about 13 Latin 
American countries 

Endemic in about 24 Southeast 
Asian and Western Pacific 
countries 

Endemic within about 150 developing 
countries in the Americas, Africa, and 
Asia 

Transmission Mosquito Mosquito Dog bite 

Case fatality About 20–50% in severe cases About 30% >99.9% 

Burden About 84,000–170,000 severe 
cases 

About 68,000 cases >15 million exposures annually 

Annual fatalities About 29,000–60,000 estimated 
deaths in Africa alone

About 13,600–20,400 estimated 
deaths

About 25,000–159,000 estimated 
deaths

Epidemiological 
occurrence 

Sylvatic cycle and urban 
outbreaks 

Major outbreaks about 2–15 years, 
intensified during the rainy season 

Primarily individual human cases in 
rural, underserved areas 

Vaccination One dose may be effective, with 
long-term to lifelong immunity in 
about 99% of people

Primary and booster doses for 
childhood Expanded Programme 
on Immunization incorporation 

Currently, requires three or more doses 
in pre- or post-exposure vaccination 

Treatment Supportive care only Supportive care only No specific treatment, comfort care 
only before death 

Prospect for elimination Vaccination protects humans at 
risk, but Yellow fever cannot be 
eliminated in nature. 

Vaccination protects humans at 
risk, but Japanese encephalitis is 
not a candidate for elimination.

Human rabies can be prevented by 
vaccination and canine rabies can be 
eliminated by mass dog vaccination.

Global Alliance 
for Vaccines and 
Immunization (GAVI) 
support (by 2015) 

>$264 million USD About $105 million USD forecast for 
2015–2020 

$0 

aWorld Health Organization (http://www.who.int/mediacentre/en/).
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Figure 1. Extant lyssavirus phylogeny. Unrooted phylogenetic tree of currently recognized and putative lyssaviruses (neighbor-joining 
method, p-distances matrix). Lineage colors correspond to the same lyssaviruses depicted in Figure 2. ABLV, Australian bay lyssavirus; 
ARAV, Aravan virus; BBLV, Bokeloh bat lyssavirus; DUVV, Duvenhage virus; EBLV-1, EBLV-2, European bat lyssaviruses, type 1 and 2; GBLV, 
Gannoruwa bat lyssavirus; IKOV, Ikoma lyssavirus; IRKV, Irkut virus; KHUV, Khujand virus; LBV, Lagos bat virus; LLEBV, Lleida bat lyssavirus; 
MOKV, Mokola virus; RABV, Rabies virus; SHIBV, Shimoni bat virus; WCBV, West Caucasian bat virus.

Gannoruwa bat lyssavirus. Phylogroup II includes Lagos bat lyssa-
virus, Mokola lyssavirus, and Shimoni bat lyssavirus. The remain-
ing West Caucasian bat lyssavirus, Ikoma lyssavirus, and Lleida 
bat lyssavirus are not included in either phylogroup. Although phy-
logenetically they do appear related, the amount of genetic diver-
gence and absence of cross-neutralization do not allow placement 
in a single phylogroup on the basis of existing demarcation criteria8. 
Genetic distances between lyssaviruses from different species are 
significantly shorter than those in other rhabdovirus genera. There-
fore, other characters, such as antigenic reactivity patterns with 
monoclonal antibodies and ecologic properties (including distribu-
tion and host range), are used imperfectly for demarcation between 
the viral species9. This demarcation is based on expert opinion of a 
well-qualified taxonomic study group. With increasing ICTV debate 
toward unification of virus taxonomy based on genetic distances, in 
the near future there may be a re-classification attempt, in which all 
phylogroup I viruses are segregated into one species (for example, 
Rabies lyssavirus?) and all phylogroup II viruses are segregated 

into another. Of course, such re-classification would miss important 
characteristics used for species demarcation at present and may have 
potential socio-economic or bio-political consequences for certain 
areas. For example, some places where RABV is not thought to 
circulate, such as in Australia or Western Europe (but where other 
lyssaviruses are present among bats), might lose their self-defined 
“rabies-free” status, on the basis of viral taxonomic re-organization, 
creating greater confusion, with potential public health, veterinary, 
or economic repercussions, if suddenly recast into the same dis-
ease status as Africa, Asia and the New World. Arguably, the term 
“rabies” appears to garner greater weight and seriousness than the 
less familiar designation “bat lyssavirus”.

A conundrum over lyssavirus origins, emergence, 
perpetuation—and extinctions?
All phylogroup I lyssaviruses circulate in bats. Among these, only 
RABV is also adapted to perpetuation in carnivores. Within phy-
logroup II, both Lagos bat virus (LBV) and Shimoni bat virus are 
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Figure 2. Proposed lyssavirus radiations. Highly speculative schematic depiction of the ancient spread of proto-lyssaviruses on a proposed 
map of the continents as they were present during the late Cretaceous period. Solid lines show hypothetical directions of lyssavirus ancestor 
distribution at that time, and dashed lines show further spread thereafter with additional continental drift. Although the “out of Africa” hypothesis 
dominates the scheme, this does not discount the potential role of Antarctica in biogeographic dispersal with bat-virus links to both Australia 
and South America as suggested for other pathogens93. ABLV, Australian bay lyssavirus; ARAV, Aravan virus; BBLV, Bokeloh bat lyssavirus; 
DUVV, Duvenhage virus; EBLV-1, EBLV-2, European bat lyssaviruses, type 1 and 2; GBLV, Gannoruwa bat lyssavirus; IKOV, Ikoma lyssavirus; 
IRKV, Irkut virus; KHUV, Khujand virus; LBV, Lagos bat virus; LLEBV, Lleida bat lyssavirus; MOKV, Mokola virus; RABV, rabies virus; RABV(IA), 
rabies virus, “indigenous American” lineage; RABV(C), rabies virus, “carnivore” strain (further shifted to other host mammals); SHIBV, Shimoni 
bat virus; WCBV, West Caucasian bat virus. 

bat-borne whereas the reservoir of Mokola virus (MOKV) remains 
unknown10. MOKV was isolated on a few occasions from shrews 
and from spill-over infections to cats and a dog11. The West Cauca-
sian bat virus (WCBV) was isolated from a bat, and LLEBV genetic 
material was identified in a bat as well. Ikoma lyssavirus (IKOV) 
was isolated from an African civet, but phylogenetic relatedness of 
this virus to WCBV and LLEBV suggests that it might be a spill-
over infection, such that IKOV is actually a bat-borne virus as well8. 
Enhanced surveillance activities may help to resolve this point.

The evolutionary history of the lyssaviruses is very poorly under-
stood. Common observations include strong purifying selection and 
neutral evolution of viral genomes12–14. The substitution rates along 
lyssavirus genomes are similar between viruses from different  
species and between different viral genes, approximating 3.8 × 
10−5 to 2.1 × 10−3 substitutions per site per year13,15,16. An episodic 
diversifying selection was suggested in some studies, under a mixed 
effects model of episodic (MEME) selection. However, such endeav-
ors failed to identify specific amino acid substitutions involved in 

host shifts with subsequent virus adaptation to a new host species 
(with increased fitness and fixation of favorable mutations) and as 
such should be interpreted cautiously15,16. This is not too surprising 
given that only the current sequences (sampled during the past 30 
to 40 years from well-established reservoir species) were available 
for the analysis whereas the natural history of lyssavirus speciation 
is set in several orders of magnitude longer.

Extant lyssaviruses appear well adapted to their reservoir hosts. 
Comparison of LBV gene sequences sampled in South Africa over 
the past several decades revealed over 95% genome conservation17. 
In another study, the genome of LBV isolated in Kenya was 99% 
identical to the genome of another LBV isolate obtained in Senegal 
22 years earlier18. Recent host shifts might help to elucidate the 
mechanisms of lyssavirus evolution but are not common. Spill-over 
infections usually result in dead-end events19. An empirical obser-
vation from several short-term host shifts of bat RABV to carni-
vores suggested that S

242
 substitution in the viral G protein might 

warrant fitness to bat hosts but that A/T
242

 substitution is typical for 
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carnivore-associated RABVs20. However, no further studies in the 
development of this hypothesis have been performed.

Early attempts to create a timescale for the natural history of  
lyssaviruses on the basis of substitution rates (molecular clocks) 
suggested that the most recent common ancestor (MRCA) of  
lyssaviruses existed 7,000 to 11,000 years ago but that the MRCA 
of the present RABV existed 900 to 1,500 years ago12. In line  
with this, the MRCA age of North American bat RABVs was  
estimated to be 118 to 233 years13 to 220 to 750 years16,21.

Other studies that used essentially the same approaches and 
similar or slightly larger datasets extended the MRCA of bat 
RABVs to 436 to 1,107 years15 or to 500 years for one of the bat- 
associated RABV lineages22. However, an increasing amount of evi-
dence suggests that timescale estimation performed on a limited set 
of recently sampled sequences cannot provide realistic inferences 
for viruses evolving under constraints of purifying selection23. For 
example, an alternative approach with improved substitution satu-
ration increased the MRCA of coronaviruses for several orders of 
magnitude compared with previous molecular clock estimates, and 
the resulting timescale was comparable to that of the coronavirus 
reservoir hosts24. In general, evolutionary rates observed in a set of 
sequences exhibit time dependency and are increased toward the 
present because of the transient mutations yet to be removed by 
purifying selection. Therefore, substitution rates estimated during 
long time frames will be lower systematically than those obtained 
during short time frames. This effect is as strong as, or stronger 
than, purifying selection, which shapes virus evolution25,26,27. In 
other words, timescale estimations based on substitution rates are 
useful only for the time frame encompassed by the sampling period 
but cannot be extrapolated easily for longer periods of time.

Present distributions, diversity and compartmentalization of lyssa-
viruses, and the empiric observation of viral genome conservation 
reveal great contrast to the suggested recent age of their MRCA. 
If one entertains that the published suggested timescale estimates 
of lyssaviruses are fallacious, restricted by analysis of limited sets 
of available isolates, one can use several other lines of evidence to 
hypothesize their origin and longer-term evolution. All the diversity 
of lyssaviruses is represented in bats (except for MOKV and IKOV, 
for which the reservoir hosts are yet to be established definitively), 
whereas carnivores maintain perpetuation of several lineages of 
RABV only. As such, it is commonly accepted that bats are the 
primary evolutionary hosts of lyssaviruses8,12,28. Lyssaviruses of 
multiple species (with the notable exception of RABV) circulate 
in Old World bats, but only RABV circulates in New World bats.  
Furthermore, RABV lineages present in New World bats, along 
with a few lineages circulating in skunks and raccoons (the  
so-called “indigenous American” RABV), are paraphyletic to the 
RABV lineages circulating in carnivores in the Old World and to the 
“cosmopolitan” canine lineage, which (as believed) was dispersed 
worldwide with human migrations across the globe29. Nevertheless, 
all RABV lineages are monophyletic when compared with lyssavi-
ruses of other species and demonstrate a greater sequence identity 
between each other than to lyssaviruses of other species30. From 
this evidence, it is tempting to speculate that an ancient RABV 
ancestor (already distinct from lyssaviruses of other species) circu-
lated in early bats in the territory of Gondwana, as bats presumably  

originated in the region of modern Africa31. A bat morphologically 
similar to extant bats, Onychonycteris, lived about 52.5 million 
years ago32. Other related species might have existed earlier. Molec-
ular inferences suggested that the MRCA of present bats existed at 
least 80 million years ago, potentially pushing bat origins into the 
Cretaceous period31,33. Such an ancient chiropteran origin of RABV 
might explain the existence of the independently evolved “indig-
enous American” virus lineage and the absence of similar RABVs 
in related bat species between the Americas and the Old World (for 
example, in Myotis spp. and Eptesicus spp.). South America and 
Africa split from each other between 100 and 84 million years ago 
and were separated by the South Atlantic Ocean. Ancient bats are 
hypothesized to have spread from Africa to South America slightly 
later, via island hopping or direct intercontinental flight31. Perhaps, 
at that time, bats were already infected with a progenitor of the 
“indigenous American” RABV (Figure 2). This virus might be well 
adapted to bat hosts (for example, owing to substitutions such as 
S

242
 in the viral G protein) and compartmentalized in numerous 

bat species, such as the indigenous phyllostomatids, across the  
Americas, with a later host shift to other bat species, skunks, and 
raccoons. Phylogenetic analysis suggested rapid diversification 
of bats, with all families having evolved before the late Eocene 
epoch31, and the same might be true for the viruses that co-evolved 
with their hosts, followed by millions of years characterized by sta-
sis and slow genetic drift under constraints of purifying selection. 
Possibly, RABV lineages that continued to evolve in the Old World 
did not obtain such favorable substitutions and could not colonize 
multiple bat species as in the Americas but rather switched to car-
nivores as a comparatively recent event. Of course, this hypoth-
esis does not explain the absence of RABV in Old World bats.  
However, given the less-than-ideal level of surveillance in the 
Old World tropics, it is possible that bat RABV does exist there 
but is undiscovered. Considering that four new lyssaviruses were 
described during the last decade (including Bokeloh bat lyssavirus 
in Western Europe, where surveillance is quite adequate) and that 
the most recent of these, Gannoruwa bat lyssavirus, was described 
in Sri Lanka in 2016 only6, one should expect further discover-
ies of lyssaviruses in the Old World. The absence of non-RABV 
lyssaviruses in the Americas can be explained at least in part by 
the fact that even at present these viruses have a limited geographic  
distribution and host ranges compared with RABV. If these  
characteristics were similar in the past, such viruses might not 
spread to the territory of the present Americas once Africa and 
South America drifted further apart (Figure 2).

Alternatively, one can speculate that many viruses (including mul-
tiple bat RABVs in the Old World and non-RABV lyssaviruses in 
the New World) became extinct during the Cretaceous-Paleocene 
event 65 million years ago which, as estimated, wiped out 75% of 
all biologic species34. As major reservoirs went extinct, so too the 
viral species adapted to them. Though lacking to date for lyssa-
viruses, progress in the field of paleovirology and applications to 
other members of the Mononegavirales support the contention of 
time scales for some ancient viruses in excess of tens of millions of 
years in age, co-evolving with their hosts35.

Neglect of laboratory-based surveillance systems
In an applied One Health context, rabies diagnosis is the only  
routine procedure applied to a suspect animal that will directly 
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determine the need for specific, life-saving medical intervention in 
a human at risk (http://www.cdc.gov/rabies/pdf/rabiesdfaspv2.pdf). 
Laboratory diagnosis is critical to confirm the status of a suspect 
case, in part, to justify prophylaxis in exposed persons or animals, 
to measure objectively the impact of disease prevention programs, 
and to support certification of a country as free of disease.

Sensitive, specific, economical, and timely diagnostic tests 
have been available for more than 50 years, and there has been 
increasing augmentation by molecular methods for routine rabies  
diagnosis10,36,37. Yet despite the innumerable rabies cases that occur 
in wildlife, domestic animals, and humans on a daily basis, only 
a very small fraction are diagnosed. Few resources are provided, 
because no cases are diagnosed, owing to a lack of support, pro-
ducing a cycle of neglect that minimizes the true understanding of 
disease burden. Those at highest risk are often of lowest priority, 
such as the poor, the disenfranchised, and the non-agricultural com-
modities represented by free-ranging wildlife or community dogs.

Misdiagnosis may result with the presentation of fever and coma in 
children because of confusion with other diseases, such as cerebral 
malaria38. Conversely, in some situations, a history of animal bite 
may be missing because the patient does not realize that exposure 
has occurred, such that rabies does not enter the original differential 
diagnosis of encephalitis39. The relationship between exposure and 
illness may be forgotten, and patient recall may be disconnected 
because of the lag from the incubation period, which can extend 
beyond weeks to months or even years40. Moreover, the national 
laboratory may be located centrally in an urban capital, far from 
case occurrence in rural areas.

The consequences of neglect are obvious. For example, when 
juveniles contact rabid puppies, the diagnostic event is missed, the 
prophylaxis opportunity is gone, and the child dies41. If rabies is not 
suspected in an infected donor, organs may be transplanted from 
a patient that dies acutely, producing additional fatal cases in the 
recipients42. Beyond the individual, at a global level, the frequent 
lack of inclusion of wildlife in surveillance efforts may mean the 
difference between a misjudged, rabies-free locality and a newly 
appreciated enzootic area43. Similarly, translocation of a rabid dog 
from a canine-enzootic area can threaten the status of another area 
that has eliminated canine RABV circulation, after great cost and 
years of effort44. Such reports of importation are not uncommon in 
the literature, online sources such as ProMED, or communication in 
the daily news (http://www.animals24-7.org/2014/06/08/dog-meat-
traffic-still-spreads-rabies-in-vietnam/).

Although it is highly desirable to document the presence of new 
lyssaviruses during pathogen discovery, the basic surveillance 
information needed to prevent and control what is already known 
about RABV and its impact upon public health, agriculture, and 
conservation biology, using available, practical diagnostic tools, is 
more important (Table 2).

Prophylaxis concerns
Often forgotten, rabies qualifies as a vaccine-preventable disease. 
Effective rabies biologics have been available for over a century45. 
Pre-exposure vaccination is highly efficacious for those at risk of 
exposure, such as veterinarians, laboratory workers, and certain  

travelers46,47. After exposure, the prompt and proper applica-
tion of post-exposure prophylaxis (PEP)—consisting of wound 
care, infiltration of rabies immune globulin (RIG), and adminis-
tration of modern rabies vaccines—virtually ensures survival48.  
Nevertheless, the majority of persons at risk do not receive pre-
exposure vaccination and most RABV-exposed patients are never 
provided adequate PEP. This discrepancy between Advisory Com-
mittee on Immunization Practices/World Health Organization 
(ACIP/WHO) recommendations and reality has sparked strong 
debate and translational research for more novel, less expensive 
products; simplified schedules; and improved ease of use49–58.  
Outstanding questions for resolution include the following: Can 
PEP be performed safely without RIG (given that limited avail-
ability means more than 90% of persons do not receive it)? Are  
heterologous (for example, equine) RIG products equivalent to 
human RIG in regard to safety and effectiveness? If so, how should 
their production be increased? Is the dose of RIG critical in terms 
of international units per kilograms or is local infiltration more 
important, regardless of absolute dose? Does administration of vac-
cine directly into exposure sites improve survivorship if RIG is not  
available? Could PEP completion be reduced to one week or less? 
What is the role for rabies pre-exposure vaccine inclusion into 
childhood schedules? When will GAVI add human rabies vaccine to 
its portfolio? Will monoclonal antibodies help to resolve the issues 
with RIG availability and distribution? Should new biologics be 
developed to increase the breadth of reactivity against non-phylo-
group I lyssaviruses? Is there a role for new adjuvants or attenuated  
RABV vaccines to obviate the need for RIG? Should genes involved 
in the innate immune response (for example, interferons) be  
incorporated into genomes of recombinant RABV vaccine strains? 
Although the field will always profit from relevant advances,  
much attention is often spent on academic research on new  
biologics and less on translational research for the appropriate use 
of existing products and protocols to prevent rabies now (Table 3).

Controversy on the horizon: a paradigm shift to 
treating the “incurable wound”?
Today, as in the past, a diagnosis of a rabies case is, in a statisti-
cal sense (>99.9%), synonymous with fatality. There is no proven 
treatment once clinical signs appear. This presents a huge dilemma 
to the clinician faced with a rabies patient, with few options59. For 
a veterinarian, the animal is euthanized. For a physician, the patient 
may be placed in isolation, and at a minimum palliative care needs 
to be provided.

Alternatively, the person may be sent home to die. Cumulatively, 
since the 1970s, reports of very rare, non-fatal human cases (most 
with a history of vaccination) and the occasional spontaneous  
“survivor” during animal rabies studies suggested that clinical 
rabies may not always end in death, prompting the administration 
of aggressive anti-viral therapy60. As a case in point, in 2004, a  
Wisconsin teenager bitten by a bat became the first unvaccinated 
survivor after intensive medical care, coma induction, and admin-
istration of anti-viral drugs61. Over the next decade, few additional 
survivors who received the “Milwaukee protocol” were added 
to the registry (http://www.mcw.edu/Pediatrics/InfectiousDis-
eases/PatientCare/Rabies.htm). Nevertheless, the drive to act is 
understandable; such undertakings are compassionate and heroic 
attempts at treating the incurable. Who can witness the face of 
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Table 2. Problems and options for improved lyssavirus laboratory-based 
surveillance.

Apparent issues Proposed resolution References

Few reported suspect cases Improved enhanced or active 
surveillance 

94

Confusion over which test to use 
for primary case confirmation 

Direct fluorescent antibody test 
implementation on central nervous 
system (CNS) tissue (gold standard) 

10

Limited budget for fluorescent 
microscopic equipment 

Direct rapid immunohistochemistry 
test 

95

Biosafety concerns of animal 
CNS removal 

Focus upon brainstem collection 96

Few trained field staff for  
de-centralized surveys 

Linear flow assay (LFA) screening 
with confirmatory testing 

97

Insensitivity of existing LFA tests Improved commercial lot release 
and licensing 

98

Need for basic virus variant 
identification 

Monoclonal antibody typing 99

Cultural sensitivity over human 
autopsy performance

Antemortem collection of skin 
biopsy, serum, cerebrospinal fluid 
(CSF), and saliva swabs

100

Requirement for rapid, sensitive, 
and specific identification of 
suspect human cases 

Real-time polymerase chain reaction 
of human saliva and biopsy samples 

101

Inability for virus neutralization 
tests of clinical samples 

Enzyme-linked immunosorbent 
assay-based tests of serum and 
CSF 

102

Desire for greater epidemiological 
investigation of confirmed cases 

Whole genome sequencing 103

Need for deep identification of 
viral quasispecies 

Next-generation sequencing 104

pathos in a Manila rabies ward and not be sensitized (http://www.
aljazeera.com/programmes/lifelines/2013/09/rabies-lifelines-isola-
tion-patient-2013923164345829402.html)? Who can listen to the 
heart-breaking personal impact of rabies on a family and not feel 
moved (https://www.youtube.com/watch?v=u8o1tOuyghk)? Who 
can watch “The Girl Who Survived Rabies” and not feel compelled 
(https://www.youtube.com/watch?v=qdPuXHhEwDk)? Although 
there has been sharp debate over the dangers of therapeutic coma 
and the merits of the Milwaukee protocol, the often-heated discus-
sion has reinvigorated the field in a direction toward consideration 
of potential treatment administered to the patient with rabies62. Ask-
lepios is but one example of such a renaissance by a consortium of 
scientists whose focal research aims include the following: the iden-
tification of drugs that would inhibit RABV replication, the testing of  
molecules that may minimize detrimental host responses dur-
ing RABV infection, the determination of whether alteration of 
the blood-brain barrier (BBB) permeability could improve treat-
ment effectiveness, and validation of the potential success for 
such an approach in vivo (http://asklepiosfp7.eu/). Regardless 
of technical insights, required expertise, the associated expense 
and related ethics of effort issues, there is also the prospect of 
survivorship with sequelae and the need for lengthy, poten-
tially lifelong, rehabilitation and quality-of-life considerations63. 

To make progress, whether in veterinary or human medicine, a 
more complete approach to rabies treatment should be taken,  
combining insights on rabies pathobiology gleaned from both 
experimental animal research and individual human case  
studies64. Excellent clinical care by a dream team of specialists,  
anti-viral drugs incorporated from other RNA virus research,  
targeted immune modulation, the tincture of time, and a healthy 
dose of luck for appreciable self-cure in a patient with the ideal  
age, genetic pre-disposition, and clinical staging parameters  
may offer future hope to a more prescriptive treatment of rabies 
(Table 4).

Concerns over vaccine needs to achieve global 
human and dog rabies elimination—by 2030
Throughout the late-20th and early-21st centuries, target dates 
for the elimination of human-dog-mediated rabies were set by 
the WHO, the Pan American Health Organization, and other 
international governmental and non-governmental organizations 
for Africa, Asia, and Latin America (65–68 http://www.paho.
org/hq/index.php?option=com_content&view=article&id=1124
3:step-up-action-toward-rabieselimination&Itemid=1926&lang
=en). These recent end dates were endorsed by the World Health  
Assembly in May 201369.
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Table 3. Risk assessment to maximize the utility of rabies prophylaxis after human exposure10,48,75.

Category Issue Outcome

Species Is the mammal a reservoir? Non-reservoirs or non-vectors are less likely to be rabid.

Exposure Was the exposure due to a bite? Non-bite exposures are less likely to cause rabies.

Health Does the animal show compatible clinical 
signs with an encephalitis or other behavioral 
abnormalities suggestive of rabies?

In general, apparently healthy animals (even near the end 
of the incubation period) are less likely than ill animals to 
excrete virus.

Epidemiological 
status

What is the occurrence of rabies in the area? Unless an epizootic or enzootic status is apparent, rabies 
is less frequent in areas without cases for several years, 
assuming adequate laboratory-based surveillance.

Event 
circumstances

Was the exposure provoked? Often animals may bite if provoked (for example, protecting 
young, sleeping, or eating).

Observation Can the dog, cat, or ferret be observed? If the animal stays apparently healthy during at least 10 
days after the bite, no post-exposure prophylaxis (PEP) is 
needed (or initiated PEP can be discontinued).

Vaccination 
status

Is the animal up to date on rabies vaccination? Vaccine failures are possible, but rare, with modern 
veterinary biologics.

Diagnosis Is the brain available for a timely examination? If no rabies virus antigens are detected by a qualified 
laboratory using an approved test, no PEP is needed.

First aid Were all wounds washed well? Proper cleansing with soap and water reduces the viral 
load in local wounds.

Injury Does the injury require sutures? If at all practical, suturing should be postponed, to avoid 
the opportunity to further contaminate the locality and drive 
virus deeper in tissues.

Biologics Are modern vaccines and rabies immune globulin 
(RIG) available?

If the diagnosis is positive or (under the worst conditions 
when rabies is strongly suspected) if an unprovoked bite is 
from an ill, unavailable dog or other reservoir in an enzootic 
area, begin PEP per current World Health Organization 
recommendations to the extent possible or support 
transport to the nearest suitable facility immediately.

Patient health Is the person immune-competent? In the severely immune-suppressed patient, such as 
someone with AIDS, passive immunization with rabies 
immune globulin (RIG) becomes an even more critical part 
of PEP.

The main components of this human rabies elimination program 
are control, prevention, and eventual elimination of rabies in dogs 
by mass immunization. Successive annual vaccination campaigns, 
reaching at least 70% of the dog population, led to progressive dis-
ease control and ultimately elimination in both dogs and humans10,68. 
Estimating the number of canine vaccine doses needed by country, 
WHO region, and finally globally over time to achieve these goals 
is of upmost importance. Understandably, dog rabies vaccine pro-
duction and access have not received the same attention as human 
rabies biologics, even though the latter are still in somewhat limited 
availability, particularly in rural areas. Today, overall dog vaccina-
tion coverage is estimated to be less than 20% in canine rabies-
endemic countries outside of the Americas (Table 5).

There is relatively little production, technology development 
or transfer, import, and subsequent use of canine vaccines in 
dog rabies-enzootic countries. To prevent rabies in humans,  
manufacturers from the Northern Hemisphere and an increasing 
number of producers from emerging markets (for example, China 
and India) produce enough vaccine annually to deliver approxi-
mately 28 million rabies PEP courses in dog rabies-enzootic  

countries of Africa, Asia, and the Eastern Mediterranean region, 
preventing nearly 98% of human rabies deaths. Unfortunately,  
easier access to rabies vaccine, particularly in urban centers of 
Africa and Asia, has been accompanied by an increasing propor-
tion of PEP (sometimes up to 70%) administered to people who are  
not at high risk of developing rabies, necessitating greater education 
and outreach to the public and professionals alike70. Such issues  
are not uncommon in Europe and North America, where human 
rabies caused by dogs has been eliminated.

A canine rabies vaccine bank was established in 2012 by the World 
Animal Health Organization (OIE), with multi-donor support to 
assist Asian countries initiating (for example, Afghanistan, Laos, 
and Myanmar) or strengthening (for example, the Philippines,  
Sri Lanka, and Vietnam) their immunization campaigns71,72. Though 
certainly useful, the quantities provided (about 3.7 million doses 
from 2012 to April 2015) have remained limited in comparison with 
annual requirements of full-fledged national programs in 10 Asian 
beneficiary countries. For example, over 3 years, Vietnam received 
a total of about 1 million doses, but nearly 10 million local dogs 
need to be vaccinated annually. Similarly, the WHO has expressed 
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Table 4. Consideration for a strategic combination approach to the management and treatment of 
clinical rabies.

Proposed need Suggested consideration References

Management of the dying rabies 
patient?

Responsible palliative care, toward death with dignity 105

Intensive care of acute progressive 
rabies encephalitis?

Ventilation, sedation, cardiac monitoring, body 
temperature regulation, parenteral nutrition, 
management of vasospasm, and so on

106

Real-time diagnostic support? Rapid antemortem confirmation, viral characterization, 
and continued patient monitoring, including serology, 
amplicons, antigens, and so on

107

Active immunization? Recombinant vaccines 108

Passive immunization? Rabies immune globulin or monoclonal antibodies 109

Administration of immunostimulatory 
oligonucleotides?

Use of PyNTTTTGT compounds, such as IMT504 110

Anti-viral drugs? Use of known ssRNA virus inhibitors, such as 
favipiravir (T-705)

111

Targeted host-catalyzed biochemical 
pathways?

Selection of specific small-molecular-weight 
compounds

112

Blood-brain barrier permeability 
enhancement?

Induction of pro-inflammatory chemokines and 
cytokines

113

Associated pathological decrease 
of dopaminergic and serotoninergic 
neurotransmission?

Supplementation with biotin 114

Mitochondrial dysfunction and 
degenerative changes in neuronal 
processes?

Relief of potential oxidative stress 115

an intention of constructing a human rabies vaccine stock-
pile to rapidly provide quality-ensured vaccines upon request73.  
Globally, human rabies vaccine quantities produced seem  
close to adequate, but at a country level, major challenges  
include the following: assessing unnecessary or inappropriately 
applied PEP, particularly in urban centers; bringing appropri-
ately staffed “bite treatment centers” to needed communities;  
providing free or low-cost rabies biologics; and applying  
economical and easier-to-use PEP regimens to exposed  
patients56.

A meeting was held at the WHO in 2015 on human and dog rabies 
vaccines and RIG. Objectives were to discuss forecasting needs, 
vaccine and RIG quality, and funding and procurement issues, 
and to estimate quantities of human and dog vaccines needed in 
the medium and long term at both the country and regional level74. 
During this meeting, manufacturers of canine rabies vaccines stated 
that production capacity shortages were not an issue and that output 
could be increased easily should accurate, financially supported, 
medium-term vaccine forecasts become available. However, cur-
rent annual production capacities of major manufacturers are  
estimated to be near 100 million doses, and maximum capacity is 
about 150 million doses75. This rabies vaccine production is meant 
to satisfy the most profitable Northern Hemisphere (for example, 
USA, Canada, and Western and Eastern Europe) markets, where 
there are about 170 million owned dogs, whereas only a small 
share of the 411 million owned and community dogs are vacci-
nated each year in the defined WHO African, Asian, Eurasian, and  

Middle Eastern regions (Table 5). The vaccine requirements of 
Latin American countries, where dog-mediated human rabies has 
almost been eliminated (mostly through dog rabies immunization), 
are estimated at about 42 million doses annually and often are cov-
ered largely by local manufacturers based in Mexico and Brazil76,77. 
Together, dog rabies-enzootic countries of Central Asia belong-
ing to the European (EU), South-East-Asian (SEA), and Western  
Pacific (WP) WHO regions account in nearly equal propor-
tions for almost 74% of the total number of canine vaccine doses  
used. Africa and Eastern Mediterranean regions account for the 
remaining 15% and 11%, respectively.

The number of vaccine doses needed in canine rabies-enzootic 
countries of the defined WHO Africa, Asia, Eurasia, and East Medi-
terranean regions were estimated in the medium (2015–2020) and 
longer (2020–2029) terms to achieve the goal of human and dog 
rabies elimination. As a given, these vaccines should comply with 
all international norms and standards10,37,78. In the computing of esti-
mates, one of the most sensitive figures is the human/dog ratio by 
geographical areas/WHO regions and large countries (China and 
India). Numbers of dogs per human and country clustering have 
been used from earlier publications70,79. Some dog rabies-enzootic 
countries were added to existing lists. When country-specific data 
were unavailable, the average estimate from countries within the 
cluster was applied. Table 6 provides a list of more than 85 dog 
rabies-enzootic countries with their human and dog populations 
and dogs-per-human ratio in Africa, Asia, and East Mediterranean 
regions on the basis of prior work70,80,81.
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Table 5. Estimated dog populations, annual dog vaccine coverage and number of dog vaccine doses used per WHO region, 
including China (WPR) and India (SEAR).

Elimination 
target date WHO region Estimated dog 

population (Table 6)

Estimated 
vaccination coverage 
(see source below)

Dog vaccine doses 
used annually (in 
millions of doses)

Percentage of total 
vaccine doses 
applied

2020 EUR (Eurasia) 85,612,000 22% 19 24.5

EMR 26,547,000 32% 8.5 11

SEAR, without 
India 72,631,000 20% 14.8 19.1

India (72% rural) 38,109,000 15% 5.8 7.5

WPR, without 
China 38,847,000 19% 7.3 9.4

China (55% 
rural) 71,785,000 14% 10 13

Totals for EMR, 
EUR, SEAR, and 
WPR

333,531,000 20% 65.4 84.5

2030 AFR total 77,417,000 16% 12 15.5

Grand total 
WHO regions 
(but AMR)

411,000,000 20% 77.4 100

AFR, African Region; AMR, Region of the Americas; EMR, East Mediterranean Region; EUR, European Region; SEAR, South East Asia Region; WHO, 
World Health Organization; WPR, West Pacific Region.

Region Supportive notes and references

Eurasia (EUR) 22%70

Eastern Mediterranean Region 
(EMR)

32%70

South East Asia Region (SEAR), 
without India

Sum of number of dogs vaccinated in SEAR countries belonging to clusters Asia 2, 3, and 4 
plus Indonesia according to estimated vaccination coverages (respectively 9, 5, 36, and 24% 
in 70) divided by an estimated total dog population of about 72.6 million

India 15% (from 70) applied to estimated rural dog population of India (Table 6)

West Pacific Region (WPR), without 
China

Sum of number of dogs vaccinated in WPR countries belonging to clusters Asia 2, 3, and 4 
plus Mongolia according to vaccination coverage (5.9% from 70) divided by estimated total 
dog population of 38.8 million (Table 6)

China Coverage 14%70 applied to estimated rural dog population of China (Table 6)

African region North Africa dog immunization coverage 10%, Southern Africa Development Community 
(SADC) coverage 23%, West Africa coverage 10%, and rest of Africa 9%70 applied to 
estimated dog population of relevant geographical clusters (Table 6), giving for North Africa: 
0.7 million dogs vaccinated, for SADC: 7 million, West Africa: 2 million and rest of Africa:  
2.5 million. Total Africa: 12.2 million. Dog vaccination coverage Africa: 16%

Using the above population estimates to compute canine vaccine 
needs over time, we used a conservative 10-year country-based 
dog rabies elimination model divided into a 5-year attack phase, 
a 3-year consolidation phase, and a 2-year maintenance phase 
(with vaccination coverages decreasing from 70% to 20% and 
finally to 5% as the program moved from one phase to another). 
This model is based on both theoretical and field experiences82–86. 
Understandably, national programs will progress at various paces. 
Some may need shorter or longer attack, consolidation, or main-
tenance phases than others. Ten years of sustained dog rabies 

immunization activities were considered long enough to bring 
human rabies cases down toward zero in most places, if carried out 
with the joint leadership of the countries and major international  
organizations87.

Dog vaccine requirements per country were aggregated by WHO 
regions and time periods. The results of estimated dog vaccine 
requirements by WHO regions and large countries (for exam-
ple, China and India) are presented in Table 7. For the European  
(Eurasia cluster), East Mediterranean, Asian, and Western Pacific 
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Table 6. Numbers of dogs per human and estimated dog populations per geographical areas, countries 
and World Health Organization regions.

Geographic 
area

WHO region Country Human 
population 
(estimated)

Percentage 
rural

Human/
dog ratio

Dog population 
(estimated)

Asia and 
Eurasian

Asia 2 WPR Cambodia 15,135,169 80% 6.60 2,293,207

WPR Laos 6,769,727 66% 6.60 1,025,716

SEAR North Korea 24,895,480 40% 6.60 3,772,042

WPR South Korea 50,219,669 17% 6.60 7,609,041

SEAR Myanmar 53,259,018 63% 6.60 8,069,548

WPR Vietnam 89,708,900 69% 6.60 13,592,258

Asia 3 SEAR Bangladesh 156,594,962 72% 14.70 10,652,719

SEAR Bhutan 753,947 64% 14.70 51,289

EMR Pakistan 182,142,594 64% 14.70 12,390,653

SEAR Nepal 27,797,457 83% 14.70 1,890,983

Asia 4 WPR Philippines 98,393,574 51% 7.00 14,056,225

SEAR Sri Lanka 20,483,000 85% 7.00 2,926,143

SEAR Thailand 67,010,502 66% 7.00 9,572,929

Total Asia 
2, 3, 4

87,902,753

Other Asia SEAR Indonesia 249,865,631 49% 7.00 35,695,090

WPR Mongolia 2,839,073 31% 10.5 270,388

SEAR India 1,252,139,596 72% 23.0 38,108,596a

WPR China 1,357,380,000 55% 10.4 71,784,519a

Total other 
Asia

145,858,593 

Total Asia 
excluding 
Pakistan.

221,370,693

Eurasia

EUR Kazakhstan

EUR Kyrgyzstan

EUR Russian 
Federation

EUR Turkmenistan

EUR Tajikistan

EUR Uzbekistan

Total Eurasia 898,926,561 10.5 85,612,053

Africa

SADC

AFR Democratic 
Republic of 
the Congo

67,513,677 66% 9.5

AFR Angola 21,471,618 41% 9.5

AFR Zambia 14,538,640 9.5

AFR Malawi 16,362,567 9.5

AFR Tanzania 49,253,126 9.5

AFR Mozambique 25,833,752 9.5

AFR Zimbabwe 14,149,648 9.5
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Geographic 
area

WHO region Country Human 
population 
(estimated)

Percentage 
rural

Human/
dog ratio

Dog population 
(estimated)

AFR Botswana 2,021,144 9.5

AFR Namibia 2,303,315 9.5

AFR South Africa 52,981,991 9.5

AFR Swaziland 1,249,514 9.5

AFR Madagascar 22,924,851 9.5

AFR Lesotho 2,074,465 9.5

Total SADC 292,678,308 9.5 30,808,243

North Africa

EMR Morocco 33,008,150 31.2

EMR Algeria 39,208,194 31.2

EMR Tunesia 10,886,500 31.2

EMR Libya 6,201,521 31.2

EMR Egypt 82,056,378 31.2

EMR Western 
Sahara

500,000 31.2

EMR Sudan (+ 
south)

37,964,306 31.2

Total North 
Africa

209,825,049 31.2 6,725,162

West Africa

AFR Benin 10,323,474 16.8

AFR Burkina Faso 16,934,839 16.8

AFR Cape Verde 498,897 16.8

AFR Ivory Coast 20,316,086 16.8

AFR Gambia 1,849,285 16.8

AFR Ghana 25,904,598 16.8

AFR Guinea 11,745,189 16.8

AFR Guinea-
Bissau

1,704,255 16.8

AFR Liberia 4,294,077 16.8

AFR Mali 15,301,650 16.8

AFR Niger 17,831,270 16,8

AFR Nigeria 173,615,345 16.8

AFR Senegal 14,133,280 16.8

AFR Sierra Leone 6,092,075 16.8

AFR Togo 6,816,982 16.8

Total West 
Africa

327,361,302 16.8 19,485,792

Other Africa

AFR Uganda 37,578,876 9.5 3,955,671

AFR Gabon 1,671,711 16.8 99,507

AFR Nigeria 173,615,345 16.8 10,334,247

AFR Equatorial 
Guinea

757,014 16.8 45,060

AFR Chad 12,825,314 16.8 763,412

AFR Rwanda 11,776,522 9.5 1,239,634
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Geographic 
area

WHO region Country Human 
population 
(estimated)

Percentage 
rural

Human/
dog ratio

Dog population 
(estimated)

AFR Burundi 10,162,532 16.8 604,913

AFR Republic of 
Congo

4,447,632 9.5 468,172

AFR Ethiopia 94,100,756 31.2 3,016,050

AFR Mauretania 3,889,880 31.2 124,676

AFR Kenya 44,353,691 9.5 4,668,810

EMR Somalia 10,495,583 31.2 336,397

AFR Central 
African 
Republic

4,616,417 16.8 274,787

AFR Eritrea 6,333,135 31.2 202,985

AFR Cameroon 22,253,959 16.8 1,324,640

Total other 
Africa

27,458,959

Total Africa 
excluding 
North 
Africa and 
Somalia

77,416,599

Other 
EMRO

EMR Afghanistan 30,551,674 35.4 863,042

EMR Bahrain 1,332,171 35.4 37,632

EMR Djibouti 872,932 35.4 24,659

EMR Iran 77,447,168 35.4 2,187,773

EMR Iraq 33,417,476 35.4 943,996

EMR Jordan 6,459,000 35.4 182,458

EMR Kuwait 3,368,572 35.4 95,157

EMR Lebanon 4,467,390 35.4 126,197

EMR Palestine 4,169,506 35.4 117,783

EMR Oman 3,632,444 35.4 102,611

EMR Saudi Arabia 28,828,870 35.4 814,375

EMR Syrian Arab 
Republic

22,845,550 35.4 645,355

EMR United Arab 
Emirates

9,346,129 35.4 264,015

EMR Yemen 24,407,381 35.4 689,474

Total EMR 
including 
North Africa, 
Pakistan, 
Somalia and 
other EMR 
countries

26,546,739

Grand total 410,946,084

Adapted from K. Hampson (personal communication, 2014) using World population statistics 2010 at www.
worldpopulationstatistiscs.com and expanding on the list of countries eligible for GAVI support, 2014 (www.gavialliance.
org/supportapply/countries-eligible-for-support). AFR, African region; EMR, East Mediterranean region; EMRO, Eastern 
Mediterranean Regional Office; EUR, European (Asian portion) Region; SADC, Southern Africa Development Community; 
SEAR, South East Asia Region; WHO, World Health Organization; WPR, West Pacific Region.
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WHO regions, the attack phase extends from 2015 to 2019; the  
consolidation phase from 2020 to 2022; and the maintenance phase 
from 2023 to 2024, as the target date for human rabies elimina-
tion here is 2020. Many countries in the above listed WHO regions 
particularly the Southeast Asia and Western Pacific regions which 
carry a large part of the global human rabies burden have commit-
ted themselves to achieve the goal of human rabies elimination by 
2020 and already scaled-up their dog and human rabies control 
activities (e.g Philippines, Sri Lanka, Thailand, Vietnam and parts 
of Indonesia, India & China). For the African Region, the attack  
phase extends from 2020 to 2024; the consolidation phase from 
2025 to 2027; and the maintenance phase from 2028 to 2029, as the 
target date for human rabies elimination here is 2030. The African 
region particularly sub-Saharan Africa will benefit from the full 10 
year program plus preparatory time as the number of countries with 
experience of large-scale dog rabies immunization campaigns is 
comparatively small.

Based on these estimates, almost 1.3 billion doses (more than 260 
million doses annually including a 10% wastage rate) are needed 
from 2015 to 2019 for the attack phase in Asia and the Middle 
East. This is a conservative figure, as human populations of urban 
centers of China and India, which have almost a billion people and 
associated large dog populations, were excluded from this compu-
tation. In India, a special rabies control program targets major cit-
ies88. In large Chinese cities, dog rabies prevalence is lower, but 
dog ownership laws (though somewhat relaxed recently and often 
difficult to enforce) may remain quite strict89. In addition, 560 
million doses are required from 2020 to 2024 (about 110 million 
doses annually) for the consolidation phase in these areas to initi-
ate and conduct programs in Africa and maintain freedom in previ-
ously liberated areas. This means providing during the period of  
2015–2019, on an annual basis, five times more dog vaccine to 
rural India and China, three times more for Eurasia, and two times 
more than currently used for the Eastern Mediterranean Region as 
well as five times more to the entire of Africa during the period of 
2020–2024. Given the other existing priority market requirements, 
quantities needed in the short term (2015–2019) are likely to exceed 
major manufacturers’ capacities of scaling-up. In addition, as  
almost 50% of these dog vaccine doses are needed in South,  
South Eastern, and Eastern Asian countries, especially in China  
and India, current procurement mechanisms for pure, potent,  
safe, and efficacious vaccines, mostly involving Northern  
Hemisphere manufacturers’ production units, will not be acceptable 
by all.

Besides mass dog vaccination, to achieve the concomitant goal 
of human rabies elimination by 2030, international organiza-
tions must also support RIG manufacturing (particularly in 
developing countries), fast-track the addition of new vaccines 
to the WHO list of pre-qualified rabies vaccines, and invest in  

production of new, safer, and more affordable biologics for passive  
immunization51,78,90.

Together with national public health authorities, these organiza-
tions must strongly discourage the unnecessary administration of 
very large and inappropriate numbers of PEP, which contribute to  
creating shortages in areas where these rabies biologics are truly 
needed (Table 8).

Concerning dog rabies vaccines, their sustained availability at the 
ground level has repeatedly been shown to be essential to the initia-
tion of dog rabies control activities85. Essential steps to effectively 
increase veterinary rabies vaccine production to achieve human-
dog-mediated rabies elimination by 2030 must be seriously con-
sidered by international organizations and vaccine manufacturers 
supporting this goal. These steps include accelerating technology 
transfer to Africa and Asia and redirecting some existing human 
rabies vaccine manufacturing capacities toward canine vaccine  
production, as proposed more than 30 years ago by a joint  
Rockefeller/WHO initiative91. Similarly, GAVI support of human 
rabies vaccines might allow those eligible governments to use 
any conserved resources directed to veterinary public health, as  
begun regionally in the Americas in the 1980s. Comparatively  
modest investment in canine vaccination programs is predicted to 
have major cost- effective outcomes for the human rabies burden, 
even in some of the most severely affected areas92.

Future vision
Viral taxonomy may continue to adjust subjectively to changing 
times, differing philosophies, and bio-political pressure, yet regard-
less of the specific etiological names responsible for this disease, 
the moniker for rabies will remain. Theories on lyssavirus and host 
co-evolution will be complemented by methodological improve-
ments and pathogen discovery. With enhanced, de-centralized 
laboratory-based surveillance and focused detection efforts, addi-
tional lyssavirus species and host shifts are expected. Stockpiling 
of vaccine and RIG, attention to existing recommendations, and  
careful risk assessments will increase the use of pre-exposure 
vaccination, maximize appropriate use of biologics in those  
truly exposed, and reduce PEP failures. Eventual application of 
the growing knowledge base on rabies pathogenetic mechanisms,  
pronounced intensive clinical skills in managing encephalitis, 
and the abilities to intervene with combinations of biologics and  
anti-viral drugs will gradually result in additional rabies survi-
vors in human and veterinary medicine without losing the critical  
focus upon disease prevention. Ideally, under a progressive glo-
bal business plan (with the minimum application of estimated  
biologics to the populations at risk, new champions, and dedicated 
sponsorships without vaccination fatigue), human rabies medi-
ated by dogs should be eliminated in Latin America over the next 
5 years, in Asia within a decade, and in Africa by 2030. Although  
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Table 8. Post-exposure prophylaxis (PEP), number and percentages of non-exposed persons receiving PEP per million.

Geographical 
cluster

World Health 
Organization 
region

Human 
populations

PEP per 
million people 
(Total PEP 
administered 
per cluster)

Exposures per 
million (Total 
exposures)

Number 
of non-
exposed 
humans 
receiving 
PEP per 
million

Percentage of 
non-exposed 
humans 
receiving PEP

Asia

Total Asia 2 WP and SEA 239,987,963, 
about 240 million

4,764 (1,143,377) 3,195 (766,842) 1,569 0.33

Total Asia 3 SEA 367,288,960, 
about 367 million

914 (335,740) 667 (244,767) 247 0.27

Total Asia 4 SEA and WP 185,887,076, 
about 186 million

4,638 (862,641) 1,413 (262,841) 3,225 0.70

Subtotal 2,341,758 (1,274,540)

Total other Asia Indonesia, China, 
India

2,859,385,227, 
about 2.8 billion

8,183 
(23,395,261)

4,550 
(13,008,455)

3,633 0.44

Subtotal 25,737,019 (14,282,905)

Eurasia EUR 898,926,561, 
about 899 million

748 (672,177) 289 (259,650) 495 0.66

Africa

SADC AFR 292,678,308, 
about 293 million

1,766 (517,409) 925 (271,041) 841 0.48

North Africa EMR 20,982,504, 
about 21 million

1,917 (402,632) 930 (195,237) 987 0.51

West Africa AFR 327,361,302, 
about 327 million

1,071 (350,374) 790 (258,341) 281 0.26

Other Africa AFR 438,878,367, 
about 439 million

265 (116,433) 273 (119,707) -8 -0.03

Subtotal 1,386,848 844,326

EMRO

Minus North 
Africa and 
Somalia

251,146,263, 
about 251 million

932 (233,883) 465 (116,785) 467 0.50

Adapted from 70. AFR, African region; EMR, East Mediterranean region; EMRO, Eastern Mediterranean Regional Office; EUR, European (Asian 
portion) Region; SADC, Southern Africa Development Community; SEA, South East Asia; WHO, World Health Organization; WP, West Pacific.

eradication is not the aim, given a diversity of wildlife reservoirs 
and a lack of strategies to break the chain of perpetuation among 
the Chiroptera, the time is long overdue to accomplish such other  
ambitious goals against an ancient and insidious but neglected 
killer.
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