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A B S T R A C T   

The coronavirus disease 2019 (COVID-19) has outbreak since early December 2019, and COVID-19 has caused 
over 100 million cases and 2 million deaths around the world. After one year of the COVID-19 outbreak, there is 
no certain and approve medicine against it. Drug repositioning has become one line of scientific research that is 
being pursued to develop an effective drug. However, due to the lack of COVID-19 data, there is still no specific 
drug repositioning targeting the COVID-19. In this paper, we propose a framework for COVID-19 drug reposi-
tioning. This framework has several advantages that can be exploited: one is that a local graph aggregating 
representation is used across a heterogeneous network to address the data sparsity problem; another is the multi- 
hop neighbors of the heterogeneous graph are aggregated to recall as many COVID-19 potential drugs as possible. 
Our experimental results show that our COVDR framework performs significantly better than baseline methods, 
and the docking simulation verifies that our three potential drugs have the ability to against COVID-19 disease.   

1. Introduction 

SARS-CoV-2 is the virus that causes COVID-19, the respiratory illness 
responsible for the SARS-CoV-2 pandemic. As of February 2021, the 
SARS-CoV-2 has affected over 190 countries, leading to over 100 million 
global cases with over 2 million deaths (fatality rate of 2.2%). The 
COVID-19 pandemic has far-reaching economic consequences beyond 
the spread of the disease, which leads to global economic recession with 
an estimated over 500 billion dollars and 25 million jobs [1]. The severe 
impact of the COVID-19 pandemic results in people needing a treatment 
drug for COVID-19. However, there is still no specific medicine for 
COVID-19. Even if the vaccine can prevent people from contracting 
COVID-19, the confirmed patients cannot be treated with the vaccine, 
we need to explore an effective medicine for curing SARS-CoV-2. To 
accelerate drug development, drug repositionings have received great 
attention in recent years. 

With the wide application of web-based clinical information systems 
and clinical disease data to increase rapidly, it is possible to find hidden 
relationships between diseases and existing drugs with drug reposi-
tioning. Meanwhile, many drugs have more than one target, which is 
intended in the drug design stage. The targets that are not originally 
intended are called “off-target”. Such off-target interactions, though 

may cause adverse drug reactions (ADRs), can provide opportunities to 
seek new use of existing drugs in drug discovery. 

Most drug repositionings have focused on machine learning 
approach, network analysis approach, and text mining of semantic 
inference approach [2], such as [3–5]. However, most methods are 
inapplicable for COVID-19. The above methods have two main chal-
lenges for SARS-CoV-2 drug repositioning: One is that the most current 
methods often focus on only one aspect of drug repositionings and lacks 
systematic consideration of multiple interactive networks, such as drug- 
target interaction prediction [1] or drug-disease association prediction 
[6]. How to integrate the SARS-COV-2 heterogeneous network to 
explore hidden drugs is a challenge. The other is the SARS-CoV-2 is a 
novel virus, and there is currently no effective treatment for SARS-CoV- 
2. Fig. 1 displays the 3D structure of the spike protein bound with the 
host receptor angiotensin-converting enznyme2 (ACE2) in SARS-CoV-2 
(PDB ID:6CS2). Recent virus research demonstrates that SARS-CoV-2 
utilizes ACE2 as an entry receptor in ACE2-expressing cells [7], sug-
gesting potential drug targets for therapeutic development. It is possible 
to search SARS-CoV-2 potential drugs from ACE2 protein docking small 
molecules. 

In this paper, we propose a practical and effective framework (named 
COVDR) to methodically infer new drug-disease interaction for SARS- 
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CoV-2 drug repositioning. The target of COVDR is to fuse diverse in-
formation from a heterogeneous network and infer potential drugs for 
SARS-CoV-2. Since there is no published drug repositioning dataset for 
SARS-CoV-2 when we started to research, we construct a drug reposi-
tioning dataset based on DrugBank, repoDB, News reports, and litera-
tures. Then, we construct a heterogeneous graph of COVID-19 to 
integrate diversified information of COVID-19, such as the drug-drug 
network, drug-disease network, and drug-target network. At the same 
time, we utilized the graph convolution function to aggregate local 
network information in a heterogeneous network, which promotes the 
drug, disease, and target non-linear feature interaction and improve 
predict accuracy. Finally, we use the drug docking poses simulation to 
evaluate the Top-N recommended drugs, and the simulation demon-
strated that our potential drugs can protect ACE2 targets from SARS- 
CoV-2 infection. 

In summary, our major contributions are threefold: 
Fig. 1. The 3D structure of the spike protein bound with the host receptor 
ACE2 in SARS-CoV-2. 

Fig. 2. Our framework for SARS-CoV-2 drug repositioning.  
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• We build a COVID-19 based drug repositioning dataset for SARS- 
CoV-2 potential drug prediction.  

• We propose a novel drug repositioning framework, named COVDR, 
which use a heterogeneous graph convolutional network to infer 
potential drug for COVID-19.  

• The extensive experiments and the drug docking poses simulation 
demonstrated that COVDR can effectively predict potential drugs for 
COVID-19. 

2. Related work 

Generally, drug repositioning can be divided into three groups: The 
machine learning approach, the network analysis approach, and the text 
mining of semantic inference approach [2]. In recent years, many arti-
ficial intelligence methods are widely applied for drug repositioning, For 
instance, Yang et al. [3] proposed a probabilistic matrix factorization 
approach to infer drug-disease associations for drug repositioning. As 
the drug-disease interaction relations is a kind of network, some re-
searchers trends to used network representation learning methods to 
predict drug-disease interaction. Menden et al. [8] proposed network 
representation models to predict the response of cancer cell lines to drug 
treatment through IC50 values. Zeng et al. [9] developed a networks- 
based deep learning approach to integrate heterogeneous networks for 
human disease. Luo et al. [4] proposed a random walk model with drug- 
disease-protein to predict potential drugs for diseases. Some heteroge-
neous network-based methods are proposed for drug repositioning. For 
example, Yang et al. propose a heterogeneous graph inference with 
matrix completion (HGIMC) method to predict potential indications for 
approved and novel drugs [10]. Wang et al. [11] proposed a computa-
tional framework based on a heterogeneous network model and applied 
the approach on drug repositioning by using existing omics data about 
diseases, drugs, and drug targets. Different from network-based 
methods, text mining of semantic inference approach mined and 
retrieved possible drug information via the amount of literature. Chen 
et al. [12] developed a statistical model to assess drug-target associa-
tions from a semantic network. Dong et al. [5] proposed a literature 
mining approach to extract hidden disease-drug associations from 
literature. Lee et al. [13] proposed a deep convolutional neural network 
to training PubMed abstracts and News articles for drug repositioning. 
However, the above methods only consider part of the drug-disease 
association, the drug-drug networks often were ignored. Meanwhile, 
the SARS-CoV-2 has only limited data and cannot use the above methods 
for SARS-CoV-2 drug repositioning. 

3. Materials and methods 

To prioritize candidate drugs for SARS-CoV-2, we propose a novel 
drug repositioning framework, named COVDR. The whole framework is 
showed in Fig. 2. The top part is dataset collection and preparation, 
which collected the SARS-CoV-2 relevant data from the DrugBank, 
PubMed, and the World Health Organization (WHO). We first give de-
scriptions of the used dataset and construct a heterogeneous network by 
integrating multi-source data. The middle part is the model training, we 
propose a prediction method based on a graph convolutional network 
model, which is developed to learn low-dimension feature representa-
tion for nodes. The bottom part is the SARS-CoV-2 prediction, in this 
part, we predict potential drugs for SARS-CoV-2 based on feature rep-
resentation and validate the predicted drugs with docking simulation 
and literature reference. 

3.1. Dataset 

Since there is no published drug repositioning dataset for SARS-CoV- 

2 when we started research, we build our dataset through collect mul-
tiple open sources, including DrugBank1, repoDB2, News reports3 and 
some literature4. As a whole, we construct three different networks: (1) 
drug-disease interactions network. The interactions between drugs and 
diseases are constructed of two parts. One part of drug-disease in-
teractions derives from the repoDB2 dataset, which releases some 
”Approved” drug-disease dataset for drug repositioning by Drug Central 
and ClinicalTrials.gov. Another part of drug-disease derives from the 
manual annotation. But until now there has been no special drug to treat 
COVID-19 disease. Based on the News report3 of the WHO, we manually 
labeled three potential drugs for COVID-19, including Umifenovir 
(DB13609), Remdesivir (DB14761), and Favipiravir (DB12466), all of 
them are still used in COVID-19 treatment.5 (2) drug-target interactions 
network. The drug-target interactions comprise three parts, the first part 
drug-target interactions collected from DrugBank1 website, which is a 
biomedical database with detailed drug data and includes associated 
drug evidence and direct or indirect gene targets. The second part of the 
drug-target dataset are collected from literature [9], which released 
9,744 pairs of drug-target interactions. The third part of the dataset 
derives from manual labeling. Since there is currently no drug-target 
interaction data on SARS-CoV-2, we analyze SARS-CoV-2 related liter-
ature4 and labeled 70 pairs of drug-target information about SARS-CoV- 
2 for drug repositioning. 3) drug-drug interactions. The interactions 
between drugs and drugs are collected from literature [9], which pro-
vided 290,836 clinically reported drug-drug interactions, and we select 
the clinically reported drug-drug interactions to experiment. The 
detailed statistic of the dataset is shown in Table 1. 

3.2. Model training on the SARS-CoV-2 heterogeneous network 

Based on the COVID-19 drug repositioning dataset, COVDR in-
tegrates the process of the graph convolutional network on the hetero-
geneous network to search candidate drugs for the SARS-CoV-2 disease, 
as shown in Fig. 2 model training part. Our model is primarily divided 
into three components, including the embedding layer, heterogeneous 
network modeling, and prediction component. The first component is 
the embedding layer, which is proposed to initialize representation 
embedding for nodes in the heterogeneous network. The second 
component is heterogeneous network modeling, which aims to learn the 
low-dimension feature representation of drugs, diseases, and targets 
from different perspectives. The third component is the prediction 
component, which aims to achieve the drugs and disease representation 
for prediction. Next, we will introduce each model component. 

3.2.1. Embedding layer 
First, we introduce the embedding layer. We embedded disease, 

drug, and target into representation embedding with initializer, that 
denoted as p ∈ RL×Dfor diseases, q ∈ RM×D for drugs, r ∈ RN×D for tar-
gets, where D means embedding dimensions, the L,M,N mean numbers 
of disease, drugs and targets. We define pa means the embedding of 

Table 1 
Statistics of the dataset used in this study.  

Dataset Drugs Diseases Targets  

7,365 1,230 4,596  
Drug-Drug 
Interactions 

Drug-Disease 
Interactions 

Drug-Target 
Interactions  

290,836 6,680 25,012  

1 https://www.drugbank.ca/  
2 http://apps.chiragjpgroup.org/repoDB/  
3 https://www.who.int/emergencies/diseases/novel-coronavirus-2019  
4 https://bigd.big.ac.cn/ncov/publication  
5 https://www.fda.gov/media/137574/download 
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disease a, qb means the embedding of drug b, rc means the embedding of 
target c. Then we update the initialized vector with a multi-hop graph 
convolutional network based on the heterogeneous network. 

3.2.2. Heterogeneous network modeling 
In addition to the disease-drug graph, the drug-drug graph and drug- 

target graph supply possibilities to learn disease and drug representa-
tions from different aspects. The network-based representation learning 
methods employ graph neural networks to aggregate graph features of 
neighboring nodes, which makes the representation embedding more 
powerful information. However, network-based drug repositioning 
methods [14] only design for a single graph or two graphs, real-world 
drug-disease-target interactions scenarios often contains multiple 
interactive graphs. Different from other works, we propose to enhance 
the graph neural network with a heterogeneous graph convolutional 
network for COVID-19 drug repositioning. 

Disease-Drug Aggregation. 
To enhance the representations of diseases in the disease-drug graph, 

we propose to utilize the graph convolutional networks to accumulate 
local neighbors information as follows, 

pg
a = Aggdrug2disease{

1
|Ra|

∑

b∈Ra

qb} (1)  

where Ra means disease a associations drug b set, and Agg{∗} is a mean- 
based aggregating operation of GNNs [15]. 

Drug-Drug Aggregation. As suggested by DDI theories [16], drug 
prediction is more likely to be influenced by drug-drug interactions. It is 
important to integrate drug-drug interactions information into drug 
representations. Moreover, tie strengths among drugs can differently 
influence drugs’ treatment ability. To recognize heterogeneous 
strengths of drug-drug interactions, we propose to aggregate differen-
tiate drugs’ local neighbors during aggregating operation in graph 
neural networks as follows, 

qg
b = σ(W⋅Aggdrug2drug{

∑

d∈DDIb

wd,b(qd ⊙ qb)}) (2)  

where DDIb means drug b interactions set of drug d in drug-drug 
network, the σ means relu activation function, and the ⊙ denote the 
element-wise product, W is a trainable parametric matrix. Equivalently, 
wd,b is the important weight between drug d and drug b, here we used 
GCN laplacian matrix [15] as weight matrix. 

On the other side, the directly connected nodes are beneficial for 
enhancing representation. Since the features can be passed throughout 
the DDI network, and drugs might be affected by the k-hop neighbor 
drugs. Accordingly, we propose to accumulate DDI information through 
k-layer aggregation as follows, 

qgk+1

b = σ(W⋅Aggdrug2drug{
∑

d∈DDIb

wd,b(qgk

d ⊙ qgk

b )}) (3)  

where qgk

b denotes the drug b representation after k-layer aggregating 

operation. The drug initial representation qgk

b is equal to qg
b when k = 0. 

Drug-Target Aggregation. A drug target is a molecule in the body, 
usually a protein, that is intrinsically associated with a particular disease 
process and that could be addressed by a drug to produce a desired 
therapeutic effect. It is very important to profile drugs from the related 
target. Hence, we introduce the drug-target aggregating operation to 
enhance the representation embedding of drugs. We introduce to 
aggregate drug target interaction information as follows, 

qt
b = σ(W⋅Aggtarget2drug{

∑

c∈DTIb

wc,b(qb ⊙ rc)}) (4)  

where DITb indicates neighbor targets c of drug b in drug-target graph, 
and Aggtarget2drug is the aggregating function. rc means the initialized 

vector of target c. 
In addition, we propose to aggregate target information through k- 

layer aggregating operation as follows, 

qtk+1

b = σ(W⋅Aggtarget2drug{
∑

c∈DTIb

wc,b(qtk
b ⊙ rtk

c )}) (5)  

where qtk
b denotes the drug b representation after k-layer aggregating 

operation. The drug initial representation qtk
b is equal to qt

b when k = 0. 

3.3. Prediction component 

The last component in our proposed model is the prediction 
component, which aims to finalize the disease and drug representation 
for prediction. Since the drug-drug graph and drug-target graph provide 
important signals to understand drugs interactions information, we 
propose to integrate the final drug representation qf

b as follows: 

qf
b = qgk+1

b ⊕ qtk+1

b (6)  

where ⊕ indicates summation operation. 
With the disease and drug representation (e.g., pg

a and qf
b), we 

calculate the prediction score via vector inner product as follows, 

ra,b = pg
a

T qf
b (7)  

3.4. Model training 

To training our model’s parameters, we utilize the pair-wise loss [17] 
as an objective function for the SARS-CoV-2 drug repositioning task, the 
detail loss function is as follows, 

min
θ

Loss =
∑L

a=1

∑

(b,d)∈Ra

− σ(ra,b − ra,d)+ λ‖θ‖2 (8)  

where σ(⋅) is a sigmoid activation function. L indicate the number of 
disease for training. θ means all trainable model parameters in our 
COVDR framework. λ is a regularization parameter that controls the 
complexity of disease and drug graph representation. Ra denotes disease 
a interactive drugs set. By optimizing the loss function, all parameters 
are updated via backward propagation. 

4. Results 

4.1. Baseline of COVDR 

Since most related studies investigate drug-target prediction or drug- 
disease associations, few models were designed for the triple associa-
tions on SARS-CoV-2. Thus we compare our method to some pairwise 
association drug prediction methods, such as deepDR [9] and MLP [18] 
methods, which design neural networks to construct node representa-
tion for heterogeneous work and predict drug-disease interactions. In 
addition to the above two deep-based models, we further investigate the 
effects of using different additional information. We designed some 
variants to verify the COVDR performance, including COVDR + DDI, 
COVDR + DTI, and COVDR + No, the detailed introduction is as follows.  

• deepDR [9]: deepDR model is one of the state-of-the-art drug 
repositioning methods, constructed nine different networks, 
including drug-drug interactions, drug-target interactions, drug-side- 
effect associations, drug-target interactions, drug-side effect in-
teractions, chemical similarities and so on. Since there is currently no 
SARS-CoV-2 drug side effect association, we choose the drug-disease 
interactions to compare with our model.  

• MLP [18]: A multilayer perceptron (MLP) is a class of neural 
network models, which consists of three or more layers of nodes. The 

H. Liu et al.                                                                                                                                                                                                                                      
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authors used MLP to distinguish data and predict new drugs for the 
disease. We choose the MLP model and set two hidden layers as the 
compare model.  

• COVDR þ DDI: To analysis the influence of drug-drug interactions, 
we design the COVDR + DDI, which is a variant model of COVDR, 
and only used drug-drug interactions and drug-disease interactions 
for SARS-CoV-2 drug repositioning.  

• COVDR þ DTI: To analysis the influence of drug-target interactions, 
we design the COVDR + DTI, which is a variant model of COVDR, 
and only used drug-target interactions and drug-disease interactions 
for SARS-CoV-2 drug repositioning.  

• COVDR þ No: To analysis our model ability of drug prediction, we 
design the COVDR + No, which only used drug-disease interactions 
without any other interactions for SARS-CoV-2 drug repositioning.  

• COVDR: We combine three interaction networks, such as drug-drug 
interactions, drug-target interactions, and drug-disease interactions, 
and construct a heterogeneous drug-disease-protein network to 
predict potential drugs for SARS-CoV-2. 

4.2. Performance of COVDR on the dataset 

To evaluate the performance of COVDR, we use 5-fold cross- 
validation to test the performance of triplet association prediction. 
Similar to other works [9,18], we choose AUC and AUPR to evaluate the 
drug repositioning performance. We apply the randomly selected 20% 
subset as the test, and the remaining 80% drug-disease pairs applied to 
train model parameters. The Fig. 3 and Fig. 4. reports the performance 
comparison results about AUC and AUPR. We have the following 
observations. 

As shown in Fig. 3 and Fig. 4, we can find that: (1) The network- 
based model achieves better drug prediction performance than MLP, 
which demonstrates that MLP hard to learn heterogeneous network in-
formation without considering network structure, and the network local 
neighbor nodes can improve representation embedding. (2) The MLP 
achieves poor performance on AUPR than deepDR. This indicates that 
network-based representation learning is sufficient to capture the com-
plex relationship between drugs and items, DeepDR consistently out-
performs MLP across all cases, demonstrating the importance of graph 
interactions between drugs and diseases embeddings. (3) Comparing to 
deepDR and MLP, the performance of COVDR achieves the best per-
formance on AUPR and accomplishes comparable improvement on AUC. 
Comparing with the COVDR + DDI, COVDR + DTI, and COVDR + No, 
the COVDR improves the performance on AUPR by approximately 4.3%. 
The main reason is that COVDR builds the representation of the drug- 
disease interaction via integrating drug-drug interactions and drug- 
target interactions. The design of the model can consider protein inter-
action among the heterogeneous network. Meanwhile, our COVDR 
achieves slightly inferior to deepDR in AUC indicator, we analysis the 
dataset and found that the reason is unbalanced data distribution. The 
ineffective drugs for diseases are far more than the number of effective 
drugs, and the AUC indicator is often invalid on the imbalanced data, 
but the AUPR indicator is more convincing. 

4.3. Hyper-parameters sensitivity 

In this subsection, we design the different k values for the model k- 
hop aggregating component by comparing AUC and AUPR to validate 
the effectiveness of our proposed COVDR model. The detail is shown in 
Fig. 5. 

As shown in Fig. 5, when k = 1, the model only considers first-order 
neighbors, and our model gets the worst performance than other sizes k, 
which implies that nodes’ higher-order neighbors’ information is 
beneficial to enhance the drug repositioning. Meanwhile, we can find 
that the size k = 3 with multi-hop achieves a better performance than k 

Fig. 3. Performance of experiment dataset on AUC.  

Fig. 4. Performance of experiment dataset on AUPR.  

Fig. 5. Effect of multi-hop size k on experiment datasets.  
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= 4 on AUC, and AUPR. The experiment result verifies that incorporated 
too many high-order neighbor nodes will lead to noise and reduce the 
accuracy of drug repositioning. The intuitive explanation is that only 
limited drugs can treat a disease. 

4.4. SARS-CoV-2 potential drug prediction 

We check the top 100 drug predictions and show the statistics of their 
projected top 10 pairwise associations in Table 2. The detailed literature 
and publications about are listed in references, and the target UniProt ID 
about each drug are showed Table 2. 

As shown in Table 2, we find some evidence to confirm ten thera-
peutic associations, For example, One of the patients was treated with 
Ceftriaxone, and his cough, fever, and fatigue were improved gradually, 
he completed the 5–day course of hydroxychloroquine and azi-
thromycin, 7 days of ceftriaxone [20,19]. As reported in [21,22], cip-
rofloxacin and glycyrrhizic acid were selected based on their reported 
anti-viral activity, safety, availability, affordability and subjected for 
Molecular Dynamics (MD) simulation. The MD simulation results indi-
cate that ciprofloxacin may be repurposed against SARS-CoV-2. In pa-
tients in the ICU, piperacillin was the most commonly prescribed 
antibiotic, and the piperacillin was used for the treatment of SARS-CoV- 
2 in the study [22]. The studies [25–27] demonstrated that the 
amphotericin B and caspofungin were added, assuming a potential 
synergistic effect with liposomal amphotericin B for treat SARS-CoV-2. 
Several preclinical studies [28,29] showed that doxycycline (DOX) 
and minocycline (MIN), semi-synthetic tetracyclines frequently used in 
clinical practice against a variety of infective agents and well-tolerated, 

are also effective against some RNA viruses. As such, DOX/MIN may be 
effective also against SARS-CoV-2 infection. Cefuroxime is a second- 
generation cephalosporin antibiotic, and the literature [30–32] shown 
that cefuroxime is a potent inhibitor of 3 key SARS-CoV-2 proteins, and 
cefuroxime axetil exhibited the possibility to halt the pocket of SARS- 
CoV-2 Mpro by forming stable interaction through covalent bonding 
and hydrogen bonding. The study [37] believes that Tetracycline is one 
of the potential therapeutic candidates, which demonstrates tetracycline 
antibiotic therapy corresponded to significant reductions in the duration 
of mechanical ventilation and ICU stay in ARDS patients. Oxytetracy-
cline is one of the tetracyclines used for the treatment of infections 
caused by a variety of Gram-positive and Gram-negative microorgan-
isms, and the studies [34,35] demonstrate that oxytetracycline is a 
relatively well-tolerated antibiotic that shows one of the highest docking 
scores. Erythromycin is used to treat certain infections caused by bac-
teria, and the study [33] demonstrate that Erythromycin could be an 
important combined treatment. Nonetheless, erythromycin has inhibi-
ted SARS-CoV-2 activity and may combine with hydroxychloroquine to 
reduce infection. 

4.5. SARS-CoV-2 potential drug docking poses simulation 

To validate the ability of our method predicting for SARS-CoV-2 
drug-disease interactions, we check the top 100 predictions and find 
some potential drug-target interactions (Table 2. We select 10 potential 
drugs, which have supported references and 3D molecular structure for 
docking simulation. We perform computational docking for all of the top 
10 predictions using Autodock Vina [38]. 

Our docking studies showed that the three drugs (i.e., Doxycycline, 
Cefuroxime, and Erythromycin) can dock to the structures of SARS-CoV- 
2-ACE2 (PDB ID:6M0J), and displayed different binding patterns 
(Fig. 6). In particular, all three drugs are fitted into the active sites of 
ACE2. More specifically, the doxycycline binding to ACE2 by forming 
hydrogen bonds with residues ASN546 with a bond length of 2.1Åin 
Fig. 6a, the cefuroxime binding to ACE2 by forming hydrogen bonds 
with residues LYS534, GLU536 with a bond length of 1.7Å,2.0Å in 
Fig. 6b and the erythromycin binding to ACE2 by forming hydrogen 
bonds with residues LYS416 with a bond length of 2.2Åin Fig. 6c. These 
docking results may provide important hints for understanding the 
structural basis of the predicted SARS-CoV-2 potential drugs and thus 
help reveal the underlying molecular mechanisms of drug action. 

5. Conclusion 

To search for a specific drug for COVID-19, we propose a drug- 

Table 2 
Top 10 predicted drug for SARS-CoV-2.  

DrugBank 
ID 

Drug Name Target UniProt ID References 

DB01212 Ceftriaxone P0A3M6, Q9NSA0, Q4U2R8, 
Q8TCC7, P46059 

[19,20] 

DB00537 Ciprofloxacin P43702, P43700, P11388, Q12809 [21,22] 
DB00319 Piperacillin Q75Y35, P0A3M6, Q7CRA4, 

Q8DNB6 
[23,24] 

DB00681 Amphotericin B Q9UKR5 [25–27] 
DB00254 Doxycycline Q63X76 [28,29] 
DB01112 Cefuroxime Q8XJ01 [30–32] 
DB00199 Erythromycin O43193, Q12809 [33] 
DB01017 Minocycline P0A7X3, P0A7V8, P01584, 

P09917, P14780, P15692 
[28] 

DB00595 Oxytetracycline P0A7X3, P0A7V8 [34,35] 
DB00759 Tetracycline P02359, P0AG59, P0A7W7, 

P0A7U3, P0A7V3 
[28]  

Fig. 6. The docked poses for the predicted interaction between three drugs (i.e., Doxycycline, Cefuroxime, and Erythromycin) and proteins (i.e, ACE2). The protein 
structures of ACE2 were downloaded from the Protein Data Bank (PDB ID:6M0J). The structures of the small molecules were obtained from the ZINC. The docking 
program Autodock was used for docking modeling. Hydrogen bonds were computed by PyMOL [36] and represented by the yellow dashe.d lines in ACE2. 
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disease-target triplet association prediction method (COVDR) based on 
the graph convolutional network. Since the SARS-CoV-2 is still in the 
research stage and there is no relevant drug repositioning dataset for 
SARS-CoV-2, we first collect a SARS-CoV-2 based drug repositioning 
dataset from the existing data (e.g., drugbank, repoDB). Secondly, apart 
from the gold standard drug-disease association network, we integrate 
one drug-drug interaction network and one drug-target association 
network to construct a complicated heterogeneous network. The het-
erogeneous network contains diverse information and a multi- 
perspective view for predicting SARS-CoV-2 potential drugs. Further-
more, our COVDR uses graph convolutional neural networks to learn 
heterogeneous networks to obtain low-dimensional feature representa-
tions of drugs, diseases, and targets. Then we predict SARS-CoV-2 po-
tential drugs based on the feature representation. COVDR can learn the 
high-order nonlinear interactive information and improve the potential 
drugs recall rate via adopting a multi-hop mechanism. Comparing with 
baselines, COVDR achieves better performance than other methods. 
Moreover, we have validated most of the prediction drugs by literature 
reference. We have checked the top 10 predicted drugs and validated the 
three most relevant drugs by computational docking, the molecular 
docking results proved that Doxycycline, Cefuroxime, and Erythromycin 
have the potential to against the SARS-CoV-2. 
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