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Understanding the ecological patterns of rhizosphere microbial communities is critical
for propelling sustainable agriculture and managing ecosystem functions by exploiting
microorganisms. However, this knowledge is still unclear, especially under host-
associated large-scale and regarding the comparison between bacteria and fungi.
We examined community assembly processes and community characters including
environmental thresholds and co-occurrence patterns across the cultivatable area
of Panax notoginseng for bacteria and fungi. Both are vital members of the
rhizosphere but differ considerably in their life history and dispersal potentiality.
Edaphic factors drove the parallel variations of bacterial and fungal communities.
Although bacterial and fungal communities exhibited similar biogeographic patterns,
the assembly of fungi was more driven by dispersal limitation than selection
compared with bacteria. This finding supported the ‘size-dispersal’ hypothesis. pH
and total nitrogen respectively mediated the relative importance of deterministic and
stochastic processes in shaping bacterial and fungal communities. In addition, fungal
communities exhibited potentially broader environmental thresholds and more modular
co-occurrence patterns than bacteria (bacteria: 0.67; fungi: 0.78). These results
emphasized the importance of dispersal limitation in structuring rhizosphere microbiota
and shaping community features of ecologically distinct microorganisms. This study
provides insights into the improved prediction and management of the key functions
of rhizosphere microbiota.

Keywords: rhizosphere microbiota, community assembly, environmental threshold, co-occurrence network,
Panax notoginseng
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INTRODUCTION

Plant and associated microbes are widely known as holobionts
(Bordenstein and Theis, 2015); rhizosphere microbial
communities play crucial roles in growth, health, and evolution
of their host plant, as well as the biogeochemical cycling
(Brunel et al., 2020). Bacteria and fungi, which can interact
with plant negatively, positively, or neutrally, are both pivotal
components of the rhizosphere biosphere (Huang et al., 2014;
Tedersoo et al., 2014). Extensive studies have revealed that
various factors drove the dynamics of rhizosphere microbial
community, such as root exudates, edaphic factors, host
genotype, and growth stage (Sasse et al., 2018; Zhang et al.,
2018e). However, these studies mostly focused on the selective
effects at the local scale. The macroecological patterns and
community features, such as environmental responses and
co-occurrence patterns of rhizosphere microbial communities
at large spatial scale, especially with regard to the comparison
between bacteria and fungi, are still poorly understood (Brunel
et al., 2020). These patterns and features are essential to fully
appreciate the formation of plant-microbe holobionts and to
promote sustainable agriculture by manipulating microbes
(Dini-Andreote and Raaijmakers, 2018).

From the metacommunity perspective, microbial community
assembly is a comprehensive result of deterministic and
stochastic processes, including selection, dispersal limitation
(working in concert with drift), homogenizing dispersal, and
drift (acting alone) (Leibold et al., 2004; Stegen et al., 2013;
Vellend, 2010). At a large spatial scale, homogenizing dispersal
and drift may play a small role in community assembly (Wu
et al., 2018). Selection and dispersal limitation are therefore
the main processes governing microbial community assembly
across a large space. Despite that both processes play vital roles
in establishing and maintaining local community, their relative
importance differs in diverse habitats and organisms (Jiao et al.,
2020; Stegen et al., 2012; Wu et al., 2018; Zhang et al., 2018a).
Two hypotheses, namely, the “size-dispersal” and “size-plasticity”
hypotheses, emphasize the importance of dispersal ability and
metabolic plasticity in determining the community assembly,
respectively (Farjalla et al., 2012). Bacteria tend to have higher
metabolic flexibility than fungi, and the body size and propagule
size of bacteria are generally smaller (Powell et al., 2015). Thus,
according to the “size-dispersal” hypothesis, bacterial community
assembly is expected to be more governed by selection than
dispersal limitation because of their higher dispersal potentiality
compared with fungi. In the “size-plasticity” hypothesis, however,
the relative strength of selection in bacterial community assembly
is likely weaker in comparison with that in fungal community
assembly (Farjalla et al., 2012).

The response threshold of microorganisms to environment
is an important indicator for predicting their abundance
and distribution across complex environment gradients (van
der Linde et al., 2018). Nevertheless, research on change
points in environment gradients of rhizosphere microbial taxa,
especially in consideration of the abundance, occurrence, and
directionality of their responses, is still lacking (van der Linde
et al., 2018). In view of the potentially higher environmental

adaptation of bacteria, bacterial community may exhibit broader
environmental thresholds compared with fungi (Jiao and Lu,
2020a). Besides being commonly affected by environmental
conditions, microorganisms also link with each other universally
through various types of interactions, such as mutualism,
competition, commensalism, and amenalism (Faust and Raes,
2012). These interactions can impact the chemical context of
the rhizosphere and thus have strong effects on root growth
and health (Finkel et al., 2020). Network-based co-occurrence
pattern analysis has recently been used in various habitats and
has provided new insights into microbial links with one another
(Lima-Mendez et al., 2015; Jiao et al., 2016; Ma et al., 2020).
Similar to social and biological networks, modular structure (i.e.,
networks can be divided into tightly intra-linked clusters) is
prevalent in microbial graphs (van der Heijden and Hartmann,
2016), thereby potentially representing the clustering of taxa
with overlapping niche preference (Lima-Mendez et al., 2015).
Modules may provide key ecological and biological functions
as a unit (Wang et al., 2017). Revealing the modular structure
and the underlying mechanisms shaping the modularity can
thus produce valuable insights into the complex polymicrobial
interactions and the potential function provided by certain
clusters (Layeghifard et al., 2017).

Given that the ecological process and co-occurrence patterns
are inherently scale-dependent (Leibold et al., 2004; Galiana
et al., 2018), plant cultivatable area represents an ideal spatial
scale, because it can capture complex environment gradients
and spatial structures, across which rhizosphere bacterial and
fungal communities are established (Soberon and Nakamura,
2009). We carried out a large-scale survey on bacterial and
fungal communities in the rhizosphere of cultivated Panax
notoginseng (Burkill) F. H. Chen across the Yunnan and
Guangxi Provinces in southwestern China. The sampling area
almost covers the cultivatable area of the plant. P. notoginseng,
known as Sanqi in China, is a famous and precious perennial
medicinal plant belonging to Araliaceae ginseng species with high
medicinal and economic values (Jiang et al., 2020). The root of
P. notoginseng is widely used in various prescriptions due to its
major bioactive compounds, ginsenosides and notoginsenosides.
Ginsenosides and notoginsenosides are steroid-like compounds
with diverse pharmacological properties, such as protecting
cardiovascular system, immunoregulation, anti-atherosclerotic
activity, anti-tumor activity, antioxidant activity, and hemostatic
activity (Wang et al., 2016). The annual output values of
P. notoginseng has exceeded 10 billion dollars (Fan et al., 2020).
Like many valuable medicinal plants, however, P. notoginseng is
facing contradictions between increasing market requirements
and limited resource caused by cultivation difficulty (Canter
et al., 2005). Specifically, the arable area of P. notoginseng
is restricted to the mountain areas in southwestern China
due to its specific ecological requirements (Guo et al., 2010).
Besides, the cultivation of P. notoginseng suffers from several
replanting diseases which decrease the production quality and
yields and further restrict the development of P. notoginseng
industry (Fan et al., 2020). A systematical understanding of
the ecology of rhizosphere microbiota will provide insights into
the alleviation of the cultivating dilemma of medicinal plants
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(Soberon and Peterson, 2005). In the present study, we aimed to
do the following: (i) evaluate the relative contribution of selection
and dispersal limitation underlying the community assembly of
bacteria and fungi and corresponding mediators; (ii) identify
the environmental thresholds of bacterial and fungal assemblies;
and (iii) estimate the co-occurrence patterns of bacterial and
fungal communities.

MATERIALS AND METHODS

Study Area and Sampling
Sampling was conducted in October 2017, three years after
P. notoginseng had grown, but before harvest. All fields were
managed according to the Good Agricultural Practice (GAP)
(Zhang et al., 2010). In brief, virgin soil was selected to cultivate
P. notoginseng. Before planting, 37.5 ton/ha compost was applied
to soil as base fertilizer. Compound fertilizer was applied twice
a year as topdressing before florescence and wintering period,
respectively; the proportion of fertilizers was dependent on
the growth year of P. notoginseng. All fields were covered
with shade trellises as strong light could inhibit the growth of
P. notoginseng. The luminousness of shade trellises was modified
from 10% to 20% as plant growing. The weeds in fields were
pulled out manually. Compound pesticides that contain broad-
spectrum active ingredients including carbendazim and imides
were sprayed mainly in April and May of each year to prevent
plant diseases like root rot and blackspot.

Rhizosphere soil samples were collected from 26 sites with
the median value of inter-site distance of 208 km. These sites
ranged from 22.04◦N to 25.71◦N and 100.11◦E to 106.51◦E and
covered the main arable area of P. notoginseng (Figure 1A)
(GBIF., 2019; Qin et al., 2016). Ten healthy plants were collected
in each of three 1.4 × 8.0 m2 adjacent plots at each site,
and corresponding rhizosphere soil samples were combined
to generate one soil sample for further physiochemical and
molecular analysis. Specifically, the plant root was dug out using
a sterilized shovel, and the soil loosely attached to the root was
removed. Then the soil tightly attached to the root was collected
using a sterile ziplock bag (Shi et al., 2019). Soil was sieved
(< 2 mm) and homogenized after visible leaf and root residues
being removed. In total, 78 soil samples were collected. The
soil samples were transported to laboratory on ice. A subset
of rhizosphere soil samples was stored at −80◦C until DNA
extraction while others were analyzed for edaphic factors.

Eighteen edaphic properties were measured according to
previous studies (Cao et al., 2017; Shi et al., 2018; Xu et al.,
2020). Soil pH was measured using a pH monitor (fresh soil water
ratio 1:5) (Shi et al., 2018). Soil organic matter was determined
by potassium dichromate–sulfate colorimetric method. Total
nitrogen (TN) was determined by the Kjeldahl method (Xu et al.,
2020). Through HF and HClO4 digestion, Total phosphate (TP)
and total potassium (TK) were measured using molybdenum
blue method and flame photometry, respectively (Shi et al.,
2018). Available nitrogen (AN), available phosphorus (AP), and
available potassium (AK) were subjected to the alkali diffusion
method, double acid method and flame photometry respectively

(Xu et al., 2020). Content of chloridion (Cl) was measured using
silver nitrate titration method. Available boron (AB) and available
sulfur (AS) were determined using curcumin colorimetry and
barium sulfate turbidimetry, respectively (Cao et al., 2017).
Exchangeable calcium (ECa), exchangeable magnesium (EMg),
available copper (ACu), available zinc (AZn), available iron
(AFe), and available manganese (AMn) were measured by atomic
absorption spectrophotometry (Xu et al., 2020). ECa and EMg
were extracted using ammonium acetate while others were
extracted by DTPA. Soil conductivity (SC) was determined
using conductivity monitor (dry soil water ratio 1:5) (Shi et al.,
2018). Mean annual temperature (MAT) and mean annual
precipitation (MAP) of all sampling sites were obtained from the
Worldclim database1.

Amplicon Analysis
Soil microbial communities were profiled using high-throughput
sequencing of marker genes. Specifically, genomic DNA was
extracted from soil samples using the FastDNA SPIN Kit for
soil (MoBio Laboratories, Inc., United States). Polymerase chain
reaction (PCR) assays were conducted by using the 27F/338R
and ITS1F/ITS2R primer pairs for bacteria and fungi, respectively
(Stegen et al., 2013; Nilsson et al., 2019a). Sequencing was
performed on the Illumina MiSeq PE 250 platform (Shanghai
Biozeron Co., Ltd., China). After quality filtering and the removal
of chimeric sequences, the obtained sequences were clustered
into operational taxonomic units (OTUs) at the 97% similarity
threshold (Edgar et al., 2011; Bolyen et al., 2019). OTUs with less
than 10 reads in all samples were removed to reduce potential
PCR/sequencing error (Toju et al., 2016). Taxonomy was then
assigned to each OTU using the RDP classifier trained on
the SILVA database (release 132) and UNITE database (release
7.1) for bacteria and fungi (Pruesse et al., 2007; Wang et al.,
2007; Nilsson et al., 2019b). The OTU tables were resampled to
18592 and 25645 sequences per sample for bacteria and fungi,
respectively, to make the data sets (bacteria or fungi) to the same
sampling effort for diversity comparisons. Aligned sequences
of bacterial representative OTUs were used to construct a
maximum-likelihood tree in FastTree (Tripathi et al., 2018).
Given the unreliability of fungal ITS region in multiple sequence
alignment, the phylogenetic tree of fungi was constructed based
on the ghost-tree (Silva 132) following Fouquier et al. (2016)2.

Statistical Analysis
α-Diversities of Bacterial and Fungal Communities
Shannon index and Chao1 index were calculated in the “vegan”
package to estimate the α-diversities of bacterial and fungal
communities (Jari Oksanen et al., 2019). The correlations
between α-diversity indices and environmental variables were
calculated using Pearson correlation analysis. Linear least squares
regression was performed to evaluate the relationships between
α-diversity indices of bacteria and fungi.

1www.worldclim.org
2https://github.com/JTFouquier/ghost-tree-trees
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FIGURE 1 | Sampling map and α-diversities of rhizosphere bacterial and fungal communities. (A) The location of sampling sites. Each cross represents a sampling
site. The x and y axes represent longitude and latitude, respectively. (B) The Shannon and Chao1 indices of bacterial (red) and fungal (blue) communities. (C) The
Pearson correlation coefficients between α-diversity indices of bacterial and fungal communities and environmental variables. Red and blue cells represent positive
and negative correlations, respectively. (D) The linear relationships between the α-diversity indices of bacterial and fungal communities. *, P < 0.05; **, P < 0.01; ***,
P < 0.001. The abbreviations of variables accord to the section “MATERIALS AND METHODS.”

Community Variations and Environmental Thresholds
Variation partition analyses (VPA) were performed to quantify
the effects on composition variations of bacterial and fungal
communities of three partitions, namely, edaphic chemistry,
climatic variables, and spatial factors (van der Linde et al., 2018).
Community variation was represented by pair-wise Bray-Curtis
dissimilarities. Elevation, MAT, and MAP were grouped into
climatic factors, whereas spatial variables were extracted based on
principal coordinates analysis of the neighbor matrices (PCNMs),
which explicitly allowed the introduction of a spatial relationship
into statistical models; PCNMs were obtained using the pcnm
function in the “vegan” package (Dray et al., 2006). Variables
in each partition were selected through forward-selection

procedures with distance-based redundancy analysis based on the
criteria of adjusted R2 and P < 0.05 using ordiR2step function in
“vegan” package (Jari Oksanen et al., 2019).

Based on the results of VPA, edaphic chemistry was
the most important environmental driving forces for the
variations of bacterial and fungal communities. To explore
the main edaphic factors determining community composition,
we performed non-metric multi-dimensional (NMDS) using
metaMDS function in the “vegan” package. Environmental
factors were then fitted to the ordination with envfit function
in the “vegan” package (van der Linde et al., 2018). Factors
with R2 > 0.2 and P < 0.01 were selected as key variables for
each model. Variable clustering was used to assess collinearity,
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and variables with absolute spearman ρ > 0.7 were discarded
(Supplementary Figure 2). We further detected the community
thresholds of bacterial and fungal communities for key variables
using threshold indicator taxa analysis in the “TITAN2” package
(Baker and King, 2010). Specifically, the sum of standardized
indicator value scores (z-scores) of each OTU was obtained
to generate the lower and upper community-level threshold
for each variable.

Multivariate regression and variance decomposition were
conducted to explore important predictors of abundance patterns
for dominant taxonomic groups and fungal functional guilds.
Fungal functional guilds were annotated using the python
script FUNGuild.py (Nguyen et al., 2016). Regression models
were selected based on adjusted R2 and Schwartz’s information
criterion (BIC) using regsubsets function in the “leaps” package
(Lumley, 2020).

The Estimation of Community Assembly Processes
Distance-decay relationships (DDRs) were quantified as the
slopes of ordinary least-squares regressions between community
similarities (1 – Bray-Curtis dissimilarities) and geographic
distance. To clarify the relative importance of selection and
dispersal limitation in bacterial and fungal communities, we
used the above-described variation partitioning and null model
analysis. These methods were complementary to one another
(Zhou and Ning, 2017). For variation partition analysis, the
strength of selection was represented by pure environmental
variation without a spatial component, i.e., the effects of soil
and climate partitions after excluding space partition. Pure
spatial variation without other components represented the
effect of dispersal limitation. Then, the ratio of selection to
dispersal limitation effect (SDER) was calculated for cross-system
comparison (Wu et al., 2018).

Null model analysis was performed based on the framework
of Stegen to divide community pairs into the underlying
driving forces of selection (variable or homogeneous), dispersal
limitation, homogenizing dispersal, and undominated (Stegen
et al., 2015). This framework integrated phylogenetic and
taxonomic variations using null model-based β-diversity metrics,
i.e., β-nearest taxon index (βNTI) and Raup-Crick based on Bray-
Curtis (RCBray). Significant deviation of phylogenetic diversity
from null expectation (| βNTI| > 2) represented the effect
of selection, in which βNTI < −2 indicates homogeneous
selection, whereas βNTI > 2 indicated variable selection. RCBray
was further used to classify the remaining community pairs
with | βNTI| < 2. Specifically, the effect size of dispersal
limitation was quantified as the fractions of community pairs
with RCBray > 0.95, whereas the percentage of RCBray < −0.95
was identified as the influence of homogenizing dispersal. As
the phylogenetic turnover in null model analysis was quantified
among closest relatives, we tested phylogenetic signals for both
communities before analysis, in accordance with a previous
description (Tripathi et al., 2018; Supplementary Figure 3). To
make the above two frameworks comparable, we assessed the
SDER using the fractions of pairwise communities dominated by
selection divided by the percentage of community pairs governed
by dispersal limitation.

To verify the robustness of fungal phylogeny described
above in comparing the SDER between bacteria and fungi,
we further constructed a phylogeny for fungi using the perl
script taxonomy_to_tree.pl (Tedersoo et al., 2018) and calculated
the community assembly processes and SDER using Stegen’s
null model based on this new tree. We also estimate the
contribution of stochasticity to the assembly of bacterial and
fungal communities based on only taxonomic null model (i.e.,
RCBray) (Chase et al., 2011; Stegen et al., 2013; Gao et al., 2020).

Sloan’s neutral model was used to estimate the potential
contribution of neutral processes to community assembly
by fitting the frequency with which microbial taxa occur
in a set of local communities and their abundance in the
metacommunity (Burns et al., 2016). The single free parameter in
this neutral model was the migration rate m, which represented
the probability that a random loss of an individual in a
local community would be replaced by dispersal from the
metacommunity, and therefore, can be used to evaluate dispersal
limitation. Lower m-values indicated that microbial assemblies
are more limited by dispersal (Burns et al., 2016). The overall
fit of the neutral model was calculated by comparing the sum
of squares of residuals, SSeer, with the total sum of squares,
SStotal: generalized R2 = 1 – SSeer/SStotal. To estimate whether
the performance of neutral model was better than random
sampling from source metacommunity, we compared the neutral
with binomial models based on Akaike information criterion.
Sampling from a binomial distribution represented that local
communities are random subsets of the metacommunity in the
absence of dispersal limitations and drift (Jiao et al., 2020). The R
code here was used according to Burns et al. (2016).

We also estimated the niche breadth and dispersal ability,
which were traits of great concern, because they influence
the relative importance of selection versus dispersal limitation.
Niche breadth represented potential metabolic flexibility and was
computed using Levin’s niche breadth index (B) (Pandit et al.,
2009). Dispersal ability at community level (D) was calculated in
a relative sense using the average of pairwise shared proportion
of sequence numbers of each OTU (Wu et al., 2018).

Finally, to explore the main factors mediating the assembly
process of bacterial and fungal communities, we tested
the variation in community assembly process along the
environmental gradients using Stegen’s framework (Stegen
et al., 2015). We used the Mantel test to compare all pairwise
comparisons of βNTI values with the Euclidean distance matrices
of each variable. A partial Mantel test was then performed to
estimate the relationship between phylogenetic variations and
main factors after controlling for geographical distance and
other variables. The correlation was visualized using Mantel
correlograms. These procedures were performed by means
of mantel and mgram functions in the “ecodist” package
(Goslee and Urban, 2007).

Co-occurrence Patterns Inference
Before network inference, rare OTUs with relative abundance of
< 0.01% were removed to mitigate zero inflation. We used a
conservative method to construct co-occurrence networks with
seeing bacteria and fungi as a whole (Ma et al., 2020). Spearman
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correlation and Bray-Curtis dissimilarity measures were selected
to infer interactions among taxa. The P-values for each measure
were computed as the probability of the null value obtained
from permutation under a Gaussian curve, which is generated
from the mean and standard deviation of bootstrap distributions.
For Spearman correlation, a renormalization step was conducted
after each permutation to ease the compositionality problem.
The P-values of the two measures were then combined based
on Brown’s methods (Poole et al., 2016) and corrected using
BH method (Benjamini and Hochberg, 1995). After filtering
out links with the adjusted P-value of > 0.05, the Spearman
correlation coefficient threshold (0.74) was determined based
on the random matrix theory (Deng et al., 2012). Bacterial and
fungal metacommunity networks were extracted from the whole
network using subgraph function in “igraph” package (Csardi and
Nepusz, 2006). Modules in networks were detected using fast
greedy clustering method (Clauset et al., 2004), and modularity
was calculated using the modularity function in the “igraph”
package. The first principal component (PC1) of dominant
modules (also known as eigengene) was calculated to determine
the potential niche preference. Networks were visualized using
the Gephi platform (Bastian et al., 2009).

Then, we generated local networks for each plot according
to the nodes retained in corresponding samples. Network
level topological features, including graph density, clustering
coefficient, centrality measures, modularity, graph diameter,
average shortest length, and number of nodes and edges,
were calculated in “igraph” packages. After removing features
with strong collinearity, we generated pairwise Euclidean
distance among samples using standardized values. The spatial
variation rate of co-occurrence patterns was quantified using
the ordinary least-square regression of Euclidean distance of
network to geographic distances. Multiple regression on distance
matrices (MRMs) were then used to determine key factors
potentially affecting co-occurrence patterns using MRM function
in “ecodist” package (Goslee and Urban, 2007). All standardized
Euclidean distances of variables without strong collinearity
were introduced into the first MRM model. Then, significant
(P < 0.05) predictors were retained in the second model
to obtain results.

All statistical analyses were conducted in R (v3.5.3) (Team,
2019), using "vegan" (Jari Oksanen et al., 2019), "TITAN2"
(Baker and King, 2010), "leaps" (Lumley, 2020), "relaimpo"
(Grömping, 2006), "MASS" (Venables and Ripley, 2013), "Hmisc"
(FE, 2020), "igraph" (Csardi and Nepusz, 2006), "WGCNA"
(Langfelder and Horvath, 2008), "ggplot2" (Wickham, 2016),
"picante" (Kembel et al., 2010), "minpack.lm" (Elzhov et al.,
2016), and "ecodist" (Goslee and Urban, 2007) packages. In
analyses sensitive to data normality, variables except pH were
logarithmically transformed as needed.

Data Availability
The raw sequencing data are publicly available in the NCBI
Sequence Read Archive (SRA) under the Bioproject number
PRJNA559079. R codes on the statistical analyses are available at
https://github.com/githubzgz/Panax.notoginseng.

RESULTS

Diversities of Rhizosphere Bacterial and
Fungal Communities
After filtering out OTUs with less than 10 reads in all samples,
a total of 4,931,855 and 4,658,981 reads were retained for
bacterial and fungal communities, respectively. The number of
bacterial sequences per sample ranged from 18,592 to 154,413,
while the number of fungal sequences in each sample was
from 25,645 to 71,702. After subsampling to the minimum
number of reads per sample (bacteria: 18592; fungi: 25645),
we obtained 14,447 and 5,988 bacterial and fungal OTUs,
respectively. Although individual samples of bacteria and fungi
did not show a full rarefaction saturation (Supplementary
Figure 1A), the rarefaction curve of the pooled data (78 samples)
of two domains were saturated, suggesting that we had good
coverage of the bacterial and fungal richness at global level
(Supplementary Figure 1B).

The α-diversities of bacterial communities were far higher
than those of fungal communities as indicated by the Shannon
index and Chao1 index (Figure 1B). Pearson correlation analysis
showed that the two α-diversity indices of bacterial communities
were significantly correlated with pH (Shannon, r = 0.26,
P < 0.05; Chao1, r = 0.23, P < 0.05) and EMg (Shannon,
r = 0.30, P < 0.01; Chao1, r = 0.30, P < 0.01); while the
α-diversity indices of fungal communities exhibited significant
correlations with EMg (Shannon, r = 0.29, P < 0.01; Chao1,
r = 0.33, P < 0.01) and SC (Shannon, r = 0.24, P < 0.05;
Chao1, r = 0.24, P < 0.05) (Figure 1C). Besides, the linear
least-square regression indicated that significant and positive
linear relationships exhibited between the α-diversity indices of
bacterial and fungal communities (Shannon, R2 = 0.13, P< 0.001;
Chao1, R2 = 0.29, P < 0.001). These results suggested that
similar environmental variables might drive the covariation of the
α-diversities of bacterial and fungal communities.

The Key Driving Forces of Community
Variations and Environmental Thresholds
Forward-selected models based on Bray-Curtis dissimilarities
explained 59% and 55% of the variance in β-diversities of
bacterial and fungal communities, respectively (Figure 2A and
Supplementary Table 1). In the three parts, soil explained
maximum variance in the bacterial and fungal models (bacteria:
45%; fungi: 38%), followed by space (bacteria: 30%; fungi: 27%),
and climate (bacteria: 18%; fungi: 14%). In addition, significant
co-variation existed in the pair-wise similarities of bacterial and
fungal communities (Mantel r = 0.65, P < 0.001), although the
between-sample similarities in fungal communities were much
lower than those in bacterial communities (Figure 2B). Global
NMDS were performed to visualize the variations in community
composition (Figure 2C). After fitting environmental variables to
the ordinations, we identified six key edaphic factors, as follows:
pH, AFe, AP, and TN for both bacteria and fungi; AK for bacteria
only; and AMn for fungi only (Figure 2C and Supplementary
Table 2). Soil pH and AFe were the most influential variables for
bacteria and fungi separately. The influences of environmental
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FIGURE 2 | Composition variations and environmental thresholds of rhizosphere bacterial and fungal communities. (A) Variation-partitioning Venn diagram showing
the proportions of individual and combined contributions of edaphic, climatic, and spatial factors. Values in brackets indicate the total proportion of variance
explained by corresponding partition. (B) The relationship between pair-wise similarities of bacterial and fungal communities based on Bray-Curtis index. Area graphs
show the density distribution of bacterial and fungal community similarities. Dot plots represents the correlation between bacterial and fungal community similarities.
(C) Global non-metric multidimensional scaling ordination of community composition and fitted key variables of bacteria and fungi. (D) Cumulated community
thresholds for key variables of bacteria and fungi. Left axes and the transparent area graph indicate the sum of filtered z– and z + at each change points while right
axes and non-transparent area graph represent the density of change points. Variables are log transformed for better visualization as needed. The abbreviations of
variables accord to the section “MATERIALS AND METHODS.”

factors on fungi were more uniform than those on bacterial
communities (Figure 2C and Supplementary Table 2).

For the four key edaphic factors shared by bacterial and
fungal communities, environmental thresholds were identified
through cumulating decreasing (z−) and increasing (z+) change
points, which were pure and reliable (Figure 2D). For pH, we
detected that the sum(z−) peaked at 5.53 for bacteria and 5.33

for fungi; the sum(z−) peaked at 6.18 for both. For AFe, we
found peaks at 50.48 and 143.19 mg kg−1 for sum(z−) and
sum(z +) in bacterial communities, whereas we found peaks
at 48.09 and 222.01 mg kg−1 for sum(z−) and sum(z +)
in fungal communities, respectively. For AP, we detected the
community-level decreasing threshold at 27.73 mg kg−1 and the
increasing threshold at 29.93 mg kg−1 for bacteria. The sum(z−)
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and sum(z+) peaks were detected at 22.33 and 55.79 mg kg−1 for
fungi. Indicator taxa showed a clear threshold of change for TN
in fungal communities, with a 0.73 g kg−1 z− peak and a distinct
2.19 g kg−1 z + peak. In bacterial communities, the sum(z +)
showed an obvious peak at 2.19 g kg−1, and the sum(z−) had a
weaker peak at 0.75 g kg−1. The density distribution around the
change points of fungal community were more dispersed relative
to those of the bacterial community (Figure 2D). At the phylum
level of bacteria, the abundance of OTU which responded to key
factors, especially pH, TN, and AFe, was evenly distributed except
for Cyanobacteria, which was dominated by taxa that showed
negative response to TN and AFe (Supplementary Figure 4A).
For fungal phylum, OTUs which responded positively to pH
and AFe and negatively to TN accounted for the largest
proportion in Ascomycota, Basidiomycota, and Mucoromycota,
respectively (Supplementary Figure 4B). Plant pathogen showed
different response patterns compared with saprotroph and
symbiotroph. The plant pathogen was dominated by OTUs’
positive response to pH, whereas the latter two were both
dominated by OTUs’ negative response to TN (Supplementary
Figure 4C). These results showed that the key edaphic factors
driving bacterial and fungal community variations are similar,
and fungal community exhibited broader thresholds for these
factors than the bacterial community.

Multiple regression and variance decomposition analysis were
used to identify the main predictors for dominant bacterial
and fungal phyla and fungal functional guilds to obtain a
more comprehensive understanding of microbial distribution
(Supplementary Figure 5). AFe, MAT, MAP, AP, and pH were
the variables most frequently identified to predict abundance
patterns of bacterial and fungal phyla. For example, AFe was the
best predictor for the distribution of Acidobacteria, Chloroflexi,
Cyanobacteria, Verrucomicrobia, and Ascomycota. Meanwhile,
pH and MAT were the most important variables related to
the relative abundance of Rokubacteria and Gemmatimonadetes,
respectively. Given the abundance distribution of different fungi
guilds, the distributions of plant pathogen and saprotroph were
best predicted by pH (Supplementary Figure 5).

Relative Importance of Ecological
Processes in Shaping Microbial
Communities
We evaluated the DDRs for bacterial and fungal communities
in the rhizosphere across the cultivatable area of P. notoginseng,
which spanned a maximum geographic distance of more
than 650 km (Figure 1A). Significant DDRs were found
for bacteria (R2 = 0.29, P < 0.001) and fungi (R2 = 0.27,
P < 0.001) (Figure 3A). The slopes of bacterial (−0.0346)
and fungal (−0.0335) communities were similar, indicating a
semblable decay relationship of bacterial and fungal community
similarities (Figure 3A).

Variation partition analysis based on Bray-Curtis
dissimilarities (Figure 2A) and Stegen’s null model analyses
both revealed that the SDER of bacterial communities (VPA:
3.22, Null: 13.42) was higher than that of fungal communities
(VPA: 2.25, Null: 0.15), suggesting that the relative importance

of selection was higher in shaping bacterial communities
(Figure 3B). The negligible proportions of homogenizing
dispersal estimated by Stegen’s null model analysis confirmed
its minor role in microbial community assembly at a large-
scale space (Supplementary Figures 6A,B). Similar results
were obtained when fungal phylogeny was constructed using
taxonomy_to_tree.pl (Supplementary Figures 6C,D). The
RCBray-based estimation also showed that the influences of
stochastic process on bacterial community assembly (5.89%)
was lower than that on fungal community assembly (12.79%)
(Supplementary Figure 7). The neutral models of bacterial and
fungal communities both outperformed a binomial distribution
model, thereby suggesting the importance of dispersal limitations
(Table 1). The estimated migration rate of bacterial communities
was much higher than that of fungal communities, which also
supported the results of SDER (Table 1). In addition, bacterial
communities exhibited significantly broader community niche
breadths (Bcom) (P < 0.001, Figure 3C) and stronger dispersal
abilities (D) (P < 0.001, Figure 3D) in comparison with fungal
communities. These results indicated that fungal community
assembly was more driven by dispersal limitation relative to
selection compared with bacterial community assembly.

The correlation between βNTI and environmental variables
was then tested to assess the changes in the relative contributions
of stochastic and deterministic processes. The results of the
Mantel test showed that MAP, pH, OM, TN, AN, AK,
AFe, and Cl were significantly related to bacterial phylogeny
variation (P < 0.05), whereas TN, ACu, and AMn were
remarkable predictors of fungal βNTI (Supplementary Table 3).
After controlling for geographic distance and other measured
environmental variables, pH was determined to be the best
predictor with the highest correlation with bacterial βNTI
(r = −0.23, P < 0.001) and TN remaining significant in the
fungal test (r = −0.18, P < 0.001) (Supplementary Table 4).
Mantel correlograms showed that βNTI of bacteria and fungi
were positively related to the Euclidean distance of pH and
TN at distant distance class, respectively (Figure 4A). Samples
were divided into sub-groups based on the above two variables
and correlated with βNTI. With increasing pH from acid
to mildly alkaline, the relative importance of the stochastic
process in bacterial assembly first decreased slightly and then
increased obviously (Figure 4B). Along with the increasing
gradients of TN, the relative influence of deterministic fungal
assembly decreased slightly (Figure 4B). These results showed
that pH and TN are the main factors mediating the balance in
ecological processes underlying bacterial and fungal community
assembly, respectively.

Co-occurrence Pattern of Bacterial and
Fungal Communities at Regional and
Local Levels
The cross-domain and bacterial and fungal metacommunity
co-occurrence networks captured 5798, 3972, and 1309 links
among 1421, 905, and 492 nodes, respectively. All three networks
followed roughly scale-free degree distribution (Supplementary
Figures 8A,B). Positive covariations dominated rhizosphere
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FIGURE 3 | Biogeographic patterns and ecological processes of bacterial and fungal communities. (A) Distance-decay relationships showing Bray-Curtis similarities
of bacterial and fungal communities against spatial distance among sampling sites. Solid lines denote the fitness of ordinary least-squares regressions.
(B) Selection/dispersal limitation ratio of bacterial and fungal communities estimated by variation partitioning analyses and null model analyses. (C) Violin plots
illustrating mean habitat niche breadth from all OTUs in each sample (Bcom) of bacterial versus fungal communities. Black dot represents the mean value of Bcom
and error bars indicate standard deviation. (D) Violin plots showing mean shared proportions (%) of sequences of bacterial and fungal communities, which
represents the potential dispersal abilities (D). The significance of difference between bacteria and fungi were determined by Wilcoxon rank sum test. ***, P < 0.001.

metacommunity networks, and all negative links were identified
among bacterial nodes (Figure 5A). Node-level topological
features showed that bacterial nodes were significantly more
connected than fungal nodes in the cross-domain meta-
community network (Supplementary Figure 8C). In the six
main modules identified by fast greedy modularity optimization
algorithm, three modules (1, 2, and 5) were dominated by
bacterial OTUs (> 85%), whereas module 6 was almost entirely
composed of fungal nodes (94%, Supplementary Figure 9A).
Interactions between bacteria and fungi predominantly occurred
in modules 3 and 4, and these were contributed by bacterial
phyla, such as Chloroflexi, Proteobacteria, and Acidobacteria,
and fungal class, such as Sordariomycetes, Mortierellomycetes,
and Eurotiomycetes (Supplementary Figure 9B).

Fungal metacommunity network was more modular than
bacterial metacommunity network (bacteria: 0.67; fungi: 0.78;
Figure 5A). Three dominant modules with number of nodes
of more than 10% existed in both networks (Figure 5A). The
correlation between module eigengene and environmental
variables revealed different environmental preferences of
modules. Bacterial module 1 showed a strongly negative
correlation with soil pH (ρ = −0.73), whereas module 2
showed the contrary (ρ = 0.78). In addition, module 3 of
bacterial metacommunity network showed significant but
weaker relevance with AFe (ρ = 0.55), pH (ρ = −0.56), and
TN (ρ = 0.45). There was a strong correlation between fungal
module 1 and MAP (ρ = −0.75), which was highly correlated

with the latitude (ρ = −0.85) (Supplementary Figure 2). Other
fungal modules, however, exhibited weaker correlations with
environmental variables, and the most powerful relevance was
shown between module 2 and AMn (ρ = 0.51) and between
module 3 and AFe (ρ = 0.48, Figure 5B).

A set of local networks were generated through the
remaining nodes in each sample. After removing features with
strong collinearity, 11 network-level topological features were
maintained as representations of the co-occurrence patterns
of both bacteria and fungi (Supplementary Figure 10). The
final MRM models showed that ACu, TP, geographic distance,
and pH were significant variables that explained the variation
in bacterial co-occurrence pattern, whereas TN, geographic
distance, AFe, and MAP were remarkable variables in the fungal
model (Figure 5C). The MRM model of fungi explained more
variations (R2 = 0.45) in co-occurrence pattern than that of
bacteria (R2 = 0.38, Figure 5C). For key variables selected by
MRM model, ACu was significantly and positively correlated
with degree centrality, graph density, and clustering coefficient
of bacterial local networks, but it had negative correlations with
average shortest length, graph diameter, eigenvector centrality,
and modularity (Supplementary Figure 11). TN was positively
associated with a series of fungal topological properties, such
as graph density, closeness centrality, and number of edges.
Furthermore, eigenvector centrality and modularity of fungal
networks showed significant and negative correlation with
TN (Supplementary Figure 11). In addition, the ordinary

TABLE 1 | Fit of the neutral model and comparison with binomial model.

Group Migration rate m Generalized R2 Akaike information criterion

Neutral model Binomial model

Bacteria 0.246 0.562 −17824.530 −13262.250

Fungi 0.014 0.255 −5571.411 521.557
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FIGURE 4 | Main factors mediating the relative contributions of stochastic and deterministic processes to bacterial and fungal community assembly. (A) Mantel
correlograms of β-nearest taxon index (βNTI) against distance classes of key variables (i.e., pH for bacteria and TN for fungi) identified by mantel and partial mantel
tests. Solid dots represent significant correlation at corresponding distance class. (B) Patterns of βNTI across different sub-groups along gradients of pH for bacteria
and TN for fungi. Solid lines represent least-square regression with a second order term.

least-square regression of Euclidean distance of fungal network
features to geographic distance showed a deeper slope (−0.10)
than those of bacteria (−0.03) (Supplementary Figure 12).

DISCUSSION

In the rhizosphere of P. notoginseng, edaphic factors are the
most important partitions for explaining variations in bacterial
and fungal communities (Figure 2A), which are consistent
with the results recently reported in large-scale surveys on
bacterial communities (Powell et al., 2015; Zhang et al., 2018a).
However, previous studies showed that climatic factors are the
best predictors of fungal community composition across a large
space (Tedersoo et al., 2014; Zhang et al., 2020), possibly because
the climatic gradients in our study area are much narrower
than those in areas of continental or global scale. Another
potential reason is that plant root imposes unique selective
effects on fungal communities by changing the rhizosphere
soil environment in comparison with the results of other
studies (Hannula et al., 2017). The significant linear relationships
in α-diversity indices and strong co-variation in pair-wise

similarities of bacterial and fungal communities (Figures 1D,
2B) and the similar key influential factors (Figure 2C) provided
potential evidence for the inference of rhizosphere effect (Wang
X. et al., 2020); and these results were not observed in studies of
natural soils (Powell et al., 2015; Liu et al., 2020).

Understanding the ecological processes structuring
communities is essential for the management of microbiota
(Meyer et al., 2018; Brunel et al., 2020). The neutral model
emphasized the non-negligible role of dispersal limitation
in the assembly of both bacterial and fungal communities
(Table 1), which indicated that stochastic processes should
also be considered even in a strongly selective environment
such as the rhizosphere (Wang X. et al., 2020). This result was
also supported by the observations in soybean rhizosphere at
continental scale (Zhang et al., 2018a,d). The wider niche width of
bacteria than fungi reported in our study (Figure 3C), indicated
that bacteria are more likely to be generalists with potentially
higher phenotypic plasticity than fungi (Langenheder et al.,
2005). The lower dispersal potentiality of fungi in comparison
with bacteria was also within expectations (Figure 3D), as the
smaller body and propagule sizes of bacteria might allow easier
passive transport compared with fungi (Farjalla et al., 2012;
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FIGURE 5 | Co-occurrence patterns of bacterial and fungal communities. (A) The co-occurrence networks of bacteria and fungi extracted from cross-domain
metacommunity network. Nodes and lines represent OTUs and robust links among OTUs, respectively. Nodes are colored according to dominant modules. Black
digits represent the number of positive links, whereas red digit represents the number of negative links. The bar plot represents the modularity of bacterial and fungal
metacommunity networks. (B) Spearman correlations between PC1 of modules and measured variables. Modules of bacterial and fungal metacommunity networks
are defined in Figure 4A. (C) The final result of multiple regression on the Euclidean distance of graph-level topological features of local networks. ‘ × ’ represents
non-significant variables and ‘–’ represents variables with strong collinearity. Tile colors are mapped to the absolute values of standardized coefficients. *, P < 0.05;
**, P < 0.01; ***, P < 0.001.

Powell et al., 2015). Although bacterial and fungal communities
exhibited similar distance-decay relationship (Figure 3A), the
variance partitioning, null model, and neutral model jointly
suggested that fungal community assembly was more driven
by dispersal limitation than selection compared with bacteria

(Table 1 and Figure 3B, Supplementary Figure 6). This pattern
implied that the influence of dispersal ability overwhelmed
the effect of phenotypic plasticity on the determination of the
relative importance of selection versus dispersal limitation in
shaping bacterial and fungal communities (Wu et al., 2018).
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Our observations in the context of rhizosphere are consistent
with the results of recent large-scale studies conducted in
natural soils from different habitats (Powell et al., 2015; Chen
et al., 2020; Wang P. et al., 2020) and provide new evidence
for the ‘size-dispersal’ hypothesis that organisms with larger
body size (fungi) are more dispersal limited than those with
smaller body size (bacteria) (Farjalla et al., 2012). The stronger
dispersal limitation in fungal community assembly also provided
a potential explanation for the higher β-diversities in fungal
community compared with bacterial community (Figure 2B),
because dispersal limitation will increase spatial heterogeneity
in species composition (Galiana et al., 2018). Considering the
findings of previous studies on the comparison of ecologically
distinct organisms in diverse environments like ocean and tank
of bromeliads (Farjalla et al., 2012; Wu et al., 2018), this result
further supported the hypothesis that the relative contributions
of deterministic and stochastic assembly process are highly
dependent on the ecological context.

Revealing which community assembly processes are more
important under different contexts could provide us with insights
into the generation and maintenance of species diversity and the
formation of community structure (Jiao and Lu, 2020b). Our
study showed that soil pH and TN mediated the balance between
deterministic and stochastic assembly of bacteria and fungi based
on phylogenic null model, respectively (Figure 4). The stochastic
assembly of bacterial community plays larger role in neutral and
alkalescent soils than that of fungal community (Figure 4B), and
this result is supported by a previous meta-analysis conducted at
global scale (Tripathi et al., 2018). A continental-scale study also
showed that the assembly of abundant bacteria in agriculture soils
was mediated by pH level (Jiao and Lu, 2020b). Although only
weak pattern was observed, the importance of stochastic process
in fungal assembly increased with the increasing concentration of
soil total nitrogen (TN). This finding was not surprising, because
total nitrogen is known to affect fungal community composition
and diversity at multiple environments and scales (Zhang et al.,
2018c; Chen et al., 2020; Shi et al., 2020). Rhizosphere soils with
low concentration of TN may select fungal taxa with stronger
and more diversified nutrient acquisition capacity. These results
emphasized the role of certain edaphic factors in rhizosphere
microbial assembly.

One unanticipated finding in our study was that fungi showed
potentially broader environmental thresholds for key variables
at the community level than bacteria even if bacteria tended
to be more metabolically flexible (Figures 2D, Figure 2C,
3C). The community-level environmental thresholds have been
considered as a measure of niche breadth associated with
specialized environmental variables (Jiao and Lu, 2020a; Zhang
et al., 2020). An explanation for this potential contradiction
might be as follows: the change of the occurrence and
abundance of taxa along environmental gradients in real world
reflected the interactions between environment filtering and
spatial factors rather than the sole environmental responses
(Boulangeat et al., 2012). In other words, the relative lower
dispersal ability among local sites amplifies the role of stochastic
demographic changes in shaping abundance distribution of
fungal taxa (Vellend, 2010; Dini-Andreote et al., 2015). On

the other hand, low migration rate per se may also lead to
the rarity of one taxon even in its preferred niche (Ai et al.,
2013). Consequently, the relatively strong dispersal limitation
can decouple the relationship between abundance distribution
and environment to some extent and thus broaden the stable
range of fungal community across complex environmental
gradients. In contrast, the relatively high dispersal of bacteria will
enhance the effects of environmental filtering in shaping species
distribution landscape compared with fungi (Vellend, 2010). The
more unconcentrated density distribution observed around the
change points in fungal community provided evidence for this
explanation (Figure 2D). This observation was also supported
by a previous study in natural soils, which showed that fungi
governed by a highly stochastic assembly process was largely
independent of disturbance introduced by land use compared
with bacteria (Powell et al., 2015).

Co-occurrence patterns are prevalent and play critical roles in
understanding microbial community structure (Ma et al., 2016).
In our study, positive covariations dominate the metacommunity
co-occurrence network (Supplementary Figures 9A, Figure 5A),
which is consistent with the findings of previous comparative
studies (Shi et al., 2016; Ma et al., 2020), suggesting that extensive
mutualistic interactions potentially occur among rhizosphere
microbes. The universal positive co-occurrence may be associated
with the abundant available nutrient secreted by plant root
(Mendes et al., 2011). In the cross-domain metacommunity
network, most main modules were dominated by either bacterial
or fungal nodes (Supplementary Figure 9A), implying the
different niche preference between most bacterial and fungal taxa
(Layeghifard et al., 2017). Fungi can utilize more recalcitrant
organic substrates that cannot be decomposed by bacteria (Boer
et al., 2005). A study in the rhizosphere of legumes also supported
our result (Zhang et al., 2018b). However, the limited number
of bacteria–fungi links might represent the overlapping niche
among certain taxonomic groups (Supplementary Figure 9B),
which probably originated from either the similar preference for
simple plant-derived compounds of bacteria and fungi or the
fungal-derived bacterial niches (Boer et al., 2005).

In the comparison of single-domain meta-community
networks, a more modular structure of fungal graph (Figure 5A)
indicated that fungi occupied more decentralized niches than
bacteria (Shi et al., 2016; Layeghifard et al., 2017). This difference
might also be due to the higher spatial heterogeneity among
fungal local communities caused by stronger dispersal limitation
(Galiana et al., 2018), because a low-level exchange of organisms
hinders the establishment of local taxa in distant fundamental
niches (Stegen et al., 2013). Thus, the co-variation among
fungal taxa captured by network inference might be restricted
to spatially more adjacent sites with specific environmental
gradients in comparison with bacteria (Faust and Raes, 2012).
The weaker correlations between fungal module eigengenes and
environmental variables detailed in our study (Figure 5B) further
implied that the formation of fungal modules was less dependent
on environment compared with bacteria (de Menezes et al.,
2015). As discussed above, the absence of complete responses
of fungal taxa to the whole environmental gradients within the
region would weaken the correlations between fungal module
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eigengenes and environmental factors. In a study on sedimentary
microbiota, researchers found that the more disperse-limited
fungi exhibited higher modularity than bacteria in most areas
(Chen et al., 2020). A drought-stress study in grassland
mesocosms also provided evidence that bacterial networks were
more sensitive to environment disturbance than fungal networks
(de Vries et al., 2018). The fungi-dominated modules showed
weaker associations with edaphic and climatic factors than
bacteria-dominated modules in the soils of soybean fields (Zhang
et al., 2018b). These results emphasized the potential role
of neutral processes in structuring co-occurrence patterns of
different organisms.

The topological patterns of local co-occurrence networks
allow a more comprehensive understanding of the responses
of microbial communities to local and regional factors (Ma
et al., 2016). The present study showed that ACu and TN were
the most important explanatory variables for the variations in
local co-occurrence patterns of bacteria and fungi, respectively
(Figure 4C). Copper ions are essential cofactors of various
enzymes, and copper homeostasis is critical for maintaining
core metabolic processes in bacteria (Rademacher and Masepohl,
2012; Kenney et al., 2018). The available copper concentration
in our samples (0.46 – 42.17 mg Kg−1 with a median value
of 2.89 mg Kg−1) was likely too low to be toxic to bacteria
(Ippolito et al., 2011; Nunes et al., 2016); the potentiality of
methanobactin to participate in signal transduction and copper
transport (DiSpirito et al., 2016) and the significant relationships
between ACu and topological features indicated that copper
ions at low level may act as a limiting element mediating the
links among bacteria taxa (Supplementary Figure 11). The
influence of TN on fungal co-occurrence patterns may also
reflect the critical role of TN in the nutrient availability of
fungal taxa in the rhizosphere of P. notoginseng as mentioned
above (Shi et al., 2020). In addition, we observed the more
important role of geographic distances in explaining the local
co-occurrence patterns of fungi and the deeper distance-decay
relationship of fungal topological properties compared with
bacteria (Figure 5C and Supplementary Figure 12), which
further emphasized the importance of dispersal limitation in
shaping co-occurrence structures.

CONCLUSION

Based on a large-scale survey on rhizosphere microbiota across
the cultivatable area of perennial medical plant P. notoginseng
and comparative analyses, we systematically analyzed the
macroecological patterns and community characters of two
vital but different microorganisms in the rhizosphere. The
assembly of fungal community was more driven by dispersal

limitation relative to selection compared with the assembly
of bacterial community; pH and TN mediated the balance
between deterministic and stochastic assembly of bacteria and
fungi, respectively. In addition, fungal communities exhibited
potentially broader environmental thresholds and more modular
co-occurrence patterns compared with bacteria. Our study
emphasizes the importance of dispersal limitation in structuring
rhizosphere microbiota and shaping the community features
of ecologically distinct microorganisms. This knowledge can
promote our understanding on the formation of plant-
rhizosphere microbes holobionts and provides insights into a
better utilization of these microbial communities.
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