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Abstract
Background: In Persian medicine (PM), measuring the wrist pulse is one of the main methods for 
determining a person’s health status and temperament. One problem that can arise is the dependence 
of the diagnosis on the physician’s interpretation of pulse wave features. Perhaps, this is one reason 
why this method has yet to be combined with modern medical methods. This paper addresses 
this concern and outlines a system for measuring pulse signals based on PM. Methods: A system 
that uses data from a customized device that logs the pulse wave on the wrist was designed and 
clinically implemented based on PM. Seven convolutional neural networks (CNNs) have been used 
for classification. Results: The pulse wave features of 34 participants were assessed by a specialist 
based on PM principles. Pulse taking was done on the wrist in the supine position (named Malmas 
in PM) under the supervision of the physician. Seven CNNs were implemented for each participant’s 
pulse characteristic (pace, rate, vessel elasticity, strength, width, length, and height) assessment, 
and then, each participant was classified into three classes. Conclusion: It appears that the design 
and construction of a customized device combined with the deep learning algorithm can measure 
the pulse wave features according to PM and it can increase the reliability and repeatability of the 
diagnostic results based on PM.
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Introduction
In Persian medicine (PM), temperament 
is a key concept in defining human health 
and disease. In many diseases, certain 
changes occur in a person’s temperament 
that may be differentiated according 
to some principles. Recognizing the 
patient’s temperament and determining 
any deviation from either moderate or 
the appropriate temperament helps to 
diagnose and treat the disease in PM. 
By categorizing patients based on their 
temperament followed by considering 
the specific temperament of medicinal 
products, greater success in predicting the 
effectiveness of medicines and reducing 
the side effects will be possible to 
achieve.[1]

Temperament assessment is usually based 
on qualitative criteria. In PM, especially 
the pulse of the radial artery in the wrist, 
it is very important and forms one of the 

effective bases of diagnosis in traditional 
medicine.[2‑4] Identification of the pulse 
characteristics depends on the level of 
expertise of the physician, which affects the 
accuracy and reproducibility of temperament 
assessment.[5] One of the most important 
methods to diagnose disease in traditional 
Eastern medicine schools, especially in 
Iran, is measuring the pulse characteristics 
in the wrist artery. However, the diagnostic 
and therapeutic instructions depend on 
the physician’s interpretation of the wrist 
pulse characteristics. At present, traditional 
medicine practitioners in Iran measure and 
analyze the wrist pulse with their hand 
and complicated mental algorithm without 
using a device. Therefore, it is clear that 
the measurement and diagnosis depend on 
the interpretation of the physician, and its 
reproducibility can be impaired. Generating 
reproducible results is the main concern 
in the widespread use of complementary 
medicine such as PM.

Chinese medicine (CM) has been 
equipped with modern devices and 
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equipment for many years. In CM, the importance of 
using standard devices to make reliable and reproducible 
diagnostic results independent of the physician’s skills 
has been well accepted. It has been emphasized that such 
devices can be effective in understanding the theory of 
traditional CM and its development.[6] Several studies 
have used the concepts of CM to distinguish patients 
with various diseases from healthy people using the wrist 
pulse signals. In both CM and PM, a physician places 
his/her fingers on the patient’s wrist to indent the radial 
arteries with various indentation patterns and diagnoses 
his/her diseases from the tactile sense of the pulse 
detected by the fingers [Figure 1]. Shirai et al. developed 
a mathematical model for pulse wave measurement based 
on CM.[7] They realized that the indentation maneuver 
can give a possible index to predict the vascular stiffness. 
For this purpose, a device that simultaneously records the 
pulse signals of three wrist points was made in 2012 and 
tested in the laboratory and research.[8] It has been shown 
that useful information about the body’s function can 
be gained by examining how this pulse wave energy is 
distributed anywhere in the artery. Therefore, instead of 
using one sensor for each point, it is better to consider an 
array of sensors for each point.[9,10] Furthermore, the wrist 
or finger pulse signals have been widely used in modern 
medicine for the early diagnosis of diseases. Therefore, 
pulse measurement can be considered a good common 
point for combining traditional medicine and modern 
medicine.

Therefore, the lack of a reliable device that can measure 
and analyze pulse wave in accordance with the principles 
of PM is strongly felt. This issue can be an obstacle to the 
development of PM. As a result, the use of tools that are 
less influenced by external factors appears necessary for 
PM. Then, the aim of the present research is to achieve a 
user‑independent and reproducible method for measuring 
and assessing wrist pulse characteristics.

Methods
Datasets

This preliminary study was conducted at the Behesht 
Healthcare Center of Iran University of Medical Sciences 
in the winter of 2020 with 34 volunteers with different 
temperaments. The volunteers met the inclusion criterion 
which was no history of disease. All the medical ethics 
issues were considered. After obtaining written consent 
from the volunteers, a PM specialist assessed their wrist 
pulse according to the PM interpretation methods. In PM, 
the following indicators of wrist pulse are observed in 
order to diagnose conditions and diseases:[4]

• Pulse propagation characteristics
• Length = Wave propagation in length of artery
• Width = Wave propagation in lateral side of artery
• Height = Proportional to depth of artery.

• Pulse pace (proportional to time of vascular filling)
• Pulse rate
• Pulse strength
• Vessel elasticity.

According to these characteristics, a PM physician defined 
different pulse types that can be used to identify a person’s 
temperament [Table 1].

After medical examination, the wrist pulse of each participant 
was recorded at 7 points on the wrist using the customized 
pulse‑taking device made by this research group.

Pulse‑taking device

The pulse‑taking device that attaches to a person’s wrist 
possesses two general parts:
• Measurement hardware, which is equivalent to the sense 

of touch and pressure applied to a patient’s wrist by a 
PM specialist. The hardware components of the device 
include:
•	 An inflation pump for creating different pressures 

on the pulse position [this inflating cuff and the 
pump imitates how taken the pulse by a PM expert, 
Figure 1]

•	 Pulse sensors at several points in the pulse‑taking 
position

•	 Finger photoplethysmography sensor.
• Pulse signal recording/processing/analysis software 

for the interpretation and diagnosis of diseases and 
temperaments.

The main structure of this device is shown in Figure 2. 
Three types of sensors have been used to record the pulse 
signal according to PM principles:
• Seven capacitive sensors that measure the characteristics 

of stroke volume in different parts of the wrist
• An optical sensor that measures the intensity of blood 

pulse in the patient’s finger
• A pressure sensor that measures and controls the 

pressure applied to the cuff on the patient’s wrist.
Figure 1: PM expert pulse-taking method (only two fingers were shown). 
PM ‑ Persian medicine
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The reproducibility and reliability of a measuring device is 
an important issue. Hence, the customized pulse meter has 
been compared with a calibrated pulse oximeter reference 
device. It has shown that its performance is valid.[11] Some 
technical specification of the device is written in Table 2.

Classification method

The proposed method consists of a convolutional neural 
network (CNN) architecture for classification with three 
one‑dimensional convolution layers and fully connected 
layer, as shown in Figure 3. The term “input array” in 

Figure 3 refers to all raw signals obtained from seven 
capacitive sensors, the photoplethysmography sensor and 
the pressure sensor. Therefore, dimension of “input array” 
is 9 × (temporal length of signals). The ReLU activation 
function was used after each layer, and to control the 
overfitting problem, L2‑regularization with a rate of 1e‑6 on 
the weights was applied for all the layers. The optimization 
was done with a learning rate of 0.001, and we used four 
different batch sizes of 20, 32, 64, and 128 for each run 
to evaluate the influence of the batch size on the accuracy. 
For each run, the number of epochs was applied equally 
to 100. The proposed method has been tested in Google 
Collaborator with NVIDIA Tesla T4 GPU allocation and 
has been implemented using Python 3 Keras framework 
with TensorFlow library.

There are various kinds of cross validation methods 
which have been widely used to improve validity and 
accuracy in classification issues when these are no enough 
experimental samples. One of the most reliable ones is 
nested cross‑validation.[12] Hence, we used it [Figure 4]. 
The selected signal’s samples were randomly partitioned 
into k subsets which one subset is considered as the test 
data and the remaining k‑1 subsets are used as training 
data. The cross‑validation process is repeated k times, with 
each of the k subsets used exactly once as the test data. 
These combinations of feature selection and classification 
were repeated for 50 iterations. After that, the statistical 
measures (accuracy, sensitivity, and specificity) were 
averaged and its standard deviations were calculated. The 
number of iteration (50 iterations) is not a critical item. 
It was just selected to overcome some randomness in the 
statistical parameter.

According to subsection A, the PM specialist assessed 
participant’s pulse characteristics (pace, rate, vessel 
elasticity, strength, width, length, and height) and classified 
each participant into three classes. Hence, the structure 
in Figure 3 was repeated for seven different pulse 
characteristics. Furthermore, 50% of data were allocated 
for training and 20% for validation in training phase of 
CNN. The rest of data (30%) were used for test.

Figure 2: System diagram for pulse‑taking device

Table 1: participants labeling according to various 
characteristics of the wrist pulse

Subject Pace Rate Vessel 
elasticity

Strength Width Length Height

2 1 1 1 1 2 1 1
3 2 2 3 2 2 2 2
4 3 2 2 2 3 2 2
6 2 2 3 0 2 2 2
7 1 1 1 0 2 2 2
8 2 1 0 2 2 2 2
9 3 2 3 3 1 3 3
10 2 2 3 2 2 2 2
11 1 1 3 2 2 2 2
12 2 1 3 3 2 3 3
13 2 2 3 3 2 2 3
14 2 2 3 3 2 2 3
15 1 1 3 2 2 2 2
16 1 2 1 2 2 1 2
17 1 1 1 2 2 1 2
18 1 1 3 2 2 2 2
19 2 2 3 3 2 2 3
20 1 1 1 1 1 2 1
21 2 2 3 1 2 2 3
22 1 1 3 1 3 3 3
23 2 1 0 3 3 3 3
24 1 1 3 3 1 3 3
25 2 2 1 2 2 3 2
26 2 1 2 0 2 2 3
27 2 1 0 2 2 2 2
28 2 2 3 2 1 3 3
29 2 2 3 2 2 2 3
30 2 1 3 2 2 2 3
31 1 1 3 3 3 3 3
32 1 1 1 1 2 1 2
33 1 1 3 0 3 1 2
34 1 1 1 2 3 2 3
The meaning of the numbers of 0, 1, 2 and 3:
“0”: Not evaluated.
“1”: the mentioned parameter has been interpreted to ‘Low’
level, according to PM.
“2”: the mentioned parameter has been interpreted to ‘Normal’ 
level, according to PM.
“3”: the mentioned parameter has been interpreted to ‘High’ level, 
according to PM
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Figure 4: Performance calculation flowchart

Figure 3: The configuration of CNN. CNN - Convolutional neural network

Table 2: Technical specification of the device
1‑1.5 (for each person)Acquisition time (minute)

200 Sample rate (samples/s)
0‑180Pressure (mmHg)

Low pass filter: 20 HzPre‑processing

Results
As mentioned before, 34 volunteers participated in the 
study. Two participants (number 1 and 5) were excluded 
from the study because of inconsistent data and low‑quality 

capacitive sensors. The PM specialist assessed their 
wrist pulses and identified seven characteristics for each 
participant: length/width/height/strength/pace/rate/vessel 
elasticity. After that, each participant was labeled to a 
class (no. 1, 2, or 3) based on each pulse characteristic. 
Therefore, according to each pulse characteristic, a 
participant belonged to three different classes. This 
information is shown in Table 1. In this table, “0” 
means that the participant has not been assessed for the 
corresponding characteristic.

When pressure is applied on the wrist [Figure 5], the wrist 
pulse signal reaction is related to the characteristics of 
the cardiovascular system (such as vessel elasticity) and 
strength of the pulse wave. Figure 6 shows the changes in 
the received signals in the capacitive and optical sensors at 
different pressures.

After the data collection, whole data (whole signals 
captured from capacitive and photo and pressure sensors) 
are inserted into the classification algorithm for each 
labeled column of Table 1 separately. At first, a multilayer 
perceptron (MLP) neural network (3 layers: 1024 neurons 
in the first layer, 128 neurons in the second layer, and 
3 neurons in output layer) as the classifier was used. Its 
performance is shown in Table 3 for three labels of Table 1.

The statistical measures of the algorithm on the “test” data 
which are shown in Table 3 are calculated by Eq. 1 to 3.

Accuracy = TP + TN
TP + TN + FP + FN

 (1)

Sensitivity = 
TP

TP + FN
 (2)

Specificity = TN
TN + FP

 (3)

Where TP, TN, FP, and FN are true positive, true negative, 
false positive, and false negative, respectively.

It is worth mentioning that decision‑making process 
for the classification of the wrist pulse characteristics 
is very complicated in PM. Therefore, it is expected 
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Figure 5: Pressure phases

Figure 6: Sensors variation during pressure changes. (a) Capacitive sensors (b) photo sensor
ba

that simple classifier such as MLP would have low 
performance and we need to complex classifier such as 
CNN which reveals high quality of results in comparison 
to MLP [Table 4].

As mentioned before, the results in Table 4 were based on 
the use of all recorded signals from 9 sensors. The question 
is, for each of the pulse wave propagation characteristics, 
the combination of all the signals is the best, or it is 
possible that the use of one or more specific sensors will 
give a better answer?

For this purpose, the classification of participants for 
each label [Table 1] was examined using different 
combinations of sensors [Table 5]. Our guide in choosing 
such combinations has been based on our interpretation 
of the physics of wave propagation in the vessels and 
surrounding tissues and the thinking method of the PM 
expert.

The result of the accuracy of classifying the participants 
based on their different pulse characteristics using different 

combinations of sensor analysis is listed in Table 6. In this 
table, in each row, the first number indicates the value of 
accuracy and the second number indicates the coefficient of 
variation, which is calculated by Eq. 4.

standard deviation(x)(X) =
average(x)

CV  (4)

The bold numbers in Table 6 represent the highest value of 
accuracy and the lowest coefficient of variation in each row.

As shown in Table 6, the use of all signals does not 
always give the optimal result, and some simpler 
combinations of signals can provide results with higher 
accuracy and smaller coefficients of variation. In terms 
of classification accuracy, there are several optimal 
combinations for some indicators (vessel elasticity and 
length). To select the most optimal combination, the 
sensitivity and specificity of the classifier for these cases 
can be also examined. It will be more discussed in the 
Discussion section.

Discussion
In this study, some measurements required and mentioned 
by PM were assessed:
•	 Pulse signals at seven points on the wrist
•	 Blood volume variation in the finger (finger 

photoplethysmography).

The propagation of the pulse wave in the radial artery 
is affected by the characteristics of the vessel. Tissue 
elasticity plays a major role in the proper functioning of the 
cardiovascular system. The vessels that carry blood from and 
to the heart are not rigid tubes but rather have flexible walls 
that stretch in response to the blood pressure inside and 
external pressure (cuff) outside them. A simple diagram of 
how the volume in a compliant vessel is related to the net 
pressure (=blood pressure minus cuff pressure) is shown in 
Figure 7. Increasing the net pressure will linearly increase the 
vessel’s volume – up to a point where the limit of elasticity 
is reached. In the linear region, the proportionality constant 
between net pressure (P) and volume (V) is called the vessel 
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Figure 9: Capacitive sensors aligned in width of the artery

Figure 8: Capacitive sensors aligned in length of the artery

Figure 7: Vessel wall is interpreted as a compliance

Table 3: Performance of the classification algorithm 
based on multilayer perceptron for three labels (three 

columns of Table 1)
Accuracy (%) Sensitivity (%) Specificity (%)

Pace
Maximum
Mean
Minimum 

52.9
47.3
47.1

22.2
1.56
0.0

100
99.8
96.0

Vessel elasticity
Maximum
Mean
Minimum 

67.6
53.5
35.3

100
36.0

0

100
97.6
56.3

Height
Maximum
Mean
Minimum 

56.3
52.0
46.9

50.0
23.0
0.0

100
100
100

compliance (C). The larger the vessel’s compliance, the 
larger the volume for a given pressure. Mathematically, the 
relationship can be stated as (Hooke’s law):

V = Vφ + C. P (5)

Vφ is residual volume.

On the other hand, the propagation of this wave along 
the artery affects each of the sensors used in the device. 

Figure 10: During diastole, artery wall elasticity accelerates the blood flow 
to the fingers

Therefore, the pulse wave on the sensors varies according 
to the characteristics of the vessel. For example, it can be 
said that when the capacitive sensors receive the pulse 
signal at higher pressures, it indicates the higher the 
strength of the cardiovascular system in the patient, and 
this is one of the diagnostic indicators in PM.

The vessel compliance has at least two important 
consequences:[13]

1. The pulsating blood pressure is damped by the 
compliance of the arteries and arterioles walls in 
conjunction with their resistance. Figure 8 shows that 
the damping effect of vascular system can be evaluated 
by capacitive sensors aligned in length of radial artery.

Furthermore, there are two capacitive sensors aligned 
in width of radial artery which could evaluate vascular 
elasticity and expansion in lateral axis [Figure 9].

2. The energy of blood pulses discharged by the heart 
ventricles during systole phase is temporarily stored as 
potential energy in the stretched walls of the vessels. 
During diastole phase, this potential energy is converted 
to additional blood velocity, helping push the blood 
down the arteries to the fingers that can be evaluated by 
finger photo sensor [Figure 10].

Thus, it can be expected to obtain appropriate 
information about the patient’s cardiovascular system 
and his health status by sensors data fusion in different 
pressure phases on the wrist. For this reason, all 9 
signals recorded during the test (7 capacitive sensors 
on the wrist, a finger photoplethysmography sensor, and 
cuff pressure sensor) were used for each participant in 
order to classify the pulse profile. The performance of 
the classifier confirms it.
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Table 4: Performance of the CNN classification algorithm for each label (columns of Table 1)
Number of classes Accuracy (%) Sensitivity (%) Specificity (%)

Pace 3 Maximum
Mean
Minimum 

100
91.8
56.7

100
83.6
7.14

100
99.1
93.8

Rate 2 Maximum
Mean
Minimum 

100
94.4
59.3

100
100
100

100
86.2
59.4

Vessel elasticity 3 Maximum
Mean
Minimum 

100
97.4
82.8

100
93.8
50.0

100
99.8
95.2

Strength 3 Maximum
Mean
Minimum 

100
98.6
96.4

100
99.0
80.0

100
100
100

Width 3 Maximum
Mean
Minimum 

100
94.1
68.8

100
86.3
25.0

100
100
100

Length 3 Maximum
Mean
Minimum 

100
100
100

100
100
100

100
100
100

Height 3 Maximum
Mean
Minimum 

100
94.7
71.9

100
92.5
50

100
100
100

Table 5: Various sensor combination analyses
Wrist 

sensor 1
Wrist 

sensor 2
Wrist 

sensor 3
Wrist 

sensor 4
Wrist 

sensor 5
Wrist 

sensor 6
Wrist 

sensor 7
Finger 
sensor

Pressure 
sensor

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11

Recently, the using deep learning networks to determine 
the characteristics of biomedical signals have increased 
significantly. It attempts to classify patterns using multiple 
nonlinear processing layers.[14] CNN is a powerful 
data‑driven method to handle the massive data which 

provides a good alternative approach to extract the features 
of raw data automatically compared to the traditional 
methods.[15] CNNs have recently become a technique 
for complicated and multidimensional signal processing 
applications such as structural health monitoring.[16‑19] 
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These signals need to convert into the feature space, but 
the selection of the best features is critical to improve 
the ability of classifiers. However, CNNs can directly be 
applied to the raw signals without any preprocessing such 
as de‑noising and feature extraction.[20] Therefore, CNN is a 
good solution for our situation, and Tables 4 and 5 show its 
superiority to the conventional neural networks.

Due to the lack of similar studies specific to PM and due 
to the similarities between Persian and Chinese traditional 
medicine, here we mainly review the researches carried 
out in the field of pulse signals in CM. Chinese experts 
believe the radial pulse changes that are felt in different 
parts of the wrist are related to the diseases of a specific 
organ. They identified three points on the main artery of 
the wrist that could be measured by three fingers. Table 7 
shows the comparisons of some recent pulse measurement 
systems (based on CM) and the present method.

Finally, for better explanation of results in Table 6, it 
is worth mentioning that the neural networks used for 
diagnostic applications (such as those discussed in this 
article) try to construct a model which is based on training 
data. This model tries to recognize test data. Thus, these 
types of networks act as a kind of interpolator. A very 

important factor in the compatibility of the model resulting 
from this interpolation is the degree of consistency and 
homogeneity of the data used in the construction of 
the model and in the testing process. It is a well‑known 
principle in either traditional or deep neural networks 
that the more focused the training and test data, the 
better the performance of the model, both in terms of 
convergence and test results. Thus, in the scenario where 
the data of different sensors are used to construct and test 
the model (i.e., connected to different parts of the body), 
we are faced with data with higher variance and in fact 
heterogeneous. In contrast in the other scenario, we are 
faced with a model that is trained and tested with highly 
homogeneous and centralized data, thanks to recording 
signals belonging to each network from the same point of 
body. According to the above explanations, as a rule, in 
the latter method, we can see higher homogeneity, more 
consistent model, and more desirable accuracy. Of course, it 
should be noted that the increase in accuracy is not specific 
to this study, and in various studies in various fields, we 
see the same phenomenon in neural networks. For example, 
some researchers used similar neural networks to diagnose 
breast cancer from images.[25] After that images were taken 
from different angles, training and subsequently the test 

Table 6: Accuracy and Coefficient of variation for various combination scenarios
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Pace 0.88
0.17

0.86
0.19

0.93
0.10

0.92
0.13

0.91
0.13

0.98
0.06

0.94
0.11

0.92
0.17

0.97
0.08

0.93
0.10

0.92
0.17

Rate 0.91
0.16

0.89
0.22

0.98
0.04

0.94
0.10

0.84
0.25

0.95
0.07

0.97
0.06

0.89
0.20

0.89
0.19

0.93
0.18

0.94
0.15

Vessel elasticity 0.93
0.12

0.97
0.07

0.94
0.10

0.95
0.07

0.95
0.08

0.98
0.06

0.97
0.06

0.98
0.06

0.98
0.06

0.95
0.09

0.97
0.06

Strength 0.95
0.05

0.95
0.06

0.95
0.07

0.96
0.05

0.95
0.09

0.95
0.07

0.94
0.09

0.92
0.10

0.95
0.05

0.95
0.06

0.99
0.02

Width 0.93
0.09

0.96
0.08

0.94
0.08

0.93
0.09

0.94
0.09

0.95
0.07

0.95
0.06

0.91
0.10

0.91
0.09

0.93
0.09

0.94
0.10

Length 0.99
0.05

1.0
0.0

0.98
0.08

0.99
0.02

1.0
0.001

1.0
0.01

0.96
0.10

1.0
0.02

1.0
0.0

1.0
0.0

1.0
0.0

Height 0.96
0.06

0.96
0.04

0.91
0.10

0.92
0.09

0.95
0.05

0.97
0.03

0.94
0.09

0.95
0.06

0.92
0.08

0.90
0.11

0.95
0.09

Table 7: comparison between some Chinese pulse measurement systems and present study
Ref. Wang et al.[21] Kan‑beng et al.[22] Kabigting et al.[23] Jin et al.[24] Present study
Year of report 2012 2015 2017 2019 2020‑2021
Wearable wristband No No Yes Yes Yes
Multi‑sensors Wrist array sensor 3 wrist sensors 3 wrist sensors 3 wrist sensors 7 wrist sensors, 1 finger 

sensor, 1 pressure sensor
Combined and detachable No No No Yes Both 
Adjustable position Yes Yes No Yes No
Pressurization method Motor + shaft Motor + shaft Manually Pump + air bag Pump + air bag
Sampling frequency (Hz) >50 1000 11 1000 200
Pulse‑taking pressure acquiring Yes Yes No Yes Yes
High‑level analysis and classification No No No No Yes
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procedures of separate networks were provided for images 
taken from each angle. In fact, the effect of improving the 
homogeneity of data was preferred due to the increase in 
their number, and this is exactly what we have found in the 
present study that when the data are partially diverse (i.e., 
signals from different points of body which have different 
statistics), the effect of homogeneity is superior to the 
increasing amount of data.

Conclusion
This study showed that designing and implementing a 
customized device for recording and analyzing pulse wave 
according to PM is feasible, and when it is combined with 
the deep learning algorithm, it can reduce the dependence 
of the interpretation of the wrist pulse by the physician.
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