
sensors

Article

Parallel Computing for Quantitative Blood Flow
Imaging in Photoacoustic Microscopy

Zhiqiang Xu 1,2 , Yiming Wang 1,2, Naidi Sun 2, Zhengying Li 1 , Song Hu 2,* and Quan Liu 1,*
1 School of Information Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070,

China; xuzhiqiang01@whut.edu.cn (Z.X.); yw6q@virginia.edu (Y.W.); zhyli@whut.edu.cn (Z.L.)
2 Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22908,

USA; ns3gs@virginia.edu
* Correspondence: songhu@virginia.edu (S.H.); quanliu@whut.edu.cn (Q.L.)

Received: 19 July 2019; Accepted: 14 September 2019; Published: 16 September 2019
����������
�������

Abstract: Photoacoustic microscopy (PAM) is an emerging biomedical imaging technology capable
of quantitative measurement of the microvascular blood flow by correlation analysis. However,
the computational cost is high, limiting its applications. Here, we report a parallel computation
design based on graphics processing unit (GPU) for high-speed quantification of blood flow in PAM.
Two strategies were utilized to improve the computational efficiency. First, the correlation method in
the algorithm was optimized to avoid redundant computation and a parallel computing structure
was designed. Second, the parallel design was realized on GPU and optimized by maximizing the
utilization of computing resource in GPU. The detailed timings and speedup for each calculation
step were given and the MATLAB and C/C++ code versions based on CPU were presented as a
comparison. Full performance test shows that a stable speedup of ~80-fold could be achieved with
the same calculation accuracy and the computation time could be reduced from minutes to just
several seconds with the imaging size ranging from 1 × 1 mm2 to 2 × 2 mm2. Our design accelerates
PAM-based blood flow measurement and paves the way for real-time PAM imaging and processing
by significantly improving the computational efficiency.

Keywords: parallel computing; photoacoustic microscopy; blood flow; correlation analysis; GPU

1. Introduction

Photoacoustic imaging is an emerging imaging modality which shows great potential for basic
research and clinical practice [1–4]. As a hybrid technology, it is based on optical excitation and
ultrasonic detection. The pulsed laser light is absorbed by endogenous optical absorbers such as red
blood cells (RBCs), and the consequent heat generation induces the emission of acoustic waves as
a result of thermoelastic expansion [5]. The photoacoustic signal is then detected by the ultrasonic
transducer. Photoacoustic imaging has two major implementations: photoacoustic tomography (PAT)
and photoacoustic microscopy (PAM). In PAM, both the optical excitation and ultrasonic detection are
focused. Each laser pulse produces a depth-resolved 1-D image (i.e., A-line signal) without mechanical
scanning, and 2-D transverse scanning generates a 3-D image [6]. With the unique imaging contrast,
PAM has been widely used in biomedical research and proven capable of structural, functional,
metabolic and molecular imaging in vivo [7–10].

Helping to distribute nutrients, oxygen and other products of metabolism, blood flow is essential
for tissue viability [11]. Blood flow can be affected by various physiological and pathological factors
including metabolic demand and ischemia, and analysis of them benefits the disease diagnosis and
treatment [12]. For example, studying the alteration of retinal blood flow may help to identify patients
at high risk of cerebrovascular diseases [13].

Sensors 2019, 19, 4000; doi:10.3390/s19184000 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7740-8360
https://orcid.org/0000-0002-4600-2795
https://orcid.org/0000-0002-5760-8012
http://www.mdpi.com/1424-8220/19/18/4000?type=check_update&version=1
http://dx.doi.org/10.3390/s19184000
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 4000 2 of 16

Correlation analysis of consecutively acquired A-line signals is proven to be an effective method
for measuring blood flow by PAM [12,14] and has been successfully applied in many studies [15–17].
However, the correlation analysis-based blood flow quantification is time-consuming and thus limits
its applications. For example, it takes the conventional CPU-based serial algorithm ~1 h to map the
microvascular blood flow over a 5 × 5 mm2 region of interest. The computational time can be easily
scaled up to days for experiments that consist of multiple groups of such measurements. Moreover, the
low computational efficiency of the CPU-based algorithm limits the application of PAM in real-time
visualization of rapid hemodynamics [11].

Accelerating data processing with thread-level parallelism, a graphics processing unit (GPU) is
frequently used in image processing and computer vision and is specialized for compute-intensive
applications [18]. Computer unified device architecture (CUDA) for NVIDIA GPU facilitates the
programming and makes GPU one of the most popular acceleration hardware. With these advantages,
GPU has been widely adopted to accelerate computation in photoacoustic imaging system, especially
in PAT [19–23] for which the image reconstruction algorithm is much more complicated than PAM
and needs high performance computation. Currently, several parallel computing methods with GPU
have been implemented to reconstruct images in PAT systems such as back-projection (BP)-based
PAT [19], finite element method (FEM)-based time-domain quantitative PAT [21] and double-state
delay-multiply-and-sum (DS-DMAS)-based PAT [23]. In PAM system, GPUs are mainly adopted for
the real-time structure imaging such as displaying maximum amplitude projection (MAP) images
of blood vessels in a mouse’s ear [24,25]. High performance computation of quantitative blood flow
imaging in PAM has not been reported and remains a challenge.

In this work, we propose a GPU-based parallel computing design for quantitative blood flow
imaging in PAM. Two strategies are developed and implemented to accelerate the computational
speed. First, the algorithm for blood flow calculation is fully analyzed for optimization and parallel
design. The method for correlation analysis is optimized to avoid redundant calculation. Moreover,
a computing structure that contains three kinds of parallelism is designed based on the features of
each computation step. Second, the parallel design for each computation step is implemented on GPU
and optimized by maximizing the utilization of the computing resource, avoiding serial execution on
branch divergence and using dedicated (e.g., shared and constant) memory.

The remainder of this paper is organized as follows: measurement principle of blood flow in PAM
is introduced in Section 2. The optimization and parallel structure design of the algorithm for blood
flow computation is presented in Section 3. In Section 4, the implementation and optimization of the
parallel design with GPU is presented; implementations of MATLAB and C/C++ version based on
CPU are tested as a comparison. In Section 5, runtimes and blood flow image of final performance
tests are given. In Section 6, discussions are made about comparisons with other works, potential
limitations and the future research which could be completed based on this study. The conclusion is
presented in Section 7.

2. Blood Flow Measurement Principle

2.1. Imaging System

As shown in Figure 1, the PAM system consists of five parts, including the optical part, imaging
head, amplifier, data acquisition card (DAQ) and computer system with GPU. In the optical part,
the pulsed laser (BX40-2-G, Edgewave, San Diego, CA, USA) is triggered by the computer and
outputs nanosecond laser pulses at 532 nm. The beam is attenuated by a neutral-density filter (NDF;
NDC-50C-2M, Thorlabs, Newton, NJ, USA) and then reduced to the appropriate diameter by an iris
(SM1D12D, Thorlabs, Newton, NJ, USA). The laser beam is coupled into the imaging head through
a 2-meter-long single-mode fiber (SMF; P1-460B-FC-2, Thorlabs, Newton, NJ, USA). In the imaging
head, the laser beam coming out of the fiber is collimated by an achromatic doublet (AD; AC127-025-A,
Thorlabs, Newton, NJ, USA), reshaped by an iris (SM05D5, Thorlabs, Newton, NJ, USA), and focused

Sensors 2019, 19, 4000 3 of 16

by an identical doublet through a correction lens (CL; LA1207-A, Thorlabs, Newton, NJ, USA) and the
central opening of a customized ring-shaped ultrasonic transducer (RT). Motorized linear scanning
stages (PLS-85, PI miCos GmbH, Eschbach, Germany) are used to translate the imaging head for raster
scanning of the object to be imaged. A homemade water tank is used to immerse the transducer
and the correction lens. A thin layer of ultrasound gel (Aquasonic CLEAR, Parker Laboratories,
Newton, NJ, USA) is sandwiched between the object and the transparent polyethylene membrane
at the bottom of the water tank for acoustic coupling. The photoacoustic signal is detected by the
transducer and then amplified by a commercial low noise amplifier (HD28082, HD Communications
Corp, Holbrook, NY, USA). A high-speed DAQ card (ATS9350, AlazarTech, Pointe-Claire, Canada) is
used with a sample frequency of 500 MHz, and the sampled data is transferred to a computer though
PCI-E interface. The computer is used to synchronize the laser, two-axis linear stages and DAQ during
image acquisition to process and display PAM images after the scan.

Sensors 2019, 19, x FOR PEER REVIEW 3 of 17

USA) and the central opening of a customized ring-shaped ultrasonic transducer (RT). Motorized
linear scanning stages (PLS-85, PI miCos GmbH, Eschbach, Germany) are used to translate the
imaging head for raster scanning of the object to be imaged. A homemade water tank is used to
immerse the transducer and the correction lens. A thin layer of ultrasound gel (Aquasonic CLEAR,
Parker Laboratories, Newton, NJ, USA) is sandwiched between the object and the transparent
polyethylene membrane at the bottom of the water tank for acoustic coupling. The photoacoustic
signal is detected by the transducer and then amplified by a commercial low noise amplifier
(HD28082, HD Communications Corp, Holbrook, NY, USA). A high-speed DAQ card (ATS9350,
AlazarTech, Pointe-Claire, Canada) is used with a sample frequency of 500 MHz, and the sampled
data is transferred to a computer though PCI-E interface. The computer is used to synchronize the
laser, two-axis linear stages and DAQ during image acquisition to process and display PAM images
after the scan.

Figure 1. Schematic of the photoacoustic microscopy (PAM) system.

2.2. Measurement Principle

Figure 2 illustrates the principle of blood flow measurement in our PAM system. Specifically,
RBCs generate photoacoustic waves when they absorb laser energy and undergo a rapid temperature
rise. The laser beam used in our system is Gaussian-shaped, which defines the detection volume as
shown in Figure 2a. When RBCs move in and out of the volume, the signal fluctuates and is detected
by the transducer. The imaging head is mounted on a two-axis motorized stage and a speed of 1
mm/s is set for the cross-sectional scan (i.e., B-scan) in the X direction, during which the laser is
triggered at a constant repetition rate to produce A-line signals as shown in Figure 2b. After one B-
scan, the imaging head will move one step along the Y direction and then start another B-scan until
the entire region of interest is scanned.

Figure 1. Schematic of the photoacoustic microscopy (PAM) system.

2.2. Measurement Principle

Figure 2 illustrates the principle of blood flow measurement in our PAM system. Specifically,
RBCs generate photoacoustic waves when they absorb laser energy and undergo a rapid temperature
rise. The laser beam used in our system is Gaussian-shaped, which defines the detection volume as
shown in Figure 2a. When RBCs move in and out of the volume, the signal fluctuates and is detected
by the transducer. The imaging head is mounted on a two-axis motorized stage and a speed of 1 mm/s
is set for the cross-sectional scan (i.e., B-scan) in the X direction, during which the laser is triggered at a
constant repetition rate to produce A-line signals as shown in Figure 2b. After one B-scan, the imaging
head will move one step along the Y direction and then start another B-scan until the entire region of
interest is scanned.

Sensors 2019, 19, 4000 4 of 16
Sensors 2019, 19, x FOR PEER REVIEW 4 of 17

Figure 2. Blood flow measurement principle. (a) Experiment configuration. (b) Photoacoustic A-lines
and B-scan. (c) Correlation analysis of the sequentially acquired A-line signals.

In the same B-scan, each specific A-line is respectively correlated with adjacent A-lines to extract
the flow-induced temporal decorrelation of the photoacoustic signal as shown in Figure 2c. The
number of successive A-lines before and after it is denoted as W. Therefore, the correlation window
size including itself is 2 ∗ W +1. The correlation window is set to be less than 10 ms. Within this time
period, the imaging head travels only 10 μm along the B-scan direction, which is comparable to the
average diameter of capillary. Linearly proportional to the flow speed, the decay constant of the
correlation curve can be used for flow calculation [14]. The correlation analysis allows quantification
of blood flow speed at each A-line and eventually pixel-wise flow mapping over the entire scanning
area [15].

2.3. Animal Experiment

A CD-1 mouse (8-week-old male, Charles River Laboratories) was used for the presented in vivo
experiment. A thinned-skull window was created over the region of interest in the mouse brain before
the experiment. The temperatures of the water tank and animal body were both maintained at 37 °C
throughout the experiment. All experimental procedures were carried out in conformity with the
animal protocol approved by the Animal Care and Use Committee at the University of Virginia.

A raw PAM dataset was acquired for quantitative blood flow imaging of a 2 × 2 mm2 area in the
mouse brain. In the algorithm analysis and implementation test (Sections 3 and 4), a sub-dataset
(imaging size: 1 × 1 mm2) of this raw data was used for convenience: (1) it could be applied to evaluate
other dataset because the computing complexity for each step in the algorithm is approximately
linear to the imaging size; (2) the data size of this sub-dataset was very suitable for buffering in the
software could store all the relevant data at once for each test. In the performance test (Section 5), the
computational times for sub-datasets with different sizes are compared to get the stable speedup and
the MAP and blood flow images of this whole raw dataset are given. During the performance test,
when the data size was larger than the buffer size, the input data were divided into several parts and
processed sequentially.

3. Algorithm Analysis and Parallel Design

3.1. Algorithm Analysis

According to the measurement principle, the algorithm for the flow speed calculation is divided
into 7 steps and the major steps are illustrated in Figure 3. In order to demonstrate and compare the

Figure 2. Blood flow measurement principle. (a) Experiment configuration. (b) Photoacoustic A-lines
and B-scan. (c) Correlation analysis of the sequentially acquired A-line signals.

In the same B-scan, each specific A-line is respectively correlated with adjacent A-lines to extract
the flow-induced temporal decorrelation of the photoacoustic signal as shown in Figure 2c. The number
of successive A-lines before and after it is denoted as W. Therefore, the correlation window size
including itself is 2 ∗W + 1. The correlation window is set to be less than 10 ms. Within this time period,
the imaging head travels only 10 µm along the B-scan direction, which is comparable to the average
diameter of capillary. Linearly proportional to the flow speed, the decay constant of the correlation
curve can be used for flow calculation [14]. The correlation analysis allows quantification of blood flow
speed at each A-line and eventually pixel-wise flow mapping over the entire scanning area [15].

2.3. Animal Experiment

A CD-1 mouse (8-week-old male, Charles River Laboratories) was used for the presented in vivo
experiment. A thinned-skull window was created over the region of interest in the mouse brain before
the experiment. The temperatures of the water tank and animal body were both maintained at 37 ◦C
throughout the experiment. All experimental procedures were carried out in conformity with the
animal protocol approved by the Animal Care and Use Committee at the University of Virginia.

A raw PAM dataset was acquired for quantitative blood flow imaging of a 2 × 2 mm2 area in
the mouse brain. In the algorithm analysis and implementation test (Sections 3 and 4), a sub-dataset
(imaging size: 1 × 1 mm2) of this raw data was used for convenience: (1) it could be applied to evaluate
other dataset because the computing complexity for each step in the algorithm is approximately
linear to the imaging size; (2) the data size of this sub-dataset was very suitable for buffering in the
software could store all the relevant data at once for each test. In the performance test (Section 5),
the computational times for sub-datasets with different sizes are compared to get the stable speedup
and the MAP and blood flow images of this whole raw dataset are given. During the performance test,
when the data size was larger than the buffer size, the input data were divided into several parts and
processed sequentially.

3. Algorithm Analysis and Parallel Design

3.1. Algorithm Analysis

According to the measurement principle, the algorithm for the flow speed calculation is divided
into 7 steps and the major steps are illustrated in Figure 3. In order to demonstrate and compare the
amount of data involved in each step of the algorithm, a subset of the raw data with a 1 × 1 mm2 size
is analyzed as a specific example. The complete computation process is summarized as follows:

Sensors 2019, 19, 4000 5 of 16

1. Read the raw experiment data from the hard disk. As shown in Figure 3a, the number of B-scans
in the raw data is marked as R, the number of A-lines in each B-scan is marked as L, and the
number of sampling points in each A-line is marked as D, which is even. Each sampling point is
a 2-byte integer. For this specific example, R, L and D are 100, 7200 and 512, respectively. Thus,
the raw data size is ~737.28 MB.

2. Remove the direct current (DC) component of the raw A-line signal. The DC component is a
constant value and remains the same for all the A-line signals. It is obtained before the experiment
and subtracted from all sampling points at the beginning of the algorithm. For this specific
example, the total number of sampling point is 3.69 × 108.

3. Extract the signal envelope by Hilbert-transforming the A-line signal. Specifically, the original
A-line data is firstly transformed by FFT. Then, the Fourier-transformed signal is multiplied by
H(n) as follows:

H(n) =

1 n = 0 and n = D/2
2 0 < n < D/2
0 D/2 < n < D

.

The multiplied signal is then converted back to the time domain via the inverse-FFT [24]. The total
number of A-line is marked as N. For this specific example, N equals 7.2 × 105.

4. Detect the amplitude of the A-line signal. The peak value of the A-line signal is detected to form
a MAP image, which is used to show the vascular structure in the region of interest. Each peak
value is a 4-byte float data. For this specific example, the data size of the MAP image is ~2.88 MB.

5. Calculate the correlation curve. As shown in Figure 3b, for a specific A-line (denoted as A(n)),
the correlation curve that consists of a fixed number of points (denoted as c(j,k)) is obtained by
correlating itself with the adjacent A-lines. In a B-scan, the total number of correlation curves is
denoted as Q. For the first and last W A-lines of each B-scan, a full correlation curve cannot be
obtained. As a result, Q equals L− 2∗W. For this specific example, W is set to 23 and the total
number of correlation curves is 7.154 × 105.

6. Calculate the flow speed. Least square method is applied to fit the correlation curve and extract
the decay constant, from which the flow speed is derived. As shown in Figure 3b, the faster the
decay of the correlation curve, the higher the blood flow speed. The decay constant is linearly
proportional to the flow speed and the relationship is calibrated with a phantom [15] before the
in vivo experiment. After extracting the flow speed value from each of the correlation curve,
the blood flow image can be generated. Each flow speed value is a 4-byte float data. For this
specific example, the data size of the flow image is ~2.88 MB.

7. Save MAP and flow images to the hard disk.

Sensors 2019, 19, 4000 6 of 16
Sensors 2019, 19, x FOR PEER REVIEW 6 of 17

Figure 3. (a) Raw data format. (b) Flow chart for blood flow calculation.

3.2. Optimization of Correlation Curve Calculation

The built-in MATLAB function, corr, is utilized to generate the correlation curve in the original
algorithm. Each time, one A-line and its adjacent A-lines within the correlation window are put into
the function, from which a list of correlation coefficients are returned to generate the correlation curve
Curve(n).

Figure 4a shows a list of correlation curves within one B-scan. In the original algorithm, the total
number of computations of correlation (except auto-correlation c(n,n) which equals 1) is denoted as H: H = R ∗ Q ∗ (2 ∗ W). (2)

For a specific correlation curve Curve(n), redundant calculations occur in the first half of the curve.
The values highlighted in color have already been calculated in the previous curve (labeled by the
same color).

Figure 3. (a) Raw data format. (b) Flow chart for blood flow calculation.

3.2. Optimization of Correlation Curve Calculation

The built-in MATLAB function, corr, is utilized to generate the correlation curve in the original
algorithm. Each time, one A-line and its adjacent A-lines within the correlation window are put into
the function, from which a list of correlation coefficients are returned to generate the correlation curve
Curve(n).

Figure 4a shows a list of correlation curves within one B-scan. In the original algorithm, the total
number of computations of correlation (except auto-correlation c(n,n) which equals 1) is denoted as H:

H = R ∗ Q ∗ (2 ∗W). (2)

For a specific correlation curve Curve(n), redundant calculations occur in the first half of the curve.
The values highlighted in color have already been calculated in the previous curve (labeled by the
same color).

Sensors 2019, 19, 4000 7 of 16

Sensors 2019, 19, x FOR PEER REVIEW 7 of 17

Figure 4. Correlation-computing method in the algorithm. (a) Original method. (b) Optimized
method.

To avoid the redundant calculation, an optimization method is developed. As shown in Figure
4b, instead of calculating correlation curves pixel by pixel, a two-step process is implemented. First,
a correlation coefficient table is computed for all raw data, where each array contains only the second
half of the correlation curve. Then, the complete correlation curves are generated by extracting the
corresponding values from the table. Similarly, the number of correlation calculation is denoted as
H’: H′ = R ∗ Q ∗ W. (3)

With this, the computational time is reduced to half of that in the original method.

3.3. Parallel Task Setup

A parallel computing structure containing multiple memory buffers and processing threads in
three hierarchies is designed for the algorithm. As shown in Figure 5, from top to bottom, the three
hierarchies are point parallel, A-line parallel and curve parallel. Point parallel is a fine-grained design
in which each sample point is assigned a thread for calculation. Thus, it is suitable for the step of DC
component subtraction. In the A-line parallel, the dataset of each A-line is assigned a thread for the
calculation of Hilbert transform and amplitude detection. Curve parallel is a coarse-grained design
in which a single thread processes datasets from several A-lines. Thus, it is suitable for the calculation
of correlation curve and flow speed value.

Figure 4. Correlation-computing method in the algorithm. (a) Original method. (b) Optimized method.

To avoid the redundant calculation, an optimization method is developed. As shown in Figure 4b,
instead of calculating correlation curves pixel by pixel, a two-step process is implemented. First,
a correlation coefficient table is computed for all raw data, where each array contains only the second
half of the correlation curve. Then, the complete correlation curves are generated by extracting the
corresponding values from the table. Similarly, the number of correlation calculation is denoted as H’:

H′ = R ∗ Q ∗ W. (3)

With this, the computational time is reduced to half of that in the original method.

3.3. Parallel Task Setup

A parallel computing structure containing multiple memory buffers and processing threads in
three hierarchies is designed for the algorithm. As shown in Figure 5, from top to bottom, the three
hierarchies are point parallel, A-line parallel and curve parallel. Point parallel is a fine-grained design
in which each sample point is assigned a thread for calculation. Thus, it is suitable for the step of DC
component subtraction. In the A-line parallel, the dataset of each A-line is assigned a thread for the
calculation of Hilbert transform and amplitude detection. Curve parallel is a coarse-grained design in
which a single thread processes datasets from several A-lines. Thus, it is suitable for the calculation of
correlation curve and flow speed value.

Sensors 2019, 19, 4000 8 of 16

Sensors 2019, 19, x FOR PEER REVIEW 8 of 17

Figure 5. Structure design of parallel computing for the algorithm.

4. GPU Implementation and optimization

4.1. Software and Hardware Platform

The parallel computing structure was implemented with CUDA (version 9.1) based on the GPU
hardware. In order to demonstrate the progress, a comparison between the MATLAB (version
R2017b), C/C++ and CUDA implementations was made. They were developed under Microsoft
Windows 10 Enterprise x64 operating system, and the last two implementations were written in
C/C++ under Visual Studio 2015.

The PC for coding and performance test was equipped with Intel Core i7-7800X CPU (3.5 GHz)
and 32 GB RAM memory. The CPU is equipped with six cores and supports up to 12 threads working
in parallel. NVIDIA GeForce GTX 1080 Ti was chosen for parallel computing. Table 1 lists the
specifications.

Table 1. Graphics processing unit (GPU) Specifications.

Parameter GeForce GTX 1080 Ti
CUDA Architecture Pascal
CUDA Computer Capability 6.1
Clock Rate (GHz) 1.582
Global Memory (GB) 11
CUDA Cores 3584
Multiprocessor Count 28
SIMD Width 32

Sample
(1)

A-line
(1)

Sample
(2)

Sample
(D)

Thread
(1)

Thread
(2)

Thread
(D)

In
pu

t
da

ta

Sample
(1)

Sample
(2)

Sample
(D)

Thread
(D*N-D+1)

Thread
(D*N-D+2)

Thread
(D*N)

1.
Po

in
t

Pa
ra

lle
l

Thread
(1)

Flow Pixel
(1,1)

Thread
(2)

A-line
(2)

PA signal (1) raw data PA signal (N) raw data

A-line
(N-1)

Thread
(N-1)

Thread
(N)

A-line
(N)

2.
A-

lin
e

Pa
ra

lle
l

Thread
(3)

Thread
(N-2)

A(
1)

A(
2)

A(
3)

A(
2*

W
+2

)

Thread
(1,1)

A(
N)

A(
N-

2)

Thread
(1,2)

Thread
(R,Q) 3.

Cu
rv

e
Pa

ra
lle

l
Ou

tp
ut

 re
su

lts Flow Pixel
(R,Q)

Flow Pixel
(1,2)

A-line
(3)

A-line
(N-2)

A(
2*

W
+1

)

Thread
(1,3)

Flow Pixel
(1,3)

A(
N-

1)

Da
ta

bu

ffe
r

Da
ta

 b
uf

fe
r

Figure 5. Structure design of parallel computing for the algorithm.

4. GPU Implementation and optimization

4.1. Software and Hardware Platform

The parallel computing structure was implemented with CUDA (version 9.1) based on the GPU
hardware. In order to demonstrate the progress, a comparison between the MATLAB (version R2017b),
C/C++ and CUDA implementations was made. They were developed under Microsoft Windows 10
Enterprise x64 operating system, and the last two implementations were written in C/C++ under
Visual Studio 2015.

The PC for coding and performance test was equipped with Intel Core i7-7800X CPU (3.5 GHz)
and 32 GB RAM memory. The CPU is equipped with six cores and supports up to 12 threads
working in parallel. NVIDIA GeForce GTX 1080 Ti was chosen for parallel computing. Table 1 lists
the specifications.

Sensors 2019, 19, 4000 9 of 16

Table 1. Graphics processing unit (GPU) Specifications.

Parameter GeForce GTX 1080 Ti

CUDA Architecture Pascal

CUDA Computer Capability 6.1

Clock Rate (GHz) 1.582

Global Memory (GB) 11

CUDA Cores 3584

Multiprocessor Count 28

SIMD Width 32

4.2. Initial Implementation

Each calculation step in the blood flow algorithm was implemented with CUDA and evaluated
separately according to the parallel design in Figure 5. In the original MATLAB version which has
been applied in our previous research [15–17], the code had already been optimized by using matrix
operations and built-in functions and ran automatically in parallel using multithreads based on CPU.
As comparisons, both single-thread and multi-thread C/C++ versions were implemented based on
CPU. All the implementations were performed with single precision which was sufficient for the blood
flow calculation.

In the implementation test, the sub-dataset analyzed in Section 3 was chosen as the test data.
Table 2 shows the runtimes for individual calculation steps, and each runtime was obtained by
averaging the outcomes of 10 tests. The acceleration represents the ratio of times between the MATLAB
version and the C/C++ or CUDA version.

Table 2. The detailed timings and speedup for each calculation step.

Hardware CPU GPU

Software 1 MATLAB
Time (ms)

Single-Thread C/C++ Multi-Thread C/C++ CUDA

Time (ms) Speedup Time (ms) Speedup Time (ms) Speedup

Data to GPU — — — — — 60 —

DC subtraction 371 134 ×2.77 37 ×10.02 11 ×33

Hilbert transform 13,131 19,760 ×0.66 10,978 ×1.19 114 ×115

Amplitude detection 9456 3877 ×2.44 732 ×12.92 156 ×61

Correlation calculation 76,985 91,037 ×0.85 71,683 ×1.07
1856 ×41

933 (new 2) ×83

Speed calculation 18,740 5894 ×3.18 1734 ×10.81 272 ×68

Data to host — — — — — 2 —
1 All the software were executed with single precision. Twelve threads supported by CPU were used for the
MATLAB and Multi-thread C/C++ version. All the speedup values were calculated based on the MATLAB version.
2 Implemented with the new method shown in Figure 4b.

A custom set of buffers and procedures in GPU were designed as shown in Figure 6. The input
PAM data and the complex data after Hilbert transform (stored in input buffer and Hilbert buffer,
respectively) occupied most of the memory resource. The intermediate buffers (correlation table and
curve buffers) were allocated for the optimized correlation-computation method shown in Figure 4b.
Memory size of the results (MAP and speed buffers) were relatively small after the computation.

In GPU processing, the computation time is affected by the number of threads per block. In general,
NVIDIA recommends that the number of threads per block should be set to multiples of 64 [24]. After
repeated tests, we found that a high computing efficiency could be reached by setting the number of
threads per block as the data depth of A-line (i.e., 512 in this implementation).

Sensors 2019, 19, 4000 10 of 16

Sensors 2019, 19, x FOR PEER REVIEW 10 of 17

high performance on NVIDIA GPUs. In the CUDA implementation, the FFT and IFFT were realized
by the one-dimensional transform function provided by the cuFFT library, and the number batch for
the input parameter was set as the A-line numbers. Execution of FFT and IFFT were paralleled with
the GPU hardware resource allocated by the cuFFT library automatically. Results shows that the
single-thread C/C++ is slower than the MATLAB version, the multi-thread C/C++ version takes about
the same time and a considerable speedup is achieved by the CUDA version.

For the correlation calculation step, the runtime of the single-thread C/C++ version is slightly
longer than the MATLAB version and the multi-thread C/C++ takes about the same time. The runtime
is reduced to 1856 ms for the initial CUDA version. After adopting the improved algorithm, the
runtime is further reduced by half (933 ms), which is in accordance with the theoretical analysis
mentioned above.

Figure 6. Data flow through the memory buffers in GPU. All the buffers in GPU were allocated with
single precision. Procedures from 2 to 11 are kernel functions executed in GPU. Among these kernels,
Hilbert transform is completed from 3 to 7 and correlation calculation is completed from 9 to 10.

4.3. Optimized Implementation

The computational efficiency of the blood flow algorithm was further improved by maximizing
the utilization of the hardware computation resource provided by GPU.

As shown in Figure 7a, five kernels were used in CUDA for the Hilbert transformation. In the
initial implementation, the multiplication in kernel 3 contains branch structures (shown in Figure 8a)
which impairs the parallelism of threads. As a consequence, the computation efficiency of kernel 3 is
the lowest in this step. An optimization was carried out by replacing the branch structure with a
lookup table. As shown in Equation (1), the Fourier transformed signal is multiplied by one of three
coefficients according to its address index. To avoid the selection, a lookup table that contained the
multiplication coefficients (data size: 2 KB) was used. In addition, the constant memory resource in
the GPU was used for the lookup table to further improve the efficiency as shown in Figure 8b. A
single read operation on the constant memory was broadcast to other near threads, which effectively
reduced the memory bandwidth. Our results show that the runtime of kernel 3 is reduced from 38
ms to 17 ms and the acceleration of the Hilbert transformation is increased from 115 times to 140 times.

Input buffer

real data
~1.47GB

Hilbert buffer

complex data
~2.95GB

Correlation
table buffer

real data
~66MB

MAP buffer

real data
~2.88MB

Procedures:
1- Raw data to GPU
2- DC subtraction
3- Conversion (Real-to-Complex)
4- FFT (Complex-to-Complex)
5- Multiplicagtion
6- IFFT (Complex-to-Complex)
7- Division
8- Amplitude detection
9- Correlation table calculation
10- Correlation curve extraction
11-Speed calculation
12- Results to host

2

3

4,5,6,7

1 8 12

Correlation
curve buffer

real data
~135MB

Speed buffer

real data
~2.88MB

1210 11

9

Figure 6. Data flow through the memory buffers in GPU. All the buffers in GPU were allocated with
single precision. Procedures from 2 to 11 are kernel functions executed in GPU. Among these kernels,
Hilbert transform is completed from 3 to 7 and correlation calculation is completed from 9 to 10.

As shown in Table 2, for the DC subtraction, amplitude detection and speed calculation, the
single-thread C/C++ version is a little more efficient than the MATLAB version and a ~10 speedup is
acquired by the multi-thread C/C++ version. In the CUDA version, all three steps were implemented
with common hardware resource in GPU and remarkable accelerations are achieved.

For the Hilbert transform step, the built-in function, hilbert, was called in the implementation with
MATLAB, the FFTW library was utilized in the C/C++ code, and the cuFFT library was utilized in the
implementation with CUDA. FFTW is a free CPU-based subroutine library for computing the discrete
Fourier transform, and its performance is highly optimized. Multi-threaded FFTW was utilized in
the multi-thread C/C++ code. The cuFFT is a free library, which is also optimized to provide high
performance on NVIDIA GPUs. In the CUDA implementation, the FFT and IFFT were realized by the
one-dimensional transform function provided by the cuFFT library, and the number batch for the input
parameter was set as the A-line numbers. Execution of FFT and IFFT were paralleled with the GPU
hardware resource allocated by the cuFFT library automatically. Results shows that the single-thread
C/C++ is slower than the MATLAB version, the multi-thread C/C++ version takes about the same time
and a considerable speedup is achieved by the CUDA version.

For the correlation calculation step, the runtime of the single-thread C/C++ version is slightly
longer than the MATLAB version and the multi-thread C/C++ takes about the same time. The runtime is
reduced to 1856 ms for the initial CUDA version. After adopting the improved algorithm, the runtime is
further reduced by half (933 ms), which is in accordance with the theoretical analysis mentioned above.

4.3. Optimized Implementation

The computational efficiency of the blood flow algorithm was further improved by maximizing
the utilization of the hardware computation resource provided by GPU.

As shown in Figure 7a, five kernels were used in CUDA for the Hilbert transformation. In the
initial implementation, the multiplication in kernel 3 contains branch structures (shown in Figure 8a)
which impairs the parallelism of threads. As a consequence, the computation efficiency of kernel 3
is the lowest in this step. An optimization was carried out by replacing the branch structure with a
lookup table. As shown in Equation (1), the Fourier transformed signal is multiplied by one of three
coefficients according to its address index. To avoid the selection, a lookup table that contained the
multiplication coefficients (data size: 2 KB) was used. In addition, the constant memory resource in the
GPU was used for the lookup table to further improve the efficiency as shown in Figure 8b. A single
read operation on the constant memory was broadcast to other near threads, which effectively reduced
the memory bandwidth. Our results show that the runtime of kernel 3 is reduced from 38 ms to 17 ms
and the acceleration of the Hilbert transformation is increased from 115 times to 140 times.

Sensors 2019, 19, 4000 11 of 16
Sensors 2019, 19, x FOR PEER REVIEW 11 of 17

Figure 7. Kernel runtimes. (a) Hilbert transformation. (b) Correlation calculation.

Figure 7. Kernel runtimes. (a) Hilbert transformation. (b) Correlation calculation.

Sensors 2019, 19, x FOR PEER REVIEW 12 of 17

Figure 8. Kernel function of multiplication in Hilbert transformation with CUDA. (a) Initial
implementation. (b) Optimized implementation. Idx, thread address index; TIdx, thread index in a block.

As shown in Figure 7b, two kernels were used for the correlation calculation. In kernel 1, each
thread was allocated to calculate a list of correlation coefficients in a loop structure as shown in Figure
9a. Optimization was achieved by replacing the loop structure with a fine-grained parallelism, in
which each thread only calculated one correlation coefficient between two A-lines as shown in Figure
9b. Results in Figure 7b show that after the optimization, the runtime of kernel 1 is reduced from 912
ms to 713 ms. The speedup is limited because of the tradeoff between the computing and data access.
However, more threads are allocated to accelerate the computing in the optimized CUDA version.
The address mapping for the input A-line pair in each thread is complex as shown in Figure 9b, which
increases the data access time.

Figure 8. Kernel function of multiplication in Hilbert transformation with CUDA. (a) Initial
implementation. (b) Optimized implementation. Idx, thread address index; TIdx, thread index
in a block.

Sensors 2019, 19, 4000 12 of 16

As shown in Figure 7b, two kernels were used for the correlation calculation. In kernel 1, each
thread was allocated to calculate a list of correlation coefficients in a loop structure as shown in
Figure 9a. Optimization was achieved by replacing the loop structure with a fine-grained parallelism,
in which each thread only calculated one correlation coefficient between two A-lines as shown in
Figure 9b. Results in Figure 7b show that after the optimization, the runtime of kernel 1 is reduced
from 912 ms to 713 ms. The speedup is limited because of the tradeoff between the computing and
data access. However, more threads are allocated to accelerate the computing in the optimized CUDA
version. The address mapping for the input A-line pair in each thread is complex as shown in Figure 9b,
which increases the data access time.Sensors 2019, 19, x FOR PEER REVIEW 13 of 17

Figure 9. Kernel function of correlation calculation with CUDA. (a) Initial implementation. (b)
Optimized implementation. Idx, thread address index; IdxA and IdxB, the input data addresses for
A-line pair; IdxT, the output data address for the correlation coefficient table.

The final speedup for each calculation step is shown in Figure 10a. A speedup ranging from
32.79 to 183.52 are achieved for the CUDA implementation compared with the original MATLAB
version. Figure 10b shows the percentage of time consumption for each calculation step in MATLAB
and CUDA version separately. The correlation calculation step in MATLAB version accounts for over
60% of the entire computational time, and thus its speedup has a great impact on the overall runtime.
Although data transfer between CPU and GPU device consumes extra time in the CUDA
implementation, it only accounts for a very small portion (~5%).

Figure 9. Kernel function of correlation calculation with CUDA. (a) Initial implementation. (b)
Optimized implementation. Idx, thread address index; IdxA and IdxB, the input data addresses for
A-line pair; IdxT, the output data address for the correlation coefficient table.

The final speedup for each calculation step is shown in Figure 10a. A speedup ranging from 32.79
to 183.52 are achieved for the CUDA implementation compared with the original MATLAB version.
Figure 10b shows the percentage of time consumption for each calculation step in MATLAB and CUDA
version separately. The correlation calculation step in MATLAB version accounts for over 60% of the
entire computational time, and thus its speedup has a great impact on the overall runtime. Although
data transfer between CPU and GPU device consumes extra time in the CUDA implementation, it only
accounts for a very small portion (~5%).

Sensors 2019, 19, 4000 13 of 16

Sensors 2019, 19, x FOR PEER REVIEW 14 of 17

Figure 10. Analysis of the implementation results. (a) Speedup of each step. (b) Runtime analysis.

5. Performance Test

A full performance test of this parallel computing design with GPU was implemented with the
sub-dataset ranging from 1 × 1 mm2 to 2 × 2 mm2. Runtime was recorded during the whole computing
process (i.e., reading raw data from the hard disk, computing flow speed by the algorithm and
writing results back to the hard disk). Table 3 presents the runtime results obtained by averaging the
outcomes of ten experiments. Results of the original MATLAB version and the multi-thread C/C++
version based on CPU were listed as a comparison. It shows that a stable acceleration of the parallel
computing based on GPU could be realized and the total processing time could be reduced from
several minutes to just several seconds when the imaging size ranges from 1 × 1 mm2 to 2 × 2 mm2.
The calculated flow results of MATLAB, C/C++ and CUDA version are essentially the same (the
difference is less than 1 × 10−4 mm/s, which is orders of magnitude smaller than the microvascular
flow in vivo and thus negligible). The MAP and blood flow images computed by CUDA for the total
raw dataset (imaging size: 2 × 2 mm2) are shown in Figure 11.

Table 3. Performance Test.

Image size (mm2) 1 1.5 2 2.5 3 3.5 4
A-line number (x106) 0.72 1.08 1.44 1.8 2.16 2.52 2.88

Data size (GB) 0.74 1.11 1.47 1.84 2.21 2.58 2.95
MATLAB1 Runtime (s) 123.63 201.37 263 327.68 388.02 460.7 528.03

Multi-thread
C/C++

Runtime (s) 86.16 124.52 168.99 213.46 260.6 305.07 350.43
Speedup3 ×1.43 ×1.62 ×1.56 ×1.54 ×1.49 ×1.51 ×1.51

CUDA2
Runtime (s) 1.52 2.47 3.34 4.08 5.03 5.72 6.59

Speedup ×81.34 ×81.52 ×78.74 ×80.31 ×77.14 ×80.54 ×80.13
1All the software versions were executed with single precision. Twelve threads supported by CPU were

used for the MATLAB and Multi-thread C/C++ version. 2Implemented on GPU with multiple threads. 3All the
speedup values were calculated based on the MATLAB version.

Figure 10. Analysis of the implementation results. (a) Speedup of each step. (b) Runtime analysis.

5. Performance Test

A full performance test of this parallel computing design with GPU was implemented with the
sub-dataset ranging from 1 × 1 mm2 to 2 × 2 mm2. Runtime was recorded during the whole computing
process (i.e., reading raw data from the hard disk, computing flow speed by the algorithm and writing
results back to the hard disk). Table 3 presents the runtime results obtained by averaging the outcomes
of ten experiments. Results of the original MATLAB version and the multi-thread C/C++ version
based on CPU were listed as a comparison. It shows that a stable acceleration of the parallel computing
based on GPU could be realized and the total processing time could be reduced from several minutes
to just several seconds when the imaging size ranges from 1 × 1 mm2 to 2 × 2 mm2. The calculated
flow results of MATLAB, C/C++ and CUDA version are essentially the same (the difference is less than
1 × 10−4 mm/s, which is orders of magnitude smaller than the microvascular flow in vivo and thus
negligible). The MAP and blood flow images computed by CUDA for the total raw dataset (imaging
size: 2 × 2 mm2) are shown in Figure 11.

Table 3. Performance Test.

Image Size (mm2) 1 1.5 2 2.5 3 3.5 4

A-line number (×106) 0.72 1.08 1.44 1.8 2.16 2.52 2.88

Data size (GB) 0.74 1.11 1.47 1.84 2.21 2.58 2.95

MATLAB 1 Runtime (s) 123.63 201.37 263 327.68 388.02 460.7 528.03

Multi-thread
C/C++

Runtime (s) 86.16 124.52 168.99 213.46 260.6 305.07 350.43

Speedup 3
×1.43 ×1.62 ×1.56 ×1.54 ×1.49 ×1.51 ×1.51

CUDA 2 Runtime (s) 1.52 2.47 3.34 4.08 5.03 5.72 6.59

Speedup ×81.34 ×81.52 ×78.74 ×80.31 ×77.14 ×80.54 ×80.13
1 All the software versions were executed with single precision. Twelve threads supported by CPU were used for
the MATLAB and Multi-thread C/C++ version. 2 Implemented on GPU with multiple threads. 3 All the speedup
values were calculated based on the MATLAB version.

Sensors 2019, 19, 4000 14 of 16

Sensors 2019, 19, x FOR PEER REVIEW 15 of 17

Figure 11. (a) Maximum amplitude projection (MAP) image. (b) Blood flow image. Scale bar in (a) is
250 μm.

6. Discussion

Parallel computing based on GPU is proven effective to improve computational efficiency and
is extensively adopted in PAT imaging systems, for which the image reconstruction algorithm is
usually designed with a high computation complexity to obtain a better image quality [19–23]. In
PAM system, GPU has been applied for the real-time structure imaging (MAP) of blood vessels in a
mouse’s ear [24,25]. Different from these works, our parallel computation design generates both the
structural image (MAP) and functional image (blood flow) and the latter accounts for over 60% of the
entire computational time (shown in Figure 10). Similar to [26], we have divided the algorithm into
several kernel functions, optimized them separately by maximizing the utilization of computing
resource, evaluated their performance and made comparisons between the CPU-based
implementations (original MATLAB version and C/C++ version) and the GPU-based implementation
(CUDA version). Furthermore, we have put forward a parallel computing structure (shown in Figure
5) containing three kinds of parallelism according to the features of the blood flow imaging algorithm.
Therefore, it could be easily updated and applied to other functional imaging like total concentration
and oxygen saturation of hemoglobin in PAM [15–17].

The parallel computing method proposed in this paper is an off-line computation which only
processes data stored in the hardware disk. Further improvements could be made to synchronize the
parallel computation with the imaging scanning process in the experiment. Another improvement
could be made to optimize the algorithm by computing blood flow just for areas containing vessels
instead of all the scanning area. Combing the parallel computation of blood flow imaging proposed
in this paper, a real-time high-resolution multiparametric PAM system could be made to visualize
the structural and functional dynamics for in vivo experiment.

7. Conclusions

We have developed a GPU-based parallel computing method for high-speed quantification of
blood flow in PAM. The existing algorithm for blood flow calculation was analyzed and optimized
to reduce the computational cost for correlation analysis by half. A parallel computing structure was
designed based on the features of the algorithm. The design was implemented and optimized with
CUDA based on the GPU hardware platform. A full performance test was implemented, showing
that the stable acceleration of the parallel computing design could be realized with the same
calculation accuracy and the computation time could be reduced from minutes to just several seconds
with the imaging size ranging from 1 × 1 mm2 to 2 × 2 mm2. Our work accelerates the process of blood
flow measurement in PAM and paves the way for real-time PAM imaging and processing by
significantly improving the computational efficiency.

Author Contributions: Conceptualization, Z.X. and S.H.; methodology, Z.X.; software, Z.X.; validation, Z.X.,
Y.W. and N.S.; formal analysis, N.S.; investigation, Z.X.; resources, S.H., Z.L.; data curation, N.S.; writing—

Figure 11. (a) Maximum amplitude projection (MAP) image. (b) Blood flow image. Scale bar in (a) is
250 µm.

6. Discussion

Parallel computing based on GPU is proven effective to improve computational efficiency and is
extensively adopted in PAT imaging systems, for which the image reconstruction algorithm is usually
designed with a high computation complexity to obtain a better image quality [19–23]. In PAM system,
GPU has been applied for the real-time structure imaging (MAP) of blood vessels in a mouse’s ear [24,25].
Different from these works, our parallel computation design generates both the structural image (MAP)
and functional image (blood flow) and the latter accounts for over 60% of the entire computational
time (shown in Figure 10). Similar to [26], we have divided the algorithm into several kernel functions,
optimized them separately by maximizing the utilization of computing resource, evaluated their
performance and made comparisons between the CPU-based implementations (original MATLAB
version and C/C++ version) and the GPU-based implementation (CUDA version). Furthermore,
we have put forward a parallel computing structure (shown in Figure 5) containing three kinds of
parallelism according to the features of the blood flow imaging algorithm. Therefore, it could be easily
updated and applied to other functional imaging like total concentration and oxygen saturation of
hemoglobin in PAM [15–17].

The parallel computing method proposed in this paper is an off-line computation which only
processes data stored in the hardware disk. Further improvements could be made to synchronize the
parallel computation with the imaging scanning process in the experiment. Another improvement
could be made to optimize the algorithm by computing blood flow just for areas containing vessels
instead of all the scanning area. Combing the parallel computation of blood flow imaging proposed in
this paper, a real-time high-resolution multiparametric PAM system could be made to visualize the
structural and functional dynamics for in vivo experiment.

7. Conclusions

We have developed a GPU-based parallel computing method for high-speed quantification of
blood flow in PAM. The existing algorithm for blood flow calculation was analyzed and optimized to
reduce the computational cost for correlation analysis by half. A parallel computing structure was
designed based on the features of the algorithm. The design was implemented and optimized with
CUDA based on the GPU hardware platform. A full performance test was implemented, showing that
the stable acceleration of the parallel computing design could be realized with the same calculation
accuracy and the computation time could be reduced from minutes to just several seconds with the
imaging size ranging from 1 × 1 mm2 to 2 × 2 mm2. Our work accelerates the process of blood flow
measurement in PAM and paves the way for real-time PAM imaging and processing by significantly
improving the computational efficiency.

Author Contributions: Conceptualization, Z.X. and S.H.; methodology, Z.X.; software, Z.X.; validation, Z.X., Y.W.
and N.S.; formal analysis, N.S.; investigation, Z.X.; resources, S.H., Z.L.; data curation, N.S.; writing—original
draft preparation, Z.X.; writing—review and editing, Z.X., S.H. and Z.L.; visualization, Z.X.; supervision, S.H. and
Q.L.;

Sensors 2019, 19, 4000 15 of 16

Funding: This research is supported by the Fundamental Research Funds for the Central Universities of China
(grant no. 2016-JL-010) and China Scholarship Council (CSC, grant no. 201706950020) to Z.X. and the National
Institutes of Health (NS099261) and the American Heart Association (15SDG25960005) to S.H.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hu, S. Listening to the Brain With Photoacoustics. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 6800610.
2. Xia, J.; Yao, J.; Wang, L.V. Photoacoustic tomography: Principles and advances. Prog. Electromagn. Res. Pier.

2014, 147, 1–22.
3. Cai, C.; Wang, X.; Si, K.; Qian, J.; Luo, J.; Ma, C. Feature coupling photoacoustic computed tomography for

joint reconstruction of initial pressure and sound speed in vivo. Biomed. Opt. Express 2019, 10, 3447–3462.
[CrossRef] [PubMed]

4. Cai, C.; Deng, K.; Ma, C.; Luo, J. End-to-end deep neural network for optical inversion in quantitative
photoacoustic imaging. Opt. Lett. 2018, 43, 2752–2755. [CrossRef] [PubMed]

5. Park, K.; Kim, J.Y.; Lee, C.; Jeon, S.; Lim, G.; Kim, C. Handheld photoacoustic microscopy probe. Sci. Rep.
2017, 7, 13359. [CrossRef] [PubMed]

6. Wang, L.V.; Hu, S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science 2012, 335,
1458–1462. [CrossRef] [PubMed]

7. Hai, P.; Imai, T.; Xu, S.; Zhang, R.; Aft, R.L.; Zou, J.; Wang, L.V. High-throughput, label-free, single-cell
photoacoustic microscopy of intratumoral metabolic heterogeneity. Nat. Biomed. Eng. 2019, 3, 381–391.
[CrossRef] [PubMed]

8. Liu, C.; Liang, Y.; Wang, L. Optical-resolution photoacoustic microscopy of oxygen saturation with nonlinear
compensation. Biomed. Opt. Express 2019, 10, 3061.

9. Okumura, K.; Matsumoto, J.; Iwata, Y.; Yoshida, K.; Yoneda, N.; Ogi, T.; Kitao, A.; Kozaka, K.; Koda, W.;
Kobayashi, S.; et al. Evaluation of renal oxygen saturation using photoacoustic imaging for the early
prediction of chronic renal function in a model of ischemia-induced acute kidney injury. PLoS ONE 2018, 13,
1–16. [CrossRef]

10. Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Photothermal therapy and photoacoustic imaging: Via nanotheranostics
in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053–2108. [CrossRef]

11. Yao, J.; Wang, L.V. Photoacoustic Microscopy. Laser Photon Rev. 2013, 7, 201200060. [CrossRef] [PubMed]
12. Chen, S.-L.; Xie, Z.; Paul, L.C.; Wang, X.; Guo, L.J. In vivo flow speed measurement of capillaries by

photoacoustic correlation spectroscopy. Opt. Lett. 2011, 36, 4017–4019. [CrossRef] [PubMed]
13. Wolf, S.; Arend, O.; Schulte, K.; Ittel, T.H.; Reim, M. Quantification of retinal capillary density and flow

velocity in patients with essential hypertension. Hypertension 1994, 23, 464–467. [CrossRef] [PubMed]
14. Chen, S.-L.; Ling, T.; Huang, S.-W.; Baac, W.H.; Guo, L.J. Photoacoustic correlation spectroscopy and its

application to low-speed flow measurement. Opt. Lett. 2010, 35, 1200–1202. [CrossRef] [PubMed]
15. Ning, B.; Kennedy, M.J.; Dixon, A.J.; Sun, N.; Cao, R.; Soetikno, B.T.; Chen, R.; Zhou, Q.; Shung, K.K.;

Hossack, J.A.; et al. Simultaneously photoacoustic microscopy of microvascular anatomy, oxygen saturation,
and blood flow. Opt. Lett. 2015, 40, 910–913. [CrossRef]

16. Cao, R.; Zhang, C.; Mitkin, V.V.; Lankford, M.F.; Li, J.; Zuo, Z.; Meyer, C.H.; Goyne, C.P.; Ahlers, S.T.;
Stone, J.R.; et al. Comprehensive Characterization of Cerebrovascular Dysfunction in Blast Traumatic Brain
Injury Using Photoacoustic Microscopy. J. Neurotrauma. 2019, 36, 1526–1534. [CrossRef]

17. Cao, R.; Li, J.; Ning, B.; Sun, N.; Wang, T.; Zuo, Z.; Hu, S. Functional and oxygen-metabolic photoacoustic
microscopy of the awake mouse brain. NeuroImage 2017, 150, 77–87. [CrossRef]

18. Linghu, L.; Wu, J.; Wu, Z.; Wang, X. Parallel computation of EM backscattering from large three-dimensional
sea surface with CUDA. Sensors 2018, 18, 3656. [CrossRef]

19. Yuan, J.; Xu, G.; Yu, Y.; Zhou, Y.; Carson, P.L.; Wang, X.; Liu, X. Real-time photoacoustic and ultrasound
dual-modality imaging system facilitated with graphics processing unit and code parallel optimization.
J. Biomed. Opt. 2013, 18, 086001. [CrossRef]

20. Peng, K.; He, L.; Zhu, Z.; Tang, J.; Xiao, J. Three-dimensional photoacoustic tomography based on
graphics-processing-unit-accelerated finite element method. Appl. Opt. 2013, 52, 8270–8279. [CrossRef]

http://dx.doi.org/10.1364/BOE.10.003447
http://www.ncbi.nlm.nih.gov/pubmed/31467789
http://dx.doi.org/10.1364/OL.43.002752
http://www.ncbi.nlm.nih.gov/pubmed/29905680
http://dx.doi.org/10.1038/s41598-017-13224-3
http://www.ncbi.nlm.nih.gov/pubmed/29042650
http://dx.doi.org/10.1126/science.1216210
http://www.ncbi.nlm.nih.gov/pubmed/22442475
http://dx.doi.org/10.1038/s41551-019-0376-5
http://www.ncbi.nlm.nih.gov/pubmed/30936431
http://dx.doi.org/10.1371/journal.pone.0206461
http://dx.doi.org/10.1039/C8CS00618K
http://dx.doi.org/10.1002/lpor.201200060
http://www.ncbi.nlm.nih.gov/pubmed/24416085
http://dx.doi.org/10.1364/OL.36.004017
http://www.ncbi.nlm.nih.gov/pubmed/22002371
http://dx.doi.org/10.1161/01.HYP.23.4.464
http://www.ncbi.nlm.nih.gov/pubmed/8144216
http://dx.doi.org/10.1364/OL.35.001200
http://www.ncbi.nlm.nih.gov/pubmed/20410966
http://dx.doi.org/10.1364/OL.40.000910
http://dx.doi.org/10.1089/neu.2018.6062
http://dx.doi.org/10.1016/j.neuroimage.2017.01.049
http://dx.doi.org/10.3390/s18113656
http://dx.doi.org/10.1117/1.JBO.18.8.086001
http://dx.doi.org/10.1364/AO.52.008270

Sensors 2019, 19, 4000 16 of 16

21. Shan, T.; Qi, J.; Jiang, M.; Jiang, H. GPU-based acceleration and mesh optimization of
finite-element-method-based quantitative photoacoustic tomography: A step towards clinical applications.
Appl. Opt. 2017, 56, 4426–4432. [CrossRef] [PubMed]

22. Li, M.; Liu, C.; Gong, X.; Zheng, R.; Bai, Y.; Xing, M.; Du, X.; Liu, X.; Zeng, J.; Lin, R.; et al. Linear
Array-Based Real-Time Photoacoustic Imaging System with a Compact Coaxial Excitation Handheld Probe
for Noninvasive Sentinel Lymph Node Mapping. Biomed. Opt. Express 2018, 9, 1408–1422. [CrossRef]
[PubMed]

23. Rostami, S.R.M.; Mozaffarzadeh, M.; Ghaffari-Miab, M.; Hariri, A.; Jokerst, J. GPU-accelerated Double-Stage
Delay-Multiply-and-Sum Algorithm for Fast Photoacoustic Tomography Using LED Excitation and Linear
Arrays. Ultrason. Imaging 2019, 41, 301–316. [CrossRef] [PubMed]

24. Kang, H.; Lee, S.-W.; Lee, E.-S.; Kim, S.-H.; Lee, T.G. Real-time GPU-accelerated processing and volumetric
display for wide-field laser-scanning optical-resolution photoacoustic microscopy. Biomed. Opt. Express 2015,
6, 249785. [CrossRef] [PubMed]

25. Kang, H.; Lee, S.-W.; Park, S.-M.; Cho, S.-W.; Lee, J.Y.; Kim, C.-S.; Lee, T.G. Real-time functional
optical-resolution photoacoustic microscopy using high-speed alternating illumination at 532 and 1064 nm.
J. Biophotonics 2018, 11, 1–9. [CrossRef] [PubMed]

26. Sylwestrzak, M.; Szlag, D.; Marchand, P.J.; Kumar, A.S.; Lasser, T. Massively parallel data processing for
quantitative tota;l flow imaging with optical coherence microscopy and tomography. Comput. Phys. Commun.
2017, 217, 128–137. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1364/AO.56.004426
http://www.ncbi.nlm.nih.gov/pubmed/29047873
http://dx.doi.org/10.1364/BOE.9.001408
http://www.ncbi.nlm.nih.gov/pubmed/29675292
http://dx.doi.org/10.1177/0161734619862488
http://www.ncbi.nlm.nih.gov/pubmed/31322057
http://dx.doi.org/10.1364/BOE.6.004650
http://www.ncbi.nlm.nih.gov/pubmed/26713184
http://dx.doi.org/10.1002/jbio.201700210
http://www.ncbi.nlm.nih.gov/pubmed/28945324
http://dx.doi.org/10.1016/j.cpc.2017.03.008
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Blood Flow Measurement Principle
	Imaging System
	Measurement Principle
	Animal Experiment

	Algorithm Analysis and Parallel Design
	Algorithm Analysis
	Optimization of Correlation Curve Calculation
	Parallel Task Setup

	GPU Implementation and optimization
	Software and Hardware Platform
	Initial Implementation
	Optimized Implementation

	Performance Test
	Discussion
	Conclusions
	References

